首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.

Key message

Stripe rust resistance transferred from Thinopyrum intermedium into common wheat was controlled by a single dominant gene, which mapped to chromosome 1B near Yr26 and was designated YrL693.

Abstract

Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is a highly destructive disease of wheat (Triticum aestivum). Stripe rust resistance was transferred from Thinopyrum intermedium to common wheat, and the resulting introgression line (L693) exhibited all-stage resistance to the widely virulent and predominant Chinese pathotypes CYR32 and CYR33 and to the new virulent pathotype V26. There was no cytological evidence that L693 had alien chromosomal segments from Th. intermedium. Genetic analysis of stripe rust resistance was performed by crossing L693 with the susceptible line L661. F1, F2, and F2:3 populations from reciprocal crosses showed that resistance was controlled by a single dominant gene. A total 479 F2:3 lines and 781 pairs of genomic simple sequence repeat (SSR) primers were employed to determine the chromosomal location of the resistance gene. The gene was linked to six publicly available and three recently developed wheat genomic SSR markers. The linked markers were localized to wheat chromosome 1B using Chinese Spring nulli-tetrasomic lines, and the resistance gene was localized to chromosome 1B based on SSR and wheat genomic information. A high-density genetic map was also produced. The pedigree, molecular marker data, and resistance response indicated that the stripe rust resistance gene in L693 is a novel gene, which was temporarily designated YrL693. The SSR markers that co-segregate with this gene (Xbarc187-1B, Xbarc187-1B-1, Xgwm18-1B, and Xgwm11-1B) have potential application in marker-assisted breeding of wheat, and YrL693 will be useful for broadening the genetic basis of stripe rust resistance in wheat.  相似文献   

5.

Key message

We report a new stripe rust resistance gene on chromosome 7AS in wheat and molecular markers useful for transferring it to other wheat genotypes.

Abstract

Several new races of the stripe rust pathogen have established throughout the wheat growing regions of China in recent years. These new races are virulent to most of the designated seedling resistance genes limiting the resistance sources. It is necessary to identify new genes for diversification and for pyramiding different resistance genes in order to achieve more durable resistance. We report here the identification of a new resistance gene, designated as Yr61, in Chinese wheat cultivar Pindong 34. A mapping population of 208 F2 plants and 128 derived F2:3 lines in a cross between Mingxian 169 and Pindong 34 was evaluated for seedling stripe rust response. A genetic map consisting of eight resistance gene analog polymorphism (RGAP), two sequence-tagged site (STS) and four simple sequence repeat (SSR) markers was constructed. Yr61 was located on the short arm of chromosome 7A and flanked by RGAP markers Xwgp5467 and Xwgp5765 about 1.9 and 3.9 cM in distance, which were successfully converted into STS markers STS5467 and STS5765b, respectively. The flanking STS markers could be used for marker-assisted selection of Yr61 in breeding programs.  相似文献   

6.
Stripe or yellow rust of wheat, caused by Puccinia striiformis f. sp. tritici, is an important disease in many wheat-growing regions of the world. A number of major genes providing resistance to stripe rust have been used in breeding, including one gene that is present in the differential tester Carstens V. The objective of this study was to locate and map a stripe rust resistance gene transferred from Carstens V to Avocet S and to use molecular tools to locate a number of genes segregating in the cross Savannah/Senat. One of the genes present in Senat was predicted to be a gene that is present in Carstens V. For this latter purpose, stripe rust response data from both seedling and field tests on a doubled haploid population consisting of 77 lines were compared to an available molecular map for the same lines using a non-parametric quantitative trait loci (QTL) analysis. Results obtained in Denmark suggested that a strong component of resistance with the specificity of Carstens V was located in chromosome arm 2AL, and this was consistent with chromosome location work undertaken in Australia. Since this gene segregated independently of Yr1, the only other stripe rust resistance gene known to be located in this chromosome arm, it was designated Yr32. Further QTLs originating from Senat were located in chromosomes 1BL, 4D, and 7DS and from Savannah on 5B, but it was not possible to characterize them as unique resistance genes in any definitive way. Yr32 was detected in several wheats, including the North American differential tester Tres.  相似文献   

