首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The responses of root aerobic respiration to hypoxia in three common Typha species were examined. Typha latifolia L., T. orientalis Presl, and T. angustifolia L. were hydroponically cultivated under both aerobic and hypoxic growth conditions to measure root oxygen consumption rates. Hypoxia significantly enhanced the root aerobic respiration capacity of the two deep-water species, T. orientalis and T. angustifolia, while it did not affect that of the shallow-water species, T. latifolia. T. angustifolia increased its root porosity and root mass ratio, while T. latifolia increased its root diameter under the hypoxic growth conditions. The relative growth rates in biomass of T. orientalis and T. angustifolia were 59 and 39% higher, respectively, under the hypoxic growth conditions than under the aerobic growth conditions. In contrast, that of T. latifolia did not differ between the two conditions. In T. orientalis and T. angustifolia, enhanced root aerobic respiration rates under the hypoxic growth conditions would have increased the nutrient uptake, and thus higher relative growth rates were obtained. For the deep-water species, T. orientalis and T. angustifolia, the root aerobic respiration capacity was enhanced, probably in order to maintain the generation of respiratory energy under hypoxia.  相似文献   

2.
Invasive species are a problem because of their detrimental ecological and economic effects. Increased disturbance caused by human impacts is hypothesized as a primary factor promoting the spread of invaders. Plants and plant litter can have important effects on plant colonization and community composition by affecting seedling survival and growth. I examined the hypothesis that invasion of non-native Lythrum salicaria in Typha-dominated marshes is disturbance-dependent. If so, the removal of Typha plants or litter would increase the survival and growth of L. salicaria seedlings. Additionally, the removal of both plants and litter could result in an additive or synergistic effect on the establishment of L. salicaria. Alternatively, L. salicaria may be a successful invader because it has a high capacity to establish and grow regardless of neighbours. In this case, L. salicaria would be expected to perform well even in plants and litter. Strategies for managing L. salicaria will depend on which factors promote invasion. I measured the differential effects of plants and litter, alone and in combination, on the survival and growth of L. salicaria seedlings transplanted into marshes. The presence of plants and litter did not affect seedling survival in relatively dry wetland sites, indicating that L. salicaria seedlings have the capacity to persist in the presence of neighbouring Typha spp. competitors. However, removal of both plants and litter allowed increased growth of L. salicaria seedlings in drier wetlands. Therefore, growth was facilitated by disturbance that removed all vegetation. Small disturbances (0.6 m2) decreased competitive suppression by native Typha spp. neighbours and resulted in significant increases in growth. Disturbance of wetlands at risk of invasion by L. salicaria should be avoided.  相似文献   

3.
The growth strategy of an emergent plant, Typha orientalis Presl, was examined in experimental ponds in comparison with two other Typha species distributed in Japan, Typha latifolia L. and Typha angustifolia L. T. orientalis showed the greatest ability of vegetative reproduction at the expense of growth in height. T. orientalis started to produce new ramets earlier than T. latifolia and T. angustifolia. These results suggest that T. orientalis should be a rather pioneer-like species and would be restricted to disturbed habitats.  相似文献   

4.
The direct competitive effects of exotic plants on natives are among the leading causes of plant extinctions worldwide. Allelopathy, one type of direct plant competition, has received relatively little research, particularly in aquatic and wetland systems, even though allelopathy can be a potent mechanism through which plant communities are structured. Typha angustifolia (narrow-leaved cattail) is an invasive exotic plant in North America that often forms monocultures in disturbed wetlands and is more invasive than native members of its genus. We tested whether T. angustifolia was allelopathic and whether it produced different biochemicals than a native congener by growing it with the native bulrush Bolboschoenus fluviatilis (river bulrush) in soil with and without activated carbon and by qualitatively and quantitatively comparing soluble phenolics produced in the roots of T. angustifolia and the native Typha latifolia (broad-leaved cattail). T. angustifolia had a strong allelopathic effect on B. fluviatilis, reducing the longest leaf length and root, shoot, and total biomass of B. fluviatilis. When the allelopathy of T. angustifolia was ameliorated by activated carbon, however, longest leaf length, ramet number, root biomass, shoot biomass, and total biomass of T. angustifolia were greatly reduced due to resource competition with B. fluviatilis. Furthermore, T. angustifolia produced different, but not more, soluble phenolics than T. latifolia suggesting that the identity of the phenolics is different between the two species rather than the concentrations. The allelopathic effects of T. angustifolia on a North American native wetland plant and its production of root biochemicals that appear to differ from those produced by a native congener are consistent with the possibility that T. angustifolia may use a novel allelochemical in its invasion of North American wetlands.  相似文献   

