首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is widely accepted that there is a considerable gap between the science of conservation biology and the design and execution of biodiversity conservation projects in the field and science is failing to inform the practice of conservation. There are many reasons why this implementation gap exists. A high proportion of papers published in scientific journals by conservation biologists are seldom read outside of the academic world and there are few incentives for academics to convert their science into practice. In turn, field practitioners rarely document their field experiences and experiments in a manner that can meaningfully inform conservation scientists. Issues related to access to scientific literature, scientific relevance in multidisciplinary environments, donor expectations and a lack of critical analysis at all levels of conservation theory and practice are factors that exacerbate the divide. The contexts in which conservation biologists and field practitioners operate are also often highly dissimilar, and each has differing professional responsibilities and expectations that compromise the ability to learn from each other's expertise. Building on recent debate in the literature, and using case studies to illustrate the issues that characterize the divide, this paper draws on the authors' experiences of project management as well as academic research. We identify five key issues related to information exchange: access to scientific literature, levels of scientific literacy, lack of interdisciplinarity, questions of relevance and lack of sharing of conservation-related experiences and suggest new ways of working that could assist in bridging the gap between conservation scientists and field practitioners.  相似文献   

2.
Developing and strengthening a more mutualistic relationship between the science of restoration ecology and the practice of ecological restoration has been a central but elusive goal of SERI since its inaugural meeting in 1989. We surveyed the delegates to the 2009 SERI World Conference to learn more about their perceptions of and ideas for improving restoration science, practice, and scientist/practitioner relationships. The respondents' assessments of restoration practice were less optimistic than their assessments of restoration science. Only 26% believed that scientist/practitioner relationships were “generally mutually beneficial and supportive of each other,” and the “science–practice gap” was the second and third most frequently cited category of factors limiting the science and practice of restoration, respectively (“insufficient funding” was first in both cases). Although few faulted practitioners for ignoring available science, many criticized scientists for ignoring the pressing needs of practitioners and/or failing to effectively communicate their work to nonscientists. Most of the suggestions for bridging the gap between restoration science and practice focused on (1) developing the necessary political support for more funding of restoration science, practice, and outreach; and (2) creating alternative research paradigms to both facilitate on‐the‐ground projects and promote more mutualistic exchanges between scientists and practitioners. We suggest that one way to implement these recommendations is to create a “Restoration Extension Service” modeled after the United States Department of Agriculture's Cooperative Extension Service. We also recommend more events that bring together a fuller spectrum of restoration scientists, practitioners, and relevant stakeholders.  相似文献   

3.
The science‐practice gap is often cited as a limitation to successful restoration outcomes; however, the existence of such a gap in information exchange is rarely measured. Here, we quantify the gap by focusing on common recommendations from both scientists (i.e. researchers) and managers (i.e. practitioners, land managers) on what is needed for successful restoration. We surveyed 45 managers associated with 244 invasive species (Tamarix spp.) removal projects across the southwestern U.S. to determine the degree to which they have utilized four strategies advocated by scientists: (1) collaborate widely, (2) monitor beyond cursory visual methods, (3) use a variety of information sources, and (4) consider project goals beyond invasive species removal. Half of these managers were also interviewed to assess managers' perceptions of the role of science in restoration. Twenty‐three scientists specializing in Tamarix‐related research in this region were also surveyed to assess how much they understood and/or shared the concerns of land managers. We found that managers were following scientists' recommendations and that managers' perceptions of the role of science in land management did not have any bearing on the management actions taken. Scientists reported being influenced by managers, and the concerns of scientists and managers were more overlapping than expected. Boundary organizations and river‐wide partnerships were often cited as important in facilitating effective communication between land managers and scientists. A lack of funding for monitoring and for longer‐term projects was cited by both groups as a limitation to incorporating scientists' recommendations into restoration.  相似文献   