7.
Wheat production in Pakistan is seriously constrained due to rust diseases and stripe rust (yellow) caused by Puccinia striiformis f. sp. tritici, which could limit yields. Thus development and cultivation of genetically diverse and resistant varieties is the most sustainable solution to overcome these diseases. The first objective of the present study was to evaluate 100 Pakistan wheat cultivars that have been grown over the past 60 years. These cultivars were inoculated at the seedling stage with two virulent stripe rust isolates from the United States and two from Pakistan. None of the wheat cultivars were resistant to all tested stripe rust isolates, and 16% of cultivars were susceptible to the four isolates at the seedling stage. The data indicated that none of the Pakistan wheat cultivars contained either Yr5 or Yr15 genes that were considered to be effective against most P. striiformis f. sp. tritici isolates from around the world. Several Pakistan wheat cultivars may have gene Yr10, which is effective against isolate PST-127 but ineffective against PST-116. It is also possible that these cultivars may have other previously unidentified genes or gene combinations. The second objective was to evaluate the 100 Pakistan wheat cultivars for stripe rust resistance during natural epidemics in Pakistan and Washington State, USA. It was found that a higher frequency of resistance was present under field conditions compared with greenhouse conditions. Thirty genotypes (30% of germplasms) were found to have a potentially high temperature adult plant (HTAP) resistance. The third objective was to determine the genetic diversity in Pakistan wheat germplasms using molecular markers. This study was based on DNA fingerprinting using resistance gene analog polymorphism (RGAP) marker analysis. The highest polymorphism detected with RGAP primer pairs was 40%, 50% and 57% with a mean polymorphism of 36%. A total of 22 RGAP markers were obtained in this study. RGAP, simple sequence repeat (SSR) and sequence tagged site (STS) markers were used to determine the presence and absence of some important stripe rust resistance genes, such as Yr5, Yr8, Yr9, Yr15 and Yr18. Of the 60 cultivars analyzed, 17% of cultivars showed a RGAP marker band for Yr9 and 12% of cultivars exhibited the Yr18 marker band. No marker band was detected for Yr5, Yr8 and Yr15, indicating a likely absence of these genes in the tested Pakistan wheat cultivars. Cluster analysis based on molecular and stripe rust reaction data is useful in identifying considerable genetic diversity among Pakistan wheat cultivars. The resistant germplasms identified with 22 RGAP markers and from the resistance evaluations should be useful in developing new wheat cultivars with stripe rust resistance.  相似文献   

8.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most widespread and destructive wheat diseases worldwide. Growing resistant cultivars is the preferred control of the disease. The spring wheat cultivar ‘Alpowa’ has both race-specific, all-stage resistance and non-race-specific, high-temperature adult-plant (HTAP) resistances to stripe rust. To identify genes for the stripe rust resistances, Alpowa was crossed with ‘Avocet Susceptible’ (AVS). Seedlings of the parents, and F1, F2 and F3 progeny were tested with races PST-1 and PST-21 of P. striiformis f. sp. tritici under controlled greenhouse conditions. Alpowa has a single partially dominant gene, designated as YrAlp, conferring all-stage resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrAlp. A linkage group of five RGAP markers and two SSR markers was constructed for YrAlp using 136 F3 lines. Amplification of a set of nulli-tetrasomic Chinese Spring lines with RGAP markers Xwgp47 and Xwgp48 and the two SSR markers indicated that YrAlp is located on the short arm of chromosome 1B. To map quantitative trait loci (QTLs) for the non-race-specific HTAP resistance, the parents and 136 F3 lines were tested at two sites near Pullman and one site near Mount Vernon, Washington, under naturally infected conditions. A major HTAP QTL was consistently detected across environments and was located on chromosome 7BL. Because of its chromosomal location and the non-race-specific nature of the HTAP resistance, this gene is different from previously described genes for adult-plant resistance, and is therefore designated Yr39. The gene contributed to 64.2% of the total variation of relative area under disease progress curve (AUDPC) data and 59.1% of the total variation of infection type data recorded at the heading-flowering stages. Two RGAP markers, Xwgp36 and Xwgp45 with the highest R 2 values were closely linked to Yr39, should be useful for incorporation of the non-race-specific resistance gene into new cultivars and for combining Yr39 with other genes for durable and high-level resistance.  相似文献   

