首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Stop and go     
《Fly》2013,7(4):228-233
  相似文献   

3.
4.
The R7 photoreceptor, a unique cell type within the Drosophila ommatidium, was initially proposed to be specified by two distinct signals from neighboring cells, one from the R8 photoreceptor and another from the R1/6 photoreceptor pair. The R8-to-R7 signal is the transmembrane ligand Bride of Sevenless (Boss), which is received by the receptor tyrosine kinase Sevenless (Sev) and transduced via Ras activation within the presumptive R7 cell. However, the identity of the R1/6-to-R7 signal has remained elusive. Here, we present evidence that the transmembrane ligand Delta (Dl), expressed by the R1/6 pair, activates the receptor Notch (N) in the presumptive R7 cell and constitutes the postulated R1/6-to-R7 signal required in combination with the Boss/Sev signal to specify the R7 fate.  相似文献   

5.
During the development of multicellular organisms the fate of individual cells is specified with great precision and reproducibility. Although classical genetic approaches led to the identification of many of the signaling pathways contributing to cell fate specification, they have provided little insight into the mechanisms that ensure robustness and reproducibility. We have used the specification of the R7 photoreceptor cells controlled by the Sevenless receptor tyrosine kinase (Sev) pathway to screen for modulators of pathway activity and to uncover the mechanisms underlying the robustness of cell fate decisions. Here we provide genetic evidence that the Drosophila SOCS36E adaptor protein containing an SH2 domain and a SOCS box acts as an attenuator of Sev signaling. Overexpression of Socs36E strongly suppresses the specification of extra R7 photoreceptor cells in response to constitutive activation of Sev, and loss of Socs36E function suppresses the loss of R7 cells when Sev activity is impaired. In a wild-type background, however, loss and gain of Socs36E function exhibits little effect on R7 specification. We also show that SH2 domain of SOCS36E is essential for this function in inhibiting Sev action and that Socs36E expression is suppressed by high Sev pathway activity. In our model, only the cell able to activate high levels of receptor tyrosine kinase signaling will repress SOCS36E expression, reduce the negative effect on Sev signaling and allow this cell to differentiate into R7. In contrast, the remaining cells fail to receive high signaling, and thus maintain high levels of SOCS36E. This represses residual Sev activity and blocks R7 development. Therefore, Socs36E constitutes a novel partially redundant feedback mechanism that contributes to the robustness of R7 specification. The SOCS family of adaptor proteins may have evolved as modulators of specific signaling pathways that contribute to the robustness and precision of cell fate specification.  相似文献   

6.
Manipulation of Notch activity alters neuronal subtype identity in vertebrate neuronal lineages. Nonetheless, it remains controversial whether Notch activity diversifies cell fate by regulating the timing of neurogenesis or acts directly in neuronal subtype specification. Here, we address the role of Notch in the zebrafish epiphysis, a simple structure containing only two neural subtypes: projection neurons and photoreceptors. Reducing the activity of the Notch pathway results in an excess of projection neurons at the expense of photoreceptors, as well as an increase in cells retaining a mixed identity. However, although forced activation of the pathway inhibits the projection neuron fate, it does not promote photoreceptor identity. As birthdating experiments show that projection neurons and photoreceptors are born simultaneously, Notch acts directly during neuronal specification rather than by controlling the timing of neurogenesis. Finally, our data suggest that two distinct signals are required for photoreceptor fate specification: one for the induction of the photoreceptor fate and the other, involving Notch, for the inhibition of projection neuron traits. We propose a novel model in which Notch resolves mixed neural identities by repressing an undesired genetic program.  相似文献   

7.
The oscillatory expression of Notch signaling in neural progenitors suggests that both repressors and activators of neural fate specification are expressed in the same progenitors. Since Notch1 regulates photoreceptor differentiation and contributes (together with Notch3) to ganglion cell fate specification, we hypothesized that genes encoding photoreceptor and ganglion cell fate activators would be highly expressed in Notch1 receptor-bearing (Notch1+) progenitors, directing these cells to differentiate into photoreceptors or into ganglion cells when Notch1 activity is diminished. To identify these genes, we used microarray analysis to study expression profiles of whole retinas and isolated from them Notch1+ cells at embryonic day 14 (E14) and postnatal day 0 (P0). To isolate Notch1+ cells, we utilized immunomagnetic cell separation. We also used Notch3 knockout (Notch3KO) animals to evaluate the contribution of Notch3 signaling in ganglion cell differentiation. Hierarchical clustering of 6,301 differentially expressed genes showed that Notch1+ cells grouped near the same developmental stage retina cluster. At E14, we found higher expression of repressors (Notch1, Hes5) and activators (Dll3, Atoh7, Otx2) of neuronal differentiation in Notch1+ cells compared to whole retinal cell populations. At P0, Notch1, Hes5, and Dll1 expression was significantly higher in Notch1+ cells than in whole retinas. Otx2 expression was more than thirty times higher than Atoh7 expression in Notch1+ cells at P0. We also observed that retinas of wild type animals had only 14% (P < 0.05) more ganglion cells compared to Notch3KO mice. Since this number is relatively small and Notch1 has been shown to contribute to ganglion cell fate specification, we suggested that Notch1 signaling may play a more significant role in RGC development than the Notch3 signaling cascade. Finally, our findings suggest that Notch1+ progenitors—since they heavily express both pro-ganglion cell (Atoh7) and pro-photoreceptor cell (Otx2) activators—can differentiate into either ganglion cells or photoreceptors.  相似文献   