4.
Based on concrete examples gathered from the Mediterranean region, this article shows why restoration ecology around the Mediterranean Basin must go beyond ecological science to embrace a contrasting local vision which integrates social and political realities. By taking into account the growing gap between the northern and southern/eastern shores of the Mediterranean, we propose the adoption of a double agenda for restoration around the Mediterranean to overcome the fact that restoration objectives are often jeopardized by political decisions initially aimed to promote conservation and lack of available technical means (even when appropriate scientific and political means are secured), and to enhance local actions with lasting impacts on the ecosystems. Our discussion illustrates how current ecological problems have become extremely complex and how the success of restoration projects depends on effective social interactions. Here, the simple juxtaposition of disciplines is no longer sufficient. We suggest going beyond existing ecological and socioeconomic frontiers to fill three main gaps. To fill the “design gap” it is important from the outset to promote a full debate for correct definition of the project's objectives and success indicators. Second, to fill the “implementation gap” ecological restoration science should be linked to information technology and cognition science to develop tools adapted for ecological debate. Third, to fill the “evaluation gap” aesthetic, social, cultural, and economic indicators should be defined during the debate process.  相似文献   

5.
In the conservation of forests and protected areas, a gap lies between scientific knowledge and the management decisions made. From our perspective as scientists studying a national park, who deal daily with both research and administration, we discuss the general reasons for this gap. We provide examples (saproxylic beetles and Norway spruce genetics) to demonstrate the dilemma of practitioners who aim at basing their decisions on evidence. From our experience, the approach of problem solving is crucial, yet in many cases, the bidirectional bridge between science and application is poorly established. We specifically urge governments to organize nation-wide species distribution data; scientists to support the conservation community with new functional approaches, also in combination with Red Lists to identify diversity hotspots and major threats; stakeholders to identify land-use alternatives for scientists to study; state research institutes to increase the proportion of scientists; scientists and governmental authorities to regularly summarize scientific results and conclusions for practitioners; and agencies should foster incentives for scientists to deal with conservation efforts.  相似文献   

6.
Applying scientific knowledge to confront societal challenges is a difficult task, an issue known as the science–practice gap. In Ecology and Conservation, scientific evidence has been seldom used directly to support decision‐making, despite calls for an increasing role of ecological science in developing solutions for a sustainable future. To date, multiple causes of the science–practice gap and diverse approaches to link science and practice in Ecology and Conservation have been proposed. To foster a transparent debate and broaden our understanding of the difficulties of using scientific knowledge, we reviewed the perceived causes of the science–practice gap, aiming to: (i) identify the perspectives of ecologists and conservation scientists on this problem, (ii) evaluate the predominance of these perspectives over time and across journals, and (iii) assess them in light of disciplines studying the role of science in decision‐making. We based our review on 1563 sentences describing causes of the science–practice gap extracted from 122 articles and on discussions with eight scientists on how to classify these sentences. The resulting process‐based framework describes three distinct perspectives on the relevant processes, knowledge and actors in the science–practice interface. The most common perspective assumes only scientific knowledge should support practice, perceiving a one‐way knowledge flow from science to practice and recognizing flaws in knowledge generation, communication, and/or use. The second assumes that both scientists and decision‐makers should contribute to support practice, perceiving a two‐way knowledge flow between science and practice through joint knowledge‐production/integration processes, which, for several reasons, are perceived to occur infrequently. The last perspective was very rare, and assumes scientists should put their results into practice, but they rarely do. Some causes (e.g. cultural differences between scientists and decision‐makers) are shared with other disciplines, while others seem specific to Ecology and Conservation (e.g. inadequate research scales). All identified causes require one of three general types of solutions, depending on whether the causal factor can (e.g. inadequate research questions) or cannot (e.g. scientific uncertainty) be changed, or if misconceptions (e.g. undervaluing abstract knowledge) should be solved. The unchanged predominance of the one‐way perspective over time may be associated with the prestige of evidence‐based conservation and suggests that debates in Ecology and Conservation lag behind trends in other disciplines towards bidirectional views ascribing larger roles to decision‐makers. In turn, the two‐way perspective seems primarily restricted to research traditions historically isolated from mainstream conservation biology. All perspectives represented superficial views of decision‐making by not accounting for limits to human rationality, complexity of decision‐making contexts, fuzzy science–practice boundaries, ambiguity brought about by science, and different types of knowledge use. However, joint knowledge‐production processes from the two‐way perspective can potentially allow for democratic decision‐making processes, explicit discussions of values and multiple types of science use. To broaden our understanding of the interface and foster productive science–practice linkages, we argue for dialogue among different research traditions within Ecology and Conservation, joint knowledge‐production processes between scientists and decision‐makers and interdisciplinarity across Ecology, Conservation and Political Science in both research and education.  相似文献   

