首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The replicase activity of rotavirus open cores has been used to study the synthesis of (-) strand RNA from viral (+) strand RNA in a cell-free replication system. The last 7 nt of the (+) strand RNA, 5'-UGUGACC-3', are highly conserved and are necessary for efficient (-) strand synthesis in vitro. Characterization of the cell-free replication system revealed that the addition of NaCl inhibited (-) strand synthesis. By preincubating open cores with (+) strand RNA and ATP, CTP, and GTP prior to the addition of NaCl and UTP, the salt-sensitive step was overcome. Thus, (-) strand initiation, but not elongation, was a salt-sensitive process in the cell-free system. Further analysis of the requirements for initiation showed that preincubating open cores and the (+) strand RNA with GTP or UTP, but not with ATP or CTP, allowed (-) strand synthesis to occur in the presence of NaCl. Mutagenesis suggested that in the presence of GTP, (-) strand synthesis initiated at the 3'-terminal C residue of the (+) strand template, whereas in the absence of GTP, an aberrant initiation event occurred at the third residue upstream from the 3' end of the (+) strand RNA. During preincubation with GTP, formation of the dinucleotides pGpG and ppGpG was detected; however, no such products were made during preincubation with ATP, CTP, or UTP. Replication assays showed that pGpG, but not GpG, pApG, or ApG, served as a specific primer for (-) strand synthesis and that the synthesis of pGpG may occur by a template-independent process. From these data, we conclude that initiation of rotavirus (-) strand synthesis involves the formation of a ternary complex consisting of the viral RNA-dependent RNA polymerase, viral (+) strand RNA, and possibly a 5'-phosphorylated dinucleotide, that is, pGpG or ppGpG.  相似文献   

2.
The effect of various nucleotides on the last step of aldosterone biosynthesis, the so-called "18 oxidation" (transformation of 18-hydroxycorticosterone to aldosterone), was studied by incubation of tritiated 18-hydroxycorticosterone with untreated duck adrenal mitochondria in vitro. The study was carried out in the absence or in the presence of antimycin A which blocks the respiratory chain. Results show that, when oxidative phosphorylation chain functions normally, GTP and CTP had no effect, UTP stimulated this reaction but ADP and ATP inhibited the transformation of 18-hydroxycorticosterone into aldosterone to the same extent. For this reason ATP is included in all controls for experiments studying the effect of ATP when "18 oxidation" is inhibited by antimycin A. When oxidative phosphorylation chain is inhibited by antimycin A, ATP is able to reverse the inhibition of "18 oxidation" induced by antimycin A, in the presence of succinate. Under these conditions UTP is not able to reverse the inhibition induced by antimycin A; GTP and CTP had no effect. Effects of ATP and UTP on the last step of aldosterone biosynthesis are related to different mechanisms. ATP clearly acts as an energy source for "18 oxidation" in the presence of succinate. The role of UTP must still be determined.  相似文献   

3.
We have recently characterised the presence of a Ca2(+)-mobilising receptor for ATP which stimulates exocytosis in differentiated HL60 cells. Here we demonstrate that the undifferentiated HL60 cells also respond to extracellular ATP by stimulating an increase in inositol phosphates and exocytosis. Of the nucleotides (ATP, UTP, ITP, ATP gamma S, AppNHp, XTP, CTP, GTP, 8-Br-ATP and GTP gamma S) that were active in stimulating inositol phosphate formation, only UTP, ATP, ITP, ATP gamma S and AppNHp were active in stimulating secretion. On differentiation, the extent of secretion due to the purinergic agonists ATP, ITP, ATP gamma S and AppNHp remained unchanged whilst secretion due to UTP, a pyrimidine, was substantially increased. These results indicate that the effect of ATP and UTP may be mediated via separate purinergic and pyrimidinergic receptors, respectively.  相似文献   

4.
Studies on the effects of substrates on RNA polymerase I [EC 2.7.7.6] in vitro showed that nucleolar RNA synthesis was inhibited by an excess of substrate nucleoside triphosphates in the presence of Mg2+. GTP and UTP were more inhibitory than CTP and ATP. These compounds specfically inhibited nucleolar RNA synthesis and a concentration of GTP that strongly inhibited nucleolar RNA synthesis did not inhibit RNA synthesis by partially purified RNA polymerase I. The inhibition of nucleolar RNA synthesis disappeared at pH 9.0 without any change in the apparent Km for GTP or the Vmax of RNA synthesis.  相似文献   