5.
A comparison was made of the radial oxygen loss (ROL) from the roots of three Typha species, Typha latifolia L., Typha orientalis Presl and Typha angustifolia L., which resemble each other in morphology. ROLs were evaluated in the laboratory for seedlings of T. orientalis and T. angustifolia in order to compare them with the ROL value for T. latifolia obtained in our previous study. Measurements were conducted using the highly oxygen-sensitive anthraquinone radical anion as an oxygen indicator, which enabled us to simulate the natural conditions in which the oxygen released from the root is immediately consumed by the soil. Among the three Typha species, the ROL was the highest in T. angustifolia, followed by T. latifolia and T. orientalis. Illumination significantly enhances the ROL of T. orientalis, and this effect was also observed for T. latifolia in our previous study, whereas it did not affect the ROL of T. angustifolia. These results indicate that ROL differs significantly between species, even among members of the same genus that are similar in morphology.  相似文献   

6.
The effects of invasive plants on plants native to areas that are being invaded can be quite variable, depending on the species of the invasive plant involved as well as the physical characteristics of the location being invaded. My study focuses on the effects of Phragmites australis Linnaeus (common reed) and Lythrum salicaria L. (purple loosestrife) on the same native plant community. Uninvaded plots dominated by native plants Typha angustifolia L. (narrowleaf cattail) and Typha latifolia L. (broadleaf cattail) served as the control. I surveyed percent cover of species during early summer and midsummer for 3 years in six Hudson River freshwater tidal wetlands (sites). Differences in species richness, composition and abundance were small, but significant among invaded and uninvaded plots and among sites. However, these differences remained significant when data for dominant species (invasive and native) were removed. Differences in native plant species abundance were attributed to invasive plant species-specific characteristics and differences in species richness and composition were attributed to physical location (zonation) in these freshwater tidal marshes. “Invasive” status of a dominant plant species was less important in invasive plant–native plant interactions than species-specific characteristics and zonation. Further research into the effects of site and land-use on invasive plant impacts is recommended.  相似文献   

7.
Carduus nutans L. is an invasive pasture/grassland species which may undergo rapid population growth through positive feedback. Plants ofC. nutans produce a vegetative rosette, and after several months produce stems containing flower-heads, during which time the rosette leaves die and decompose. We investigated the influence ofC. nutans on the nitrogen-fixation ability ofTrifolium repens L. in three experiments. The first experiment was set up in a mixture design, and demonstrated that seedlings ofT. repens were more susceptible to competition with otherT. repens seedlings than toC. nutans seedlings. Nodule numbers and acetylene reduction per unit root, and acetylene reduction per unit nodules were adversely affected by increasingT. repens, but notC. nutans densities. The second experiment was of an additive design, with separate partitions to isolate above-ground and below-ground interference. FloweringC. nutans plants strongly inhibitedT. repens root growth, nodulation and acetylene reduction, but usually only when shoot interference was permitted. This appears to be due to decomposition of rosette leaves, which was maximal at this stage. The third experiment involved monitoring effects of taggedC. nutans individuals againstT. repens in the field. This experiment showed that acetylene reduction was severely influenced by floweringC. nutans (when rosette leaves were decomposing), even when only mild reduction ofT. repens growth was observed, and these effects persisted for some months after theC. nutans plants had died. The results of these experiments in combination suggest that decomposing rosette leaves have a strong potential to inhibitT. repens nitrogen fixation. It appears that allelopathy is involved, since alternative explanations (e.g. root competition byC. nutans; effects ofC. nutans on soil moisture, microbial nutrient immobilisation and light availability; facilitation of herbivores byC. nutans) can be effectively discounted. Although invasive species are often assumed to be associated with soil nitrogen build-up, we believe that some invasive species such asC. nutans have the potential to induce long-term decline of soil nitrogen input.  相似文献   