7.
Conservation science and conservation action are assumed to have identical goals. However, in reality, there is a strong divide between research and practical conservation that has been mostly discussed with respect to the ‘knowing-doing gap’, i.e. the results from science are not being translated into practical management. In this commentary, we argue that there is not one but there are at least three different types of gaps impeding a positive impact of science on conservation: (1) the knowing-doing gap; (2) the thematic gap that exists between the topics addressed by conservation science and the problems faced in conservation; and (3) the disciplinary gap, i.e. the lack of communication and cooperation between different fields of science, e.g. between fundamental biodiversity research and conservation research. These different gaps have different origins and require different means to be overcome. In a survey, scientists from the field of conservation research (all contributing to this special issue on European grasslands) assessed the importance of these three gaps. They highlight that the disciplinary gap is just as relevant as the knowing-doing gap, while the importance of the thematic gap between practical conservation needs and theoretical conservation science is, in the view of the authors, of less importance. Also, the respondents identified the complexity of academic content in scientific publications as an additional cause for knowing-doing gaps. Based on our survey and various other studies analysing these gaps, we suggest two ways to overcome the gaps: if you consider yourself to be a conservation scientist make sure to address questions of relevance for conservation issues, if you are a scientist interested in fundamental issues, be open to mutual interaction and translation of scientific results with conservation scientists. The knowing-doing gap could be addressed by more readily translating the theoretical findings into practical advice. “Conservation Journals” could, for instance, require a second “Conservation Management Abstract”, which has to be published open-access, and back-to-back with the conventional abstract.  相似文献   

8.
Researchers reexamining the relationship between restoration science and practice report a continuing scientist‐practitioner gap. As a land manager with scientific training, I offer my perspective of the chasm and describe a restoration practice infused with as much science as the realities of limited budget and time allow. The coastal sage scrub (CSS) restoration project at Starr Ranch, a 1,585 ha Audubon preserve in southern California, combines non‐chemical invasive species control, restoration, and applied research. Our practices evolve from modified scientific approaches and the scientific literature. Results from experiments with non‐optimum replication (on effects of seed rates, soil tamping, and timing of planting) nonetheless had value for management decisions. A critical practice came from academic research that encouraged cost‐effective passive restoration. Our passive restoration monitoring data showed 28–100% total native cover after 3–5 years. Another published study found that restoration success in semiarid regions is dependent on rainfall, a finding vital for understanding active restoration monitoring results that showed a range of 0–88% total native cover at the end of the first season. Work progresses through a combination of applied research, a watchful eye on the scientific literature, and “ecological intuition” informed by the scientific literature and our own findings. I suggest that it is less critical for academic scientists to address the basic questions on technique that are helpful to land managers but rather advocate practitioner training in methods to test alternative strategies and long‐term monitoring.  相似文献   