9.

Key message

Wheat cultivar Madsen has a new gene on the short arm of chromosome 1A and two QTL for all-stage resistance and three QTL for high-temperature adult-plant resistance that in combination confer high-level, durable resistance to stripe rust.

Abstract

Wheat cultivar Madsen has maintained a high-level resistance to stripe rust over 30 years. To map quantitative trait loci (QTL) underlying the high-level, durable resistance, 156 recombinant inbred lines (RILs) developed from cross Avocet S?×?Madsen were phenotyped with selected races of Puccinia striiformis f. sp. tritici in the greenhouse seedling tests, and in naturally infected fields during 2015–2017. The RILs were genotyped by SSR and SNP markers from genotyping by sequencing and the 90 K wheat SNP chip. Three QTL for all-stage resistance were mapped on chromosomes 1AS, 1BS and 2AS, and two QTL for high-temperature adult-plant (HTAP) resistance were mapped on 3BS and 6BS. The most effective QTL on 2AS, explaining 8.97–23.10% of the phenotypic variation in seedling tests and 8.60–71.23% in field tests, contained Yr17 for all-stage resistance and an additional gene for HTAP resistance. The 6BS QTL, detected in all field tests, was identified as Yr78. The 1AS QTL, conferring all-stage resistance, was identified as a new gene, which explained 20.45 and 30.23% of variation in resistance to races PSTv-37 and PSTv-40, respectively, and contributed significantly to field resistance at Pullman in 2015-2017, but was not detected at Mount Vernon. The interactions among QTL were mostly additive, and RILs with all five QTL had the highest level of resistance in the field, similar to Madsen. Genotyping 148 US Pacific Northwest wheat cultivars with markers for the 1AS, 2AS and 6BS QTL validated the genes and markers, and indicated their usefulness for marker-assisted selection.
  相似文献   

10.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat worldwide. The best strategy to control stripe rust is to grow resistant cultivars. One such cultivar resistant to most races in North America is ‘IDO377s’. To study the genetics of its resistance this spring wheat cultivar was crossed with ‘Avocet Susceptible’ (AvS). Seedlings of the parents, F2 plants, and F3 lines were tested under controlled greenhouse conditions with races PST-43 and PST-45 of P. striiformis f. sp. tritici. IDO377s carries a single dominant gene for resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to the resistance gene. A total of ten markers were identified, two of which flanked the locus at 4.4 and 5.5 cM. These flanking RGAP markers were located on chromosome 2B with nulli-tetrasomic lines of ‘Chinese Spring’. Their presence in the ditelosomic 2BL line localized them to the long arm. The chromosomal location of the resistance gene was further confirmed with two 2BL-specific SSR markers and a sequence tagged site (STS) marker previously mapped to 2BL. Based on the chromosomal location, reactions to various races of the pathogen and tests of allelism, the IDO377s gene is different from all previously designated genes for stripe rust resistance, and is therefore designated Yr43. A total of 108 wheat breeding lines and cultivars with IDO377s or related cultivars in their parentage were assayed to assess the status of the closest flanking markers and to select lines carrying Yr43. The results showed that the flanking markers were reliable for assisting selection of breeding lines carrying the resistance gene. A linked stripe rust resistance gene, previously identified as YrZak, in cultivar Zak was designated Yr44.  相似文献   

11.