8.
9.
Cooper MT  Bray SJ 《Current biology : CB》2000,10(23):1507-1510
The eight photoreceptors in each ommatidium of the Drosophila eye are assembled by a process of recruitment [1,2]. First, the R8 cell is singled out, and then subsequent photoreceptors are added in pairs (R2 and R5, R3 and R4, R1 and R6) until the final R7 cell acquires a neuronal fate. R7 development requires the Sevenless receptor tyrosine kinase which is activated by a ligand from R8 [3]. Here, we report that the specification of R7 requires a second signal that activates Notch. We found that a Notch target gene is expressed in R7 shortly after recruitment. When Notch activity was reduced, the cell was misrouted to an R1/R6 fate. Conversely, when activated Notch was present in the R1/R6 cells, it caused them to adopt R7 fates or, occasionally, cone cell fates. In this context, Notch activity appears to act co-operatively, rather than antagonistically, with the receptor tyrosine kinase/Ras pathway in R7 photoreceptor specification. We propose two models: a ratchet model in which Notch would allow cells to remain competent to respond to sequential rounds of Ras signalling, and a combinatorial model in which Notch and Ras signalling would act together to regulate genes that determine cell fate.  相似文献   

10.
11.
In vertebrates, receptor tyrosine kinases (RTKs) have been identified as growth factor receptors and proto-oncogenes. Many of these RTKs appear to play a key role in the regulation of cell growth. Recent analyses of several Drosophila genes encoding putative RTKs indicate that this class of proteins also serves an important role in cell fate decisions which depend on cellular interactions during development. The sevenless RTK mediates the position-dependent specification of a particular photoreceptor cell type (R7) in the eye. The local specification of R7 cells requires a functional tyrosine kinase domain of the sevenless protein but does not depend on the spatially restricted expression of the sevenless gene. The Drosophila EGF receptor homolog serves multiple functions during development, some of which are clearly unrelated to regulation of cell growth. Finally, the torso gene encodes an RTK required for the specification of the terminal regions of the Drosophila larva. A number of other genes have been genetically identified that appear to function in the same developmental processes upstream or downstream of these three RTKs. These loci are excellent candidates for genes encoding other components of the signalling pathways such as ligands or substrates of the RTKs.  相似文献   

12.
13.
The little R cell that could   总被引:5,自引:0,他引:5  
Drosophila eye development provides an excellent model system to study the role of inter-cellular signaling in the specification of unique cell fates. Behavioral screens by Benzer and his colleagues led to the identification of a gene, Sevenless, a receptor tyrosine kinase (RTK) receptor, required for the specification of the UV sensitive R7 cell. Genetic analysis further showed that the Ras/Raf/MAPK pathway function downstream of Sevenless in the specification of R7 fate. Signaling mediated by another RTK, EGFR and Notch have also been shown to function in either an antagonistic or a synergistic manner in the specification of cell fate during eye development. In some instances, these pathways are linked in a sequential manner by the regulation of the expression of Notch ligand, Delta by EGFR, while in others, these pathways function in a combinatorial fashion on enhancer elements to control target gene expression. In this review, we highlight the elegant genetic strategies used by several laboratories in early elucidation of the Sevenless pathway which helped link the RTK receptor to the Ras/Raf/MAPK cascade and discuss how EGFR and Notch signaling pathways are used in a reiterative manner and by combining in different modes, generate sufficient diversity required for the specification of unique cell fates.  相似文献   

14.
During Drosophila external sensory organ development, one sensory organ precursor (SOP) arises from a proneural cluster, and undergoes asymmetrical cell divisions to produce an external sensory (es) organ made up of different types of daughter cells. We show that phyllopod (phyl), previously identified to be essential for R7 photoreceptor differentiation, is required in two stages of es organ development: the formation of SOP cells and cell fate specification of SOP progeny. Loss-of-function mutations in phyl result in failure of SOP formation, which leads to missing bristles in adult flies. At a later stage of es organ development, phyl mutations cause the first cell division of the SOP lineage to generate two identical daughters, leading to the fate transformation of neurons and sheath cells to hair cells and socket cells. Conversely, misexpression of phyl promotes ectopic SOP formation, and causes opposite fate transformation in SOP daughter cells. Thus, phyl functions as a genetic switch in specifying the fate of the SOP cells and their progeny. We further show that seven in absentia (sina), another gene required for R7 cell fate differentiation, is also involved in es organ development. Genetic interactions among phyl, sina and tramtrack (ttk) suggest that phyl and sina function in bristle development by antagonizing ttk activity, and ttk acts downstream of phyl. It has been shown previously that Notch (N) mutations induce formation of supernumerary SOP cells, and transformation from hair and socket cells to neurons. We further demonstrate that phyl acts epistatically to N. phyl is expressed specifically in SOP cells and other neural precursors, and its mRNA level is negatively regulated by N signaling. Thus, these analyses demonstrate that phyl acts downstream of N signaling in controlling cell fates in es organ development.  相似文献   