9.
Cabin (2007) asks whether formal science is an effective framework and methodology for designing and implementing ecological restoration programs. He argues that beyond certain ancillary benefits, restoration science has little of practical value to offer the practice of restoration. He goes on to suggest that restoration science most often represents an impediment to restoration practice because an “ivory tower” mentality limits the utility of experiments and diverts research dollars away from answering practical questions. His conclusion is that a nonscientific gardening approach may be more effective at restoring degraded ecosystems. We disagree with this perspective because: (1) restoration science has moved beyond exclusively using “square grids” placed on small patches of land to examine treatment effects on species representation; (2) Cabin’s critique greatly undervalues the contribution of science to restoration practice even where the input of restoration scientists is not directly evident; and (3) the practice of restoration is unlikely to advance beyond small‐scale and truly haphazard successes without well‐designed studies that can provide peer‐reviewed and widely accessible published information on the mechanisms underlying both successes and failures. We conclude that through integration with other disciplines, restoration science increasingly will provide novel approaches and tools needed to restore ecosystem composition, structure, and function at stand to landscape scales. As with the broader role of science in the human enterprise ( Sagan 1996 ), the contribution of restoration science to restoration practice can only grow as the discipline matures.  相似文献   

10.
11.
再论可持续性科学: 新形势与新机遇   总被引:3,自引:0,他引:3  
近10年来,可持续性科学蓬勃发展,已成为21世纪全球普遍关注的一个重要的新科学领域.然而,在大力提倡可持续发展和生态文明建设的中国,可持续性科学尚未引起科学家和实践者的足够重视.为促进可持续性科学在中国的发展,2014年邬建国等曾撰文介绍什么是可持续性科学.本文进一步探讨了这一问题,并补充阐述了可持续性科学与可持续发展研究的关系、可持续性科学的科学范式及其8个基本论题.基于对可持续性科学发展动态的分析,作者认为,一方面,可持续性科学已进入系统推进的成熟发展期;另一方面,虽然我国可持续发展研究、实践与教育的热情高涨,但在可持续性科学领域起步较晚,落后于主要发达国家和南非.为此,本文在文献综述的基础上,提出促进中国发展可持续性科学的“三位一体”策略:一是“请进来”以服务中国实践;二是“走出去”以贡献中国智慧;三是“中西医结合”以引领学科发展.  相似文献   

12.
Conservation genetics is a well‐established scientific field. However, limited information transfer between science and practice continues to hamper successful implementation of scientific knowledge in conservation practice and management. To mitigate this challenge, we have established a conservation genetics community, which entails an international exchange‐and‐skills platform related to genetic methods and approaches in conservation management. First, it allows for scientific exchange between researchers during annual conferences. Second, personal contact between conservation professionals and scientists is fostered by organising workshops and by popularising knowledge on conservation genetics methods and approaches in professional journals in national languages. Third, basic information on conservation genetics has been made accessible by publishing an easy‐to‐read handbook on conservation genetics for practitioners. Fourth, joint projects enabled practitioners and scientists to work closely together from the start of a project in order to establish a tight link between applied questions and scientific background. Fifth, standardised workflows simplifying the implementation of genetic tools in conservation management have been developed. By establishing common language and trust between scientists and practitioners, all these measures help conservation genetics to play a more prominent role in future conservation planning and management.  相似文献   

13.
Despite expenditures of more than 1 billion dollars annually, there is little information available about project motivations, actions, and results for the vast majority of river restoration efforts. We performed confidential telephone interviews with 317 restoration project managers from across the United States with the goals of (1) assessing project motivations and the metrics of project evaluation and (2) estimating the proportion of projects that set and meet criteria for ecologically successful river restoration projects. According to project managers, ecological degradation typically motivated restoration projects, but post‐project appearance and positive public opinion were the most commonly used metrics of success. Less than half of all projects set measurable objectives for their projects, but nearly two‐thirds of all interviewees felt that their projects had been “completely successful.” Projects that we classified as highly effective were distinct from the full database in that most had significant community involvement and an advisory committee. Interviews revealed that many restoration practitioners are frustrated by the lack of funding for and emphasis on project monitoring. To remedy this, we recommend a national program of strategic monitoring focused on a subset of future projects. Our interviews also suggest that merely conducting and publishing more scientific studies will not lead to significant improvements in restoration practice; direct, collaborative involvement between scientists, managers, and practitioners is required for forward progress in the science and application of river restoration.  相似文献   