8.
This study follows the outcome of long-term competition between a broad-leaved and a narrowleaved Typha species, T. latifolia and T. angustifolia respectively, in a eutrophic lake. The lake was bordered by a zone of T. latifolia, at one location interrupted by a T. angustifolia stand. Distributional changes of the T. angustifolia stand and the adjacent zone of T. latifolia were measured on aerial photographs (13 years) and along ground-level transects (6 years). A second stand of T. angustifolia was established with transplanted ramets within a formerly homogeneous zone of T. latifolia, and displacement between the two species was measured along ground-level transects after 6 years. Differences between the species in shoot performance were investigated to help explain the relative competitive abilities of the two Typha species. T. angustifolia expanded at the expense of T. latifolia at all water depths where both species occurred, except in very shallow water. Expansion rates suggest that T. angustifolia was not affected by the presence of T. latifolia in water depths exceeding 0.25 m. The Typha species were significantly negatively associated according to rank correlations of shoot densities, and changes of shoot densities, along the transects. These results suggest that T. angustifolia is competitively superior to T. latifolia, contradicting earlier studies. The higher competitive ability of T. angustifolia is consistent with its having taller shoots and a higher standing crop in early summer. Further, shoot height distributions indicated a closer integration of shoot emergence during spring in T. angustifolia than in T. latifolia. A high leaf area/shoot weight ratio suggest that T. latifolia may instead be relatively fast-growing, achieving competitive superiority over narrower-leaved Typha species during a transient period after simultaneous seedling establishment.  相似文献   

9.
Interspecific hybridization is widespread in plants and is an important evolutionary process. Hybrids may be fitter than their parental species, at least under some environmental conditions, and this may lead to partitioning of taxa by habitat. In eastern Canada, two cattail species (Typha latifolia and Typha angustifolia) and their hybrid (Typha x glauca) are known to have become increasingly widespread in recent decades, although their habitat preferences and patterns of co-existence at the local scale are not well known. We quantified the occurrence of these three taxa in three different habitat types (high traffic, low traffic, and ‘natural’) at 40 different sites along a sampling route of approximately 2000 km in eastern Canada. There were no significant overall associations between habitat type and taxon, although intraspecific comparisons among sites showed that the hybrid was most likely to grow in high traffic (highly disturbed) sites. In addition, pairwise comparisons revealed significant independence of T. latifolia and T. angustifolia, although the hybrid was equally likely to co-exist with either of its parental species. The presence of the three taxa in several habitats, including highly disturbed roadside areas, is consistent with their increasingly invasive tendencies.  相似文献   

10.
Introductions of non-native predators and competitors appear to contribute to worldwide amphibian declines; however, potential negative impacts of invasive plants on habitat quality and amphibian populations have not been examined. Loss of diversity and alterations in ecosystem function associated with plant invasions may disrupt food webs, potentially leading to further declines of already threatened amphibian populations. We used a combination of small bins, mesocosms, and field experiments to examine the impacts of Eurasian purple loosestrife (Lythrum salicaria) replacing native cattails (Typha latifolia) in North American freshwater wetlands on survival, developmental rate, and diet (freshwater algae) of American toad (Bufo americanus) tadpoles. Tadpoles developed slower in L. salicaria compared to tadpoles developing in T. latifolia. This effect was consistent across experimental venues, although mesocosms showed this effect only in the second year of our study. Survival and development rates were always more variable in purple loosestrife than in cattail. In bins, tadpoles showed significantly reduced survival when raised in purple loosestrife extract and addition of leaf litter exacerbated this negative effect. Tadpole survival rates in mesocosms and field cages were not significantly different between plant species, most likely an effect of high variability among replicates. We suspect a combination of direct toxicity of high tannin concentrations in L. salicaria leaves and their indirect negative impacts on aquatic food webs are responsible for these results. Tadpole gut analyses revealed differences in algal communities among venues and between L. salicaria and T. latifolia suggesting that alterations in tadpole food quality and quantity contribute to the observed reduced tadpole performance. The replacement of native wetland plant species by L. salicaria does not represent a simple exchange of ecological equivalents and the function of invaded habitats for native species has clearly changed. While we were investigating only a single amphibian species, our results suggest that the impact of L. salicaria on ecosystem processes and aquatic food webs may be more general and likely to negatively affect other wetland species. The threats non-indigenous plants represent for amphibian populations and food webs may be underestimated, and warrant further investigation.  相似文献   