15.
Relatively little is known about the developmental signals that specify the types and numbers of pancreatic cells. Previous studies suggested that Notch signaling in the pancreas inhibits differentiation and promotes the maintenance of progenitor cells, but it remains unclear whether Notch also controls cell fate choices as it does in other tissues. To study the impact of Notch in progenitors of the beta cell lineage, we generated mice that express Cre-recombinase under control of the Pax4 promoter. Lineage analysis of Pax4(+) cells demonstrates they are specified endocrine progenitors that contribute equally to four islet cell fates, contrary to expectations raised by the dispensable role of Pax4 in the specification of the alpha and PP subtypes. In addition, we show that activation of Notch in Pax4(+) progenitors inhibits their differentiation into alpha and beta endocrine cells and shunts them instead toward a duct fate. These observations reveal an unappreciated degree of developmental plasticity among early endocrine progenitors and raise the possibility that a bipotent duct-endocrine progenitor exists during development. Furthermore, the redirection of Pax4(+) cells from alpha and beta endocrine fates toward a duct cell type suggests a positive role for Notch signaling in duct specification and is consistent with the more widely defined role for Notch in cell fate determination.  相似文献   

16.
17.
Determination of cell fate in the developing eye of Drosophila depends on a precise sequence of cellular interactions which generate the stereotypic array of ommatidia. In the eye imaginal disc, an initially unpatterned epithelial sheath of cells, the first step in this process may be the specification of R8 photoreceptor cells at regular intervals. Genes such as Notch and scabrous, known to be involved in bristle development, also participate in this process, suggesting that the specification of ommatidial founder cells and the formation of sensory organs in the adult epidermis may involve a similar mechanism, that of lateral inhibition. The subsequent steps of ommatidial assembly, following R8 assignment, involve a different mechanism: Undetermined cells read their position based on the contacts they make with neighbors that have already begun to differentiate. The development of the R7 photoreceptor cell, one of the eight photoreceptor cells in the ommatidium, is best understood. An important role seems to be played by sevenless, a receptor tyrosine kinase on the surface of the R7 precursor. It transmits the positional information--most likely encoded by the boss protein on the neighboring R8 cell membrane--into the cell via its tyrosine kinase, which activates a signal transduction cascade. Constitutive activation of the sevenless kinase by overexpression of an N-terminally truncated form results in the diversion of other ommatidial cells into the R7 pathway suggesting that activation of the sevenless signalling pathway is sufficient to specify R7 development. Genetic dissection of this pathway should therefore identify components of a signalling cascade activated by a tyrosine kinase.  相似文献   

18.
Cell-cell interactions are thought to regulate the differential specification of secondary mesenchyme cells (SMCs) and endoderm in the sea urchin embryo. The molecular bases of these interactions, however, are unknown. We have previously shown that the sea urchin homologue of the LIN-12/Notch receptor, LvNotch, displays dynamic patterns of expression within both the presumptive SMCs and endoderm during the blastula stage, the time at which these two cell types are thought to be differentially specified (Sherwood, D. R. and McClay, D. R. (1997) Development 124, 3363-3374). The LIN-12/Notch signaling pathway has been shown to mediate the segregation of numerous cell types in both invertebrate and vertebrate embryos. To directly examine whether LvNotch signaling has a role in the differential specification of SMCs and endoderm, we have overexpressed activated and dominant negative forms of LvNotch during early sea urchin development. We show that activation of LvNotch signaling increases SMC specification, while loss or reduction of LvNotch signaling eliminates or significantly decreases SMC specification. Furthermore, results from a mosaic analysis of LvNotch function as well as endogenous LvNotch expression strongly suggest that LvNotch signaling acts autonomously within the presumptive SMCs to mediate SMC specification. Finally, we demonstrate that the expansion of SMCs seen with activation of LvNotch signaling comes at the expense of presumptive endoderm cells, while loss of SMC specification results in the endoderm expanding into territory where SMCs usually arise. Taken together, these results offer compelling evidence that LvNotch signaling directly specifies the SMC fate, and that this signaling is critical for the differential specification of SMCs and endoderm in the sea urchin embryo.  相似文献   

19.
20.
K Basler  B Christen  E Hafen 《Cell》1991,64(6):1069-1081
Cell fate in the developing eye is determined by a cascade of inductive interactions. In this process, the sevenless protein--a receptor tyrosine kinase--is required for the specification of the R7 photoreceptor cell fate. We have constructed a gain-of-function sevenless mutation (SevS11) by overexpressing a truncated sevenless protein in the cells where sevenless is normally expressed. In SevS11 mutant flies, all sevenless-expressing cells initiate neural development. This results in the formation of multiple R7-like photoreceptors per ommatidium. Therefore, sevenless activity appears to be necessary and sufficient for the determination of R7 cell fate. These results illustrate the central role receptor tyrosine kinases can play in the specification of cell fate during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号