5.
A soluble polymerase-template complex prepared from poliovirus-infected cells was found to incorporate radioactive UTP into trichloroacetic acid-insoluble RNA linearly for 8 h in the presence of ATP and Mg2+. Radioactive CTP or GTP was not incorporated under identical conditions. Nearest-neighbor analysis of the in vitro product demonstrated that ATP was added to the viral RNA in the form of polyadenylic acid; UTP was added internally to the 3'-OH group of all four nucelotides. The data can best be explained by the addition of the UTP to the 3'-OH groups of single-stranded breaks in the double-stranded viral RNA and ligation to the adjacent 5'-phosphate groups. The enzymatic activity was also found in encephalomyocarditis virus- and rhinovirus type 1A-infected cells but not in uninfected cells.  相似文献   

6.
7.
8.
CTP synthetase (CTPs) catalyzes the last step in CTP biosynthesis, in which ammonia generated at the glutaminase domain reacts with the ATP-phosphorylated UTP at the synthetase domain to give CTP. Glutamine hydrolysis is active in the presence of ATP and UTP and is stimulated by the addition of GTP. We report the crystal structures of Thermus thermophilus HB8 CTPs alone, CTPs with 3SO4(2-), and CTPs with glutamine. The enzyme is folded into a homotetramer with a cross-shaped structure. Based on the binding mode of sulfate anions to the synthetase site, ATP and UTP are computer modeled into CTPs with a geometry favorable for the reaction. Glutamine bound to the glutaminase domain is situated next to the triad of Glu-His-Cys as a catalyst and a water molecule. Structural information provides an insight into the conformational changes associated with the binding of ATP and UTP and the formation of the GTP binding site.  相似文献   

9.
Transient kinetic data of the hydrolysis of several nucleotides (TTP, CTP, UTP, GTP) by cardiac myosin subfragment 1 (S1) were analyzed to obtain values for the equilibrium constant for nucleotide binding and rate constants for the S1-nucleotide isomerization and the subsequent nucleotide hydrolysis as well as the magnitudes of the relative fluorescence enhancements of the myosin that occur upon isomerization and hydrolysis. These data are compared with data from a previous study with ATP. Nucleotide binding is found to be relatively insensitive to nucleotide ring structure, being affected most by the group at position C6. Isomerization and hydrolysis are more sensitive to nucleotide structure, being inhibited by the presence of a bulky group at position C2. Kinetic parameters decrease as follows: for binding, GTP greater than UTP approximately TTP greater than ATP greater than CTP; for isomerization, ATP greater than UTP approximately TTP approximately CTP greater than GTP; for hydrolysis, ATP greater than TTP greater than CTP approximately UTP greater than GTP. Fluorescence enhancements appear to be most dependent upon the relative values of the individual rate constants.  相似文献   

10.
11.
Yoshida T  Kawaguchi R  Maruyama T 《FEBS letters》2002,514(2-3):269-274
The archaeal chaperonin-mediated folding of green fluorescent protein (GFP) was examined in the presence of various nucleotides. The recombinant alpha- and beta-subunit homo-oligomers and natural chaperonin oligomer from Thermococcus strain KS-1 exhibited folding activity with not only ATP but also with CTP, GTP, or UTP. The ADP-bound form of both recombinant and natural chaperonin had the ability to capture non-native GFP, but could not refold it in the presence of CTP, GTP or UTP until ATP was supplied. The archaeal chaperonin thus utilized ATP, but could not use other nucleoside triphosphates in the cytoplasm where ADP was present.  相似文献   

12.
Wettich A  Biebricher CK 《Biochemistry》2001,40(11):3308-3315
An RNA that replicates with core RNA polymerase from E. coli and the substrates ATP, CTP, ITP, and UTP, was selected from a random poly(A,U,I,C) library and named EcorpI. Another replicating RNA, EcorpG, was obtained by template-free incubation of holo RNA polymerase and the substrates ATP, CTP, GTP, and UTP. Both RNA species showed typical autocatalytic RNA amplification profiles with replication rates in the range of other RNA replicons. The replication products were heterogeneous in length; the different lengths appeared to be different replication intermediates. Both RNA were single-stranded with much internal base-pairing but low melting points. Their sequences were composed by permutations of certain sequence motives in both polarities separated by short oligo(A) and oligo(U) clusters. There was evidence for 3'-terminal elongation on an intramolecular template. No double-stranded RNA was found, even though base-pairing is certainly the underlying basis of the replication process. The reaction was highly sensitive: a few RNA strands were sufficient to trigger an amplification avalanche.  相似文献   