14.
Engaging school students in wildlife research through citizen science projects can be a win–win for scientists and educators. Not only does it provide a way for scientists to gather new data, but it can also contribute to science education and help younger generations become more environmentally aware. However, wildlife research can be challenging in the best of circumstances, and there are few guidelines available to help scientists create successful citizen science projects for school students. This paper explores the opportunities and challenges faced when developing school‐based citizen science projects in wildlife research by synthesising two sources of information. First, we conducted a small, school‐based citizen science project that investigated the effects of supplementary feeding on urban birds as a case study. Second, we reviewed the literature to develop a database of school‐based citizen science projects that address questions in wildlife ecology and conservation. Based on these activities, we present five lessons for scientists considering a school‐based citizen science project. Overall, we found that school‐based citizen science projects must be carefully designed to ensure reliable data are collected, students remain engaged, and the project is achievable under the logistical constraints presented by conducting wildlife research in a school environment. Ultimately, we conclude that school‐based citizen science projects can be a powerful way of collecting wildlife data while also contributing to the education and development of environmentally aware students.  相似文献   

15.
At a time when the science and practice of restoration ecology is adapting to ongoing environmental and social change, innovations in both methods and concepts are essential. Encouraging innovation means allowing open debate about alternative approaches that may add to the toolbox available for restoration. Such approaches are usually being examined as additions to, rather than substitutes for, traditional restoration practices. Recent debate has focused on the scope and intent of restoration as defined in documents such as the Society for Ecological Restoration Standards. There is a mismatch between the default aim in the standards of full restoration to a native reference system and the goals of international restoration efforts that have a broader and more functional focus. The next generation of restoration scientists and practitioners will need to navigate these issues to ensure that restoration remains effective and relevant. This will require, amongst other things, ongoing learning, sharing information and insights, humility, objectivity, continuous examination of assumptions, and questioning current practices and perspectives.  相似文献   

16.
Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and the need to anticipate novel outcomes of changes in species ranges. We highlight that species redistribution has manifest implications across multiple temporal and spatial scales and from genes to ecosystems. Understanding range shifts from ecological, physiological, genetic and biogeographical perspectives is essential for informing changing paradigms in conservation science and for designing conservation strategies that incorporate changing population connectivity and advance adaptation to climate change. Species redistributions present challenges for human well‐being, environmental management and sustainable development. By synthesising recent approaches, theories and tools, our review establishes an interdisciplinary foundation for the development of future research on species redistribution. Specifically, we demonstrate how ecological, conservation and social research on species redistribution can best be achieved by working across disciplinary boundaries to develop and implement solutions to climate change challenges. Future studies should therefore integrate existing and complementary scientific frameworks while incorporating social science and human‐centred approaches. Finally, we emphasise that the best science will not be useful unless more scientists engage with managers, policy makers and the public to develop responsible and socially acceptable options for the global challenges arising from species redistributions.  相似文献   

17.
Science‐Driven Restoration: A Square Grid on a Round Earth?   总被引:3,自引:1,他引:2  
Is formal science necessarily an effective framework and methodology for designing and implementing ecological restoration programs? My experience as an ecologist in Hawaii suggests that even when scientific research programs are explicitly designed to guide and facilitate restoration, the culture of science, heterogeneity of nature, and real‐world complexities of implementing land management practices often limit the practical relevance of conventional scientific research. Although alternative models such as adaptive management and transdisciplinary science may facilitate research that more robustly models the real world, there is often little professional support or incentive to orient even these nonconventional research approaches toward actually solving on‐the‐ground problems. Thus, if one’s goal is to accomplish ecological restoration as quickly and efficiently as possible, a trial‐and‐error/intelligent tinkering–type approach might often be better than using more rigorous, data‐intensive scientific methodology. However, the sympatric implementation of ecological restoration and scientific research programs can lead to valuable synergies such as mutual logistical and financial support and the exchange of distinct forms of knowledge. The professional activities and mere presence of scientists can also greatly enhance a program’s prestige and visibility, which in turn can indirectly promote more and better ecological restoration. Improving our understanding of when formal science can directly assist restoration projects and when its value will more likely be synergistic and indirect could lead to better science, better ecological restoration, and better relationships between these two cultures.  相似文献   