11.
Invasive plants are often associated with reduced cover of native plants, but rarely has competition between invasives and natives been assessed experimentally. The shrub Lonicera maackii, native to northeastern Asia, has invaded forests and old fields in numerous parts of eastern North America, and is associated with reduced tree seedling density in Ohio forests. A field experiment was conducted to test the effects of established L. maackii on the survival and growth of transplanted native tree species. The experiment examined above-ground competition (by removing L. maackii shoots) and below-ground competition (by trenching around transplanted seedlings). The effects of above-ground competition with L. maackii were generally more important than below-ground competition, though both were detected. Shoot treatment was the key determinant for the survival of all species except P. serotina, whereas trenching only enhanced survival for A. saccharum caged and P. serotina, and only in the shoot removal treatment. For the surviving seedlings, L. maackii shoot removal increased growth of A. saccharum seedlings protected with cages, but actually reduced the growth of unprotected Q. rubra and A. saccharum seedlings, indicating that L. maackii shoots confer some protection from deer browsing. Significant interactions between root and shoot treatment on Q. rubra growth parameters, specifically greatest growth in the shoot present & trenched treatment, is attributed to protection from deer browsing combined with release from below-ground competition. Despite this protective function of L. maackii shoots, the overall effect of this invasive shrub is increased mortality of native tree seedlings, suggesting it impacts the natural regeneration of secondary forests.  相似文献   

12.
Since its introduction to North America, Lythrum salicaria (L.) (purple loosestrife) has become invasive in marshy and riparian habitats. We compared gas-exchange responses to external CO2 partial pressure and light, as well as related leaf structural and biochemical characteristics, of L. salicaria with those of co-occurring native Asclepias syriaca (common milkweed) and Solidago graminifolia (lance-leaved goldenrod) along a pond bank in the Black Rock Forest, Cornwall, New York, USA to examine if the invasive success of L. salicaria may be influenced by robust leaf gas-exchange characteristics, including relatively high rates of photosynthesis and low rates of respiration, compared with those of less successful co-occurring native plant species. Neither the mean rate of net photosynthesis measured at ambient CO2 and saturating photon flux density (A) nor the mean dark respiration rate (RD) differed significantly between L. salicaria and either of the native species, while both the mean maximum rate of photosynthesis at saturating CO2 concentration and photon flux density (A max) and the mean rate of respiration measured in light (RL) were significantly higher in L. salicaria than A. syriaca, but no different between L. salicaria and S. graminifolia. Likewise, photosynthetic nitrogen-use efficiency was greater in L. salicaria than A. syriaca only, while photosynthetic water-use efficiency was significantly less in both L. salicaria and S. graminifolia than in A. syriaca. Despite limited interspecific differences in leaf photosynthesis, respiration, and resource-use efficiency, particularly between L. salicaria and S. graminifolia, we found that L. salicaria assimilated 208% more carbon per unit of energy invested in leaf biomass than either of the co-occurring native species, suggesting that increased photosynthetic energy-use efficiency may influence its observed invasive success. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
We investigated the correlated response of several key traits of Lythrum salicaria L. to water availability gradients in introduced (Iowa, USA) and native (Switzerland, Europe) populations. This was done to investigate whether plants exhibit a shift in life-history strategy during expansion into more stressful habitats during the secondary phase of invasion, as has recently been hypothesized by Dietz and Edwards (Ecology 87(6):1359, 2006). Plants in invaded habitats exhibited a correlated increase in longevity and decrease in overall size in the transition into more stressful mesic habitats. In contrast, plants in the native range only exhibited a decrease in height. Our findings are consistent with the hypothesis that secondary invasion is taking place in L. salicaria, allowing it to be more successful under the more stressful mesic conditions in the invaded range. If this trend continues, L. salicaria may become a more problematic species in the future.  相似文献   