13.
The synthesis of polyribonucleotides by cytoplasmic enzymes   总被引:8,自引:4,他引:4       下载免费PDF全文
1. The possibility that the cell cytoplasm contains enzymes catalysing the biosynthesis of RNA was investigated in fractions obtained by differential centrifugation of homogenates of Landschutz ascites-tumour cells. 2. The microsomal fraction was shown to be most active in incorporating UMP residues from [alpha-(32)P]UTP into polyribonucleotide material. 3. The same fraction also incorporated [(3)H]CTP, [(3)H]ATP and [(3)H]GTP separately and independently of the presence of complementary ribonucleoside 5'-triphosphates. 4. The reaction was promoted by the addition of RNA and showed an absolute requirement for Mg(2+) ions. 5. Analysis of alkaline hydrolysates of the reaction products after the incorporation of [alpha-(32)P]UTP showed that most of the radioactivity was recovered in (2',3')-UMP residues irrespective of whether CTP, ATP and GTP were present in the reaction mixture. 6. Extraction of RNA from the reaction mixtures after the incorporation of [(3)H]ATP, [(3)H]GTP or [(3)H]CTP and analysis by sucrosedensity-gradient centrifugation showed no labelling of the ribosomal RNA. Radioactive material appeared between the 4s region and the meniscus of the sucrose gradient. In agreement with this observation, determinations of the chain length of the product showed that only short sequences of polynucleotides were synthesized. It is concluded that only homopolyribonucleotide synthesis is catalysed by the microsomal fractions and that there is little or no synthesis of RNA-like heteropolymers.  相似文献   

14.
Early studies showed that in addition to GTP, the pyrimidine nucleotides UTP and CTP support activation of the adenylyl cyclase (AC)-stimulating G(s) protein. The aim of this study was to elucidate the mechanism by which UTP and CTP support G(s) activation. As models, we used S49 wild-type lymphoma cells, representing a physiologically relevant system in which the beta(2)-adrenoreceptor (beta(2)AR) couples to G(s), and Sf9 insect cell membranes expressing beta(2)AR-Galpha(s) fusion proteins. Fusion proteins provide a higher sensitivity for the analysis of beta(2)AR-G(s) coupling than native systems. Nucleoside 5'-triphosphates (NTPs) supported agonist-stimulated AC activity in the two systems and basal AC activity in membranes from cholera toxin-treated S49 cells in the order of efficacy GTP > or = UTP > CTP > ATP (ineffective). NTPs disrupted high affinity agonist binding in beta(2)AR-Galpha(s) in the order of efficacy GTP > UTP > CTP > ATP (ineffective). In contrast, the order of efficacy of NTPs as substrates for nucleoside diphosphokinase, catalyzing the formation of GTP from GDP and NTP was ATP > or = UTP > or = CTP > or = GTP. NTPs inhibited beta(2)AR-Galpha(s)-catalyzed [gamma-(32)P]GTP hydrolysis in the order of potency GTP > UTP > CTP. Molecular dynamics simulations revealed that UTP is accommodated more easily within the binding pocket of Galpha(s) than CTP. Collectively, our data indicate that GTP, UTP, and CTP interact differentially with G(s) proteins and that transphosphorylation of GDP to GTP is not involved in this G protein activation. In certain cell systems, intracellular UTP and CTP concentrations reach approximately 10 nmol/mg of protein and are higher than intracellular GTP concentrations, indicating that G protein activation by UTP and CTP can occur physiologically. G protein activation by UTP and CTP could be of particular importance in pathological conditions such as cholera and Lesch-Nyhan syndrome.  相似文献   

15.
The nucleoside 5'-triphosphate (NTP) substrate specificities for Ca-stimulated ATPase and ATP-dependent Ca2+ uptake activities have been examined in cardiac sarcolemma (SL) and sarcoplasmic (SR) membrane vesicles. The results indicate that SL membrane vesicles exhibit a much narrower range of NTP substrate specificities than SR membranes. In SR membrane vesicles, the Ca-stimulated Mg-dependent hydrolysis of ATP and dATP occurred at nearly equivalent rates, whereas the rates of hydrolysis of GTP, ITP, CTP, and UTP ranged from 16-33% of that for ATP. All of the above nucleotides also supported Ca2+ transport into SR vesicles; dATP was somewhat more effective than ATP while GTP, ITP, CTP, and UTP ranged from 28-30% of the activity for ATP. In the presence of oxalate, the initial rate of Ca accumulation with dATP was 4-fold higher than for ATP, whereas the activity for GTP, ITP, CTP, and UTP ranged from 35-45% of that for ATP. For the SL membranes, Ca-activated dATP hydrolysis occurred at 60% of the rate for ATP; GTP, ITP, CTP, and UTP were hydrolyzed by the SL preparations at only 7-9% of the rate for ATP. NTP-dependent Ca2+ uptake in SL membranes was supported only by ATP and dATP, with dATP 60% as effective as ATP. GTP, ITP, CTP, and UTP did not support the transport of Ca2+ by SL vesicles. The results indicate that the SL and SR membranes contain distinctly different ATP-dependent Ca2+ transport systems.  相似文献   