18.
Ecological restoration has developed greatly over recent decades. Promoting harmonious relationships between scientists and practitioners, between restoration ecology and ecological restoration, is essential to improving restoration projects. These relationships are difficult to achieve at a global scale, although international action remains essential. Therefore, regional and national networks are attempting to take up the challenge. With several European countries planning to create their own network in the coming years, insights from current practice are helpful. Here, we (1) describe the context in which ecological restoration is developing in France and (2) present the French restoration network, Réseau d'Echanges et de Valorisation en Ecologie de la Restauration (REVER). Most public policies related to restoration in France are derived from European Union (EU) directives, such as those on water, ecological networks, biodiversity, and protected species and natural habitat. Restoration can also be undertaken through Environmental Impact Assessment (EIA) or subsequent to damage. Following the model of the International Society for Ecological Restoration, the French network for ecological restoration (REVER) aims at accompanying and promoting restoration by facilitating relationships between the various stakeholders: practitioners, scientists, site managers, etc. To encourage exchange of knowledge and experience, REVER manages a website, organizes workshops, and provides links with SER‐Europe and Society for Ecological Restoration International (SERI). This article provides information that will be of interest to other countries trying to meet the Aichi targets of the convention on biological diversity: the restoration of 15% of degraded ecosystems by 2020.  相似文献   

19.
Citizen science has grown rapidly in popularity in recent years due to its potential to educate and engage the public while providing a means to address a myriad of scientific questions. However, the rise in popularity of citizen science has also been accompanied by concerns about the quality of data emerging from citizen science research projects. We assessed data quality in the online citizen scientist platform Chimp&See, which hosts camera trap videos of chimpanzees (Pan troglodytes) and other species across Equatorial Africa. In particular, we compared detection and identification of individual chimpanzees by citizen scientists with that of experts with years of experience studying those chimpanzees. We found that citizen scientists typically detected the same number of individual chimpanzees as experts, but assigned far fewer identifications (IDs) to those individuals. Those IDs assigned, however, were nearly always in agreement with the IDs provided by experts. We applied the data sets of citizen scientists and experts by constructing social networks from each. We found that both social networks were relatively robust and shared a similar structure, as well as having positively correlated individual network positions. Our findings demonstrate that, although citizen scientists produced a smaller data set based on fewer confirmed IDs, the data strongly reflect expert classifications and can be used for meaningful assessments of group structure and dynamics. This approach expands opportunities for social research and conservation monitoring in great apes and many other individually identifiable species.  相似文献   

20.
Tropical ecosystems support a diversity of species and ecological processes that are unparalleled anywhere else on Earth. Despite their tremendous social and scientific importance, tropical ecosystems are rapidly disappearing. To usher tropical ecosystems and the human communities dependent upon them through the environmental transformations of the 21st century, tropical biologists must provide critical knowledge in three areas: 1) the structure and function of tropical ecosystems; 2) the nature and magnitude of anthropogenic effects on tropical ecosystems; and 3) the socio‐economic drivers of these anthropogenic effects. To develop effective strategies for conservation, restoration, and sustainable management of tropical ecosystems, scientific perspectives must be integrated with social necessities. A new set of principles built on a framework for pursuing relevant tropical biological research will facilitate interdisciplinary approaches, integrate biological knowledge with the social sciences, and link science with policy. We propose four broad recommendations for immediate action in tropical biology and conservation that are fundamental to all biological and social disciplines in the tropics: 1) assemble and disseminate information on life's diversity in the tropics; 2) enhance tropical field stations and build a worldwide network to link them with tropical field biologists at their field sites; 3) bring the field of tropical biology to the tropics by strengthening institutions in tropical countries through novel partnerships between tropical and temperate zone institutions and scientists; and 4) create concrete mechanisms to increase interactions between tropical biologists, social scientists, and policy makers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号