14.
We used seed bank analyses to investigate the role of dispersal in limiting invasion by Eurasian Lythrum salicaria within and among North American wetlands, and the changes in seed bank diversity associated with this invader. We compared the number and species composition of seedlings emerging from soil sampled in 11 uninvaded wetlands and paired uninvaded and invaded sites within 10 invaded wetlands under both seedling competition and noncompetitive conditions. Almost no L. salicaria emerged in samples from uninvaded wetlands, indicating dispersal limitation despite prodigious seed production in nearby wetlands. However L. salicaria emerged in all samples from uninvaded sites in invaded wetlands, suggesting environmental limits on establishment within invaded wetlands. Conditions that provided opportunities for seedlings to compete reduced survival of Typha spp. but not L. salicaria seedlings. However, this was due to species-specific differences in post-emergence mortality rather than response to competition. Competition did reduce seedling mass, but this effect did not differ among species. Species richness of emerging seedlings was lower for invaded than uninvaded wetlands. Lower seed bank richness may be a cause or consequence of L. salicaria invasion. Efforts to reduce seed dispersal to uninvaded wetlands would likely slow the spread of this invader.  相似文献   

15.
The enzymatic spectra ofTypha angustifolia, T. latifolia and their hybrids were examined by disc electrophoresis for three enzymatic systems: esterases, alcohol deshydrogenase, and glutamate deshydrogenase. The intermediate position of the hybrids is confirmed. The study of alcohol deshydrogenase reveales the existence of an intraspecific variability inT. angustifolia between individuals from the Massif Armoricain in France and Dellys in Algeria.  相似文献   

16.
Oxygen uptake measurements have shown that pressurized gas transport, resulting from the physical effect of thermo-osmosis of gases, improves oxygen supply to the roots of the seedlings in two alder speciesAlnus japonica (Thunb.) Steud. andAlnus hirsuta (Spach) Rupr., which are both native in Japan. When gas transport conditions were established by irradiation of the tree stems the internal aeration was increased to a level nearly equal to the oxygen demand of the root system in leafless seedlings ofA. hirsuta, but was higher inA. japonica so that excess oxygen was excreted into the environment. An increase of superoxide dismutase (SOD) activity, which protects plants from toxic oxygen radicals and post-anoxic injury, has been observed in root tissues ofA. japonica when the seedlings were flooded for 3 days. The increase of SOD activity, in concert with high gas transport rates, may enable this tree species to grow in wet sites characterized by low oxygen partial pressure in the soil and by varying water tables. A less effective gas transport, flood-induced reduction of SOD activity in root tissues, and reduced height growth in waterlogged soil may be responsible for the fact thatA. hirsuta is unable to inhabit wettland sites.  相似文献   

17.
为探讨三叶鬼针草(Bidens pilosa)成功入侵机制,利用盆栽试验对不同光照和水分条件下三叶鬼针草与本地种金盏银盘(B.biternata)的生长特征进行了比较研究。结果表明,两物种对光和水的变化均具有较大可塑性,但与金盏银盘相比,在有利环境下三叶鬼针草具有较大的株高、叶面积、生物量;在不利环境下,三叶鬼针草具有较大的比叶面积和叶面积比;除叶面积比和叶生物量比外,三叶鬼针草各生理参数的可塑性指数均高于本地种。这说明三叶鬼针草具有较强的表型可塑性和入侵适应性,这些特性促进了其成功入侵。  相似文献   