16.
17.
K Kurihara  K Hosoi  T Ueha 《Enzyme》1992,46(4-5):213-220
Hydrolysis of extracellular ATP and other nucleoside phosphates by A-431 human epidermoidal carcinoma cells was studied. The hydrolysis of extracellular ATP by these cells required either Mg2+ or Ca2+, and either cation could be replaced by Co2+, Fe2+, or Mn2+. Nucleoside triphosphates (ATP, GTP, CTP, UTP, and dTTP), but not nucleoside diphosphates, were hydrolyzed by the cells with Km and Vmax values similar to those for ATP (0.9-1.1 mmol/l and 6-10 nmol Pi formed/10(6) cells, respectively). The hydrolysis of ATP was inhibited strongly by ATP-gamma S and AMPPNP, and weakly by AMPCPP and ADP-beta S, but not by AMPCPP or AMPCP. Since the hydrolysis of [gamma-32P]ATP was inhibited by all these nucleoside triphosphates, the binding site for ATP is presumed to be the same as that for the other nucleoside triphosphates. All these results indicate that ecto-ATPase activity associated with A-431 cells is due to ecto-nucleoside triphosphatase. The nucleotide specificity shown in the present study indicates that ecto-nucleoside triphosphatase associated with A-431 cells is a molecule different from P2-purinergic receptors which can be stimulated specifically with nucleoside phosphates like ATP, ADP, UTP, UDP, and GTP, but not by other nucleotides.  相似文献   

18.
The Pseudomonas phaseolicola bacteriophage phi6 incorporated labeled UTP into an acid-insoluble precipitate. Incorporation was dependent on the presence of manganese acetate, ATP, GTP, CTP, and a short heat treatment of the phage; the reaction was stimulated by NH(4)Cl. The substitution of (14)C-ATP, -CTP or -GTP for UTP, together with the appropriate unlabeled ribonucleoside triphosphates, disclosed that CMP was incorporated to the greatest extent followed by GMP, UMP, and AMP. Radioactive RNAs formed by the reaction were resistant to RNases A and T(1) in high salt but susceptible to these nucleases in low salt. The labeled RNA co-sedimented and co-electrophoresed with phi6 double-stranded (ds) RNA. However, the distribution of the radioactivity into the three ds-RNA components varied depending on the (14)C-ribonucleoside triphosphate used in the reaction. The incorporation of UMP was primarily into the two smaller ds-RNA segments, GMP primarily into the large ds-RNA segment, and CMP and AMP were about equally distributed into all three ds-RNA segments.  相似文献   

19.
Poliovirus replicase- and host factor-catalyzed copying of 3'-terminal polyadenylic acid [poly(A)] of poliovirion RNA was studied. Host factor-stimulated synthesis of polyuridylic acid [poly(U)] by the replicase required ATP in addition to UTP. ATP was not required for the oligouridylic acid-primed copying of 3'-terminal poly(A) of virion RNA. GTP, CTP, and AMP-PCP (5'-adenylyl beta-gamma methylenediphosphate, an ATP analog) could not replace ATP in host factor-stimulated synthesis of poly(U). Antibodies to poliovirus genome-linked protein (VPg) specifically precipitated in vitro-synthesized poly(U) from a host factor-stimulated reaction. The poly(U) synthesized in a host factor-stimulated reaction was shown to be attached to VPg precursor polypeptide(s) via a tyrosine-phosphate bond as found in poliovirion VPg-RNA.  相似文献   

20.
DNA primase-DNA polymerase alpha, purified 53,000-fold from CV-1 cells, synthesized predominantly (p)ppA(pA)6-primed DNA on a poly(dT) template. About 80% of the RNA primers synthesized on an M13 DNA template were (p)ppA/G(pN)5-7, and 20% were (p)ppA/G(pN)0-4. RNA primer size was determined by gel electrophoresis after removing nascent DNA with phage T4 DNA polymerase 3'-5' exonuclease, leaving a single dNMP at the 3'-end of the RNA primer, and the terminal 5'-(p)ppN residue was determined by "capping" with [alpha-32P]GTP using vaccinia guanylyl-transferase. The processivity of DNA synthesis initiated by de novo synthesis of RNA primers was the same as that initiated on pre-existing RNA primers (10-15 dNMPs), although initiation on pre-existing primers was strongly preferred. Primers always began with A or G, even at high levels of CTP or UTP, although the ratio of A to G varied from 4:1 to 1:1 depending on the relative concentrations of ATP and GTP in the assay. ATP and GTP had no effect on primer length, but the fraction of shorter RNA primers increased 2-fold with higher concentrations of CTP or UTP. Nearest-neighbor analysis revealed a preference for purine ribonucleotides at RNA covalently linked to the 5'-end of DNA (RNA-p-DNA) junctions, and increasing the concentration of a single rNTP increased slightly its presence at RNA-p-DNA junctions. Thus, the base composition and size of RNA primers synthesized by DNA primase-DNA polymerase alpha is modulated by the relative concentrations of ribonucleoside triphosphates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号