Key message

Yr10 is an important gene to control wheat stripe rust, and the search for Yr10 needs to be continued.

Abstract

Wheat stripe rust or yellow rust is a devastating fungal disease caused by Puccinia striiformis f. sp. tritici (Pst). Host disease resistance offers a primary source for controlling wheat stripe rust. The stripe rust resistance gene Yr10 confers the race-specific resistance to most tested Pst races in China including CYR29. Early studies proposed that Yr10 was a nucleotide-binding site, leucine-rich repeat gene archived as GenBank accession AF149112 (hereafter designated the Yr10 candidate gene or Yr10 CG ). In this study, we revealed that 15 Chinese wheat cultivars positive for Yr10 CG are susceptible to CYR29. We then expressed the Yr10 CG cDNA in the common wheat ‘Bobwhite’. The Yr10 CG -cDNA positive transgenic plants were also susceptible to CYR29. Thus, it is highly unlikely that Yr10 CG corresponds to the Yr10 resistance gene. Using the Yr10 donor ‘Moro’ and the Pst-susceptible wheat ‘Huixianhong’, we generated two F3 populations that displayed a single Mendelian segregation on the Yr10 gene, and used them to remap the Yr10 gene. Six markers were placed in the Yr10 region, with the Yr10 CG gene now mapping about 1.2-cM proximal to the Yr10 locus and the Xsdauw79 marker is completely linked to the Yr10 locus. Apparently, the Yr10 gene has not yet been identified. Fine mapping and positional cloning of Yr10 is important for gene pyramiding for stripe rust resistance in wheat.
  相似文献   

12.
The challenge posed by rapidly changing wheat rust pathogens, both in virulence and in environmental adaptation, calls for the development and application of new techniques to accelerate the process of breeding for durable resistance. To expand the resistance gene pool available for germplasm improvement, a panel of 159 landraces plus old cultivars was evaluated for seedling and adult plant resistance (APR) to over 35 Australian pathotypes of Puccinia triticina, Puccinia graminis f. sp. tritici, and Puccinia striiformis f. sp. tritici. Known seedling resistance (SR) genes for leaf rust (Lr2a, Lr3a, Lr13, Lr23, Lr16, and Lr20), stem rust (Sr12, Sr13, Sr23, Sr30, and Sr36), and stripe rust (Yr3, Yr4, Yr5, Yr9, Yr10, Yr17, and Yr27) were postulated. The APR genes identified via field assessments and marker analyses included the pleiotropic genes (Lr34/Yr18/Sr57, Lr46/Yr29/Sr58, Lr67/Yr46/Sr55, and Sr2/Lr27/Yr30), Lr68, Lr74, and uncharacterized APR. A genome-wide association analysis using linear mixed models detected 79 single nucleotide polymorphism (SNP) markers significantly associated with rust resistance, which were mapped on chromosomes 1A, 1B, 1D, 2A, 2B, 3A, 3B, 3D, 4A, 5A, 5B, 6A, 6B, 6D, 7A, 7B and 7D. SNPs associated with multiple rust resistances probably indicate the presence of new pleiotropic or closely linked genes. SNPs were mapped on chromosome positions (1AL, 1DS, 2AL, 4AS, 5BS, 6DL, and 7AL) that have not been known to carry APR genes. This study revealed the presence of a range of possibly unidentified effective seedling and APRs among the landraces, which might represent new sources of rust resistance for the ongoing effort to develop improved wheat cultivars.  相似文献   

13.

Key message

A new adult plant stripe rust resistance gene, Yr80, was identified in a common wheat landrace Aus27284. Linked markers were developed and validated for their utility in marker-assisted selection.