18.
Miller KE  Gorchov DL 《Oecologia》2004,139(3):359-375
Effects of invasive plant species on native plant species are frequently assumed or inferred from comparisons, but rarely quantified experimentally. Such quantification is important to assessing risks and impacts of invasives. We quantified the effects of Lonicera maackii, an exotic shrub invasive in many eastern North American forests, on survival, growth, and reproduction of three perennial herbs: Allium burdickii, Thalictrum thalictroides , and Viola pubescens. We predicted that the spring ephemeral, A. burdickii , would be most impacted, due to early leaf expansion of L. maackii. Field experiments were carried out in two deciduous forest stands, one (Greggs Woodlot, GW) disturbed and the other (Western Woods, WW) relatively undisturbed. In each stand, individual herbs were transplanted into a blocked design of 60 plots where L. maackii was present, absent, or removed, and monitored for 5 growing seasons. Lonicera maackii did not affect survival of transplants, but reduced growth and final size of individuals of all three species. For two of the species, A. burdickii and V. pubescens, L. maackii reduced the proportion of live plants flowering in both stands, and reduced the seed or fruit number per flowering individual in GW. For T. thalictroides the proportion flowering was not affected, but seed number per flowering plant was reduced by L. maackii in both stands. For all three species, cumulative seed production over the course of the study was reduced by L. maackii. Overall, effects on the spring ephemeral, A. burdickii, were similar to effects on the other herbs. Because mortality of these established individuals was not affected, short-term studies might conclude forest herbs are unaffected by invasive shrubs. However, the growth and reproduction impacts documented here suggest that populations are impacted in the long-term.  相似文献   

19.
Invasive populations often grow more vigorously than conspecific populations in the native range. This has frequently been attributed to evolutionary changes resulting either from founder effects, or from natural selection owing to enemy release. Another mechanism contributing to evolutionary change has largely been neglected in the past: Many invasive plant species do actually descend from cultivated plants and were therefore subject to breeding, including hybridization and artificial selection. In a common garden experiment, we compared invasive Central European populations of the ornamental shrub, Mahonia, with native populations of its putative parental species, Mahonia aquifolium and M. repens, from North America. We hypothesized that plants of invasive populations show increased growth and retained high levels of heritable variation in phenotypic traits. Indeed, invasive Mahonia plants grew larger in terms of stem length, number of leaves and above-ground biomass than either of the two native species, which did not differ significantly from each other. Since there are no hints on release of invasive Mahonia populations from natural enemies, it is likely that hybridization and subsequent selection by breeders have lead to an evolutionary increase of plant vigour in the introduced range. Further on, heritable variation was not consistently reduced in invasive populations compared with populations of the two native species. We suggest that interspecific hybridization among the Mahonia species has counteracted the harmful effects of genetic bottlenecks often associated with species introductions. Based on this case study, we conclude that, more attention has to be paid on the role of plant breeding when assessing the mechanisms behind successful plant invasions in future.  相似文献   

20.
Marcus T. Brock 《Oecologia》2009,161(2):241-251
Prezygotic reproductive barriers limit interspecific gene flow between congeners. Here, I examine the strength of floral isolation and interspecific pollen-pistil barriers between an invasive apomictic, Taraxacum officinale, and the indigenous sexual alpine dandelion, Taraxacum ceratophorum. Experimental arrays of either native inflorescences or a mixture of native and exotic inflorescences were used to examine insect preference and to track movement of a pollen analog. Using hand-pollinations, conspecific and heterospecific pollen germination success on native stigmas was compared. To additionally test for interspecific pollen competition, T. ceratophorum plants received one of three possible hand-pollinations: control conspecific pollination, concomitant conspecific and heterospecific pollination (mixed), or conspecific pollen followed by heterospecific pollen 15 min later (staggered). Floral isolation was negligible as no insect preference was detected. On a presence/absence basis, florets on native inflorescences received slightly less pollen analog from heterospecific donors than from conspecific donors; however, the amount of dye particles transferred from either Taraxacum species to stigmas on recipient T. ceratophorum inflorescences was equivalent. In contrast to weak floral isolation, strong pollen germination and pollen competition barriers should reduce the potential for hybridization. Heterospecific T. officinale pollen exhibited reduced germination success on T. ceratophorum stigmas in comparison to conspecific pollen. Furthermore, a significant pollen-competition effect on the percentage of hybrid offspring was detected only when T. officinale preceded T. ceratophorum pollen by 15 min. This result indicates that conspecific pollen out-competes heterospecific pollen but further suggests that biotic and abiotic factors reducing pollen accrual rates may partially remove barriers to natural hybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号