Abstract

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is among the most important constraints to global wheat production. The identification and characterisation of new sources of host plant resistance enrich the gene pool and underpin deployment of resistance gene pyramids in new cultivars. Aus27284 exhibited resistance at the adult plant stage against predominant Pst pathotypes and was crossed with a susceptible genotype Avocet S. A recombinant inbred line (RIL) population comprising 121 lines was developed and tested in the field at three locations in 2016 and two in 2017 crop seasons. Monogenic segregation for adult plant stripe rust response was observed among the Aus27284/Avocet S RIL population and the underlying locus was temporarily designated YrAW11. Bulked-segregant analysis using the Infinium iSelect 90K SNP wheat array placed YrAW11 in chromosome 3B. Kompetitive allele specific PCR (KASP) primers were designed for the linked SNPs and YrAW11 was flanked by KASP_65624 and KASP_53292 (3 cM) proximally and KASP_53113 (4.9 cM) distally. A partial linkage map of the genomic region carrying YrAW11 comprised nine KASP and two SSR markers. The physical position of KASP markers in the pseudomolecule of chromosome 3B placed YrAW11 in the long arm and the location of markers gwm108 and gwm376 in the deletion bin 3BL2-0.22 supported this conclusion. As no other stripe rust resistance locus has been reported in chromosome 3BL, YrAW11 was formally designated Yr80. Marker KASP_ 53113 was polymorphic among 94% of 81 Australian wheat cultivars used for validation.
  相似文献   

14.

Key message

In wheat, advantageous gene-rich or pleiotropic regions for stripe, leaf, and stem rust and epistatic interactions between rust resistance loci should be accounted for in plant breeding strategies.

Abstract

Leaf rust (Puccinia triticina Eriks.) and stripe rust (Puccinia striiformis f. tritici Eriks) contribute to major production losses in many regions worldwide. The objectives of this research were to identify and study epistatic interactions of quantitative trait loci (QTL) for stripe and leaf rust resistance in a doubled haploid (DH) population derived from the cross of Canadian wheat cultivars, AC Cadillac and Carberry. The relationship of leaf and stripe rust resistance QTL that co-located with stem rust resistance QTL previously mapped in this population was also investigated. The Carberry/AC Cadillac population was genotyped with DArT® and simple sequence repeat markers. The parents and population were phenotyped for stripe rust severity and infection response in field rust nurseries in Kenya (Njoro), Canada (Swift Current), and New Zealand (Lincoln); and for leaf rust severity and infection response in field nurseries in Canada (Swift Current) and New Zealand (Lincoln). AC Cadillac was a source of stripe rust resistance QTL on chromosomes 2A, 2B, 3A, 3B, 5B, and 7B; and Carberry was a source of resistance on chromosomes 2B, 4B, and 7A. AC Cadillac contributed QTL for resistance to leaf rust on chromosome 2A and Carberry contributed QTL on chromosomes 2B and 4B. Stripe rust resistance QTL co-localized with previously reported stem rust resistance QTL on 2B, 3B, and 7B, while leaf rust resistance QTL co-localized with 4B stem rust resistance QTL. Several epistatic interactions were identified both for stripe and leaf rust resistance QTL. We have identified useful combinations of genetic loci with main and epistatic effects. Multiple disease resistance regions identified on chromosomes 2A, 2B, 3B, 4B, 5B, and 7B are prime candidates for further investigation and validation of their broad resistance.  相似文献   

15.
The incorporation of effective and durable disease resistance is an important breeding objective for wheat improvement. The leaf rust resistance gene Lr34 and stripe rust resistance gene Yr18 are effective at the adult plant stage and have provided moderate levels of durable resistance to leaf rust caused by Puccinia triticina Eriks. and to stripe rust caused by Puccinia striiformis Westend. f. sp. tritici. These genes have not been separated by recombination and map to chromosome 7DS in wheat. In a population of 110 F7 lines derived from a Thatcher × Thatcher isogenic line with Lr34/Yr18, field resistance to leaf rust conferred by Lr34 and to stripe rust resistance conferred by Yr18 cosegregated with adult plant resistance to powdery mildew caused by Blumeria graminis (DC) EO Speer f. sp. tritici. Lr34 and Yr18 were previously shown to be associated with enhanced stem rust resistance and tolerance to barley yellow dwarf virus infection. This chromosomal region in wheat has now been linked with resistance to five different pathogens. The Lr34/Yr18 phenotypes and associated powdery mildew resistance were mapped to a single locus flanked by microsatellite loci Xgwm1220 and Xgwm295 on chromosome 7DS.  相似文献   

16.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases of wheat worldwide. Resistance is the best approach to control the disease. High-temperature adult-plant (HTAP) stripe rust resistance has proven to be race non-specific and durable. However, genes conferring high-levels of HTAP resistance are limited in number and new genes are urgently needed for breeding programs to develop cultivars with durable high-level resistance to stripe rust. Spring wheat germplasm PI 183527 showed a high-level of HTAP resistance against stripe rust in our germplasm evaluations over several years. To elucidate the genetic basis of resistance, we crossed PI 183527 and susceptible wheat line Avocet S. Adult plants of parents, F(1), F(2) and F(2:3) progeny were tested with selected races under the controlled greenhouse conditions and in fields under natural infection. PI 183527 has a single dominant gene conferring HTAP resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) markers in combination with bulked segregant analysis (BSA) were used to identify markers linked to the resistance gene. A linkage map consisting of 4 RGAP and 7 SSR markers was constructed for the resistance gene using data from 175 F(2) plants and their derived F(2:3) lines. Amplification of nulli-tetrasomic, ditelosomic and deletion lines of Chinese Spring with three RGAP markers mapped the gene to the distal region (0.86-1.0) of chromosome 7BL. The molecular map spanned a genetic distance of 27.3?cM, and the resistance gene was narrowed to a 2.3-cM interval flanked by markers Xbarc182 and Xwgp5258. The polymorphism rates of the flanking markers in 74 wheat lines were 74 and 30?%, respectively; and the two markers in combination could distinguish the alleles at the resistance locus in 82?% of tested genotypes. To determine the genetic relationship between this resistance gene and Yr39, a gene also on 7BL conferring HTAP resistance in Alpowa, a cross was made between PI 183527 and Alpowa. F(2) segregation indicated that the genes were 36.5?±?6.75?cM apart. The gene in PI 183527 was therefore designed as Yr52. This new gene and flanking markers should be useful in developing wheat cultivars with high-level and possible durable resistance to stripe rust.  相似文献   

17.
Recently, we mapped genomic regions associated with resistance to wheat diseases and insensitivity to Pyrenophora tritici-repentis (Ptr) toxins using 81 historical and modern Canadian western spring wheat cultivars genotyped with genome-wide single nucleotide polymorphic (SNP) markers. Here, we investigate the frequency and effects of allelic variants of 50 markers associated with 16 candidate genes that regulate resistance to leaf rust (Puccinia triticina), yellow or stripe rust (P. striiformis f. sp. tritici), tan spot (P. tritici-repentis), and Ptr ToxA reaction in a subset of 70 of the 81 spring wheat cultivars. We evaluated the 70 cultivars in the field for all diseases except Ptr ToxA, which was evaluated in a greenhouse. Using Spearman rank correlation, stepwise discriminant analysis, and partial least squares regression, we identified between 4 and 11 markers as best predictors of each phenotypic trait. Overall, 23 of the 50 markers were associated with one or more of the phenotypic traits of which analysis of variance showed significant differences between allelic variants of 19 markers. In most analyses, markers for Lr34/Yr18 and Tsn1 loci were identified consistently as the best predictor of disease resistance and Ptr ToxA sensitivity, respectively. The same alleles from two Lr34/Yr18 diagnostic SNP markers (wMAS000003 and wMAS000004) not only decreased stripe rust scores up to 1.6 (on a 1 to 9 scale), but also increased grain yield up to 196 kg ha?1 without affecting maturity. Results from this study could aid spring wheat breeders in selecting the best parental combinations and/or marker-assisted selection to integrate disease resistance with early maturity and short stature.  相似文献   

18.

Main conclusion

A new wheat-rye 1BL?1RS translocation line, with the characteristics of superior stripe rust resistance and high thousand-kernel weight and grain number per spike, was developed and identified from progenies of wheat-rye- Psathyrostachys huashanica trigeneric hybrids.

Abstract

The wheat-rye 1BL?1RS translocation line from Petkus rye has contributed substantially to the world wheat production. However, due to extensive growing of cultivars with disease resistance genes from short arm of rye chromosome 1R and coevolution of pathogen virulence and host resistance, these cultivars successively lost resistance to pathogens. In this study, a new wheat-rye line K13-868, derived from the progenies of wheat-rye-Psathyrostachys huashanica trigeneric hybrids, was identified and analyzed using fluorescence in situ hybridization (FISH), genomic in situ hybridization (GISH), acid polyacrylamide gel electrophoresis (A-PAGE), and molecular markers. Cytological studies indicated that the mean chromosome configuration of K13-868 at meiosis was 2n = 42 = 0.14 I + 18.78 II (ring) + 2.15 II (rod). Sequential FISH and GISH results demonstrated that K13-868 was a compensating wheat-rye 1BL?1RS Robertsonian translocation line. Acid PAGE analysis revealed that clear specific bands of rye 1RS were expressed in K13-868. Simple sequence repeat (SSR) and rye 1RS-specific markers ω-sec-p1/ω-sec-p2 and O-SEC5′-A/O-SEC3′-R suggested that the 1BS arm of wheat had been substituted by the 1RS arm of rye. At the seedling and adult growth stage, compared with its recurrent wheat parent SM51 and six other wheat cultivars containing the 1RS arm in southwestern China, K13-868 showed high levels of resistance to stripe rust (Puccinia striiformis f. sp. tritici, Pst) pathogens prevalent in China, which are virulent to Yr10 and Yr24/Yr26. In addition, K13-868 expresses higher thousand-kernel weight and more grain number per spike than these controls in two growing seasons, suggesting that this line may carry yield-related genes of rye. This translocation line, with significant characteristics of resistance to stripe rust and high thousand-kernel weight and grain number per spike, could be utilized as a valuable germplasm for wheat improvement.
  相似文献   

19.
20.
An uncharacterized source of seedling resistance to Puccinia striiformis f.sp. tritici was identified in an advanced wheat breeding line WAWHT2046. Genetic analysis based on a WAWHT2046/Carnamah-derived double haploid (DH) population demonstrated monogenic inheritance of seedling stripe rust resistance in WAWHT2046. The gene controlling stripe rust resistance in line WAWHT2046 was tentatively designated YrWA. The chromosome 5AL located awn inhibitor gene B1, possessed by WAWHT2046, also showed monogenic inheritance when the DH population was scored for the presence and absence of awns. Joint segregation analysis at the B1 and YrWA loci indicated genetic linkage between the two loci. A recombination value of 12.2 cM was computed using Mapmanager. This association located YrWA in the chromosome arm 5AL. Molecular mapping using microsatellite markers placed YrWA distal to B1. All molecular markers mapped proximal to the awn inhibitor locus B1. As no other stripe rust resistance gene is reported to be located in the chromosome arm 5AL, YrWA was permanently designated as Yr34. Yr34 produced an intermediate (23C) seedling infection type and expressed very low stripe rust response (10R-MR) on adult plants in the field, similar to the resistance gene Yr17. In addition to Yr34, this mapping population segregated for three genetically independent adult plant stripe rust resistance genes. The detection of DH lines with completely susceptible response, higher than that shown by the Yr34-lacking parent Carnamah, suggested that both parents contributed adult plant resistance. The use of WAWHT2046 as a parent in breeding programs would also contribute APR in addition to Yr34.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号