首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Recent genome-wide association (GWA) studies have provided compelling evidence of association between genetic variants and common complex diseases. These studies have made use of cases and controls almost exclusively from populations of European ancestry and little is known about the frequency of risk alleles in other populations. The present study addresses the transferability of disease associations across human populations by examining levels of population differentiation at disease-associated single nucleotide polymorphisms (SNPs).

Methods

We genotyped ~1000 individuals from 53 populations worldwide at 25 SNPs which show robust association with 6 complex human diseases (Crohn's disease, type 1 diabetes, type 2 diabetes, rheumatoid arthritis, coronary artery disease and obesity). Allele frequency differences between populations for these SNPs were measured using Fst. The Fst values for the disease-associated SNPs were compared to Fst values from 2750 random SNPs typed in the same set of individuals.

Results

On average, disease SNPs are not significantly more differentiated between populations than random SNPs in the genome. Risk allele frequencies, however, do show substantial variation across human populations and may contribute to differences in disease prevalence between populations. We demonstrate that, in some cases, risk allele frequency differences are unusually high compared to random SNPs and may be due to the action of local (i.e. geographically-restricted) positive natural selection. Moreover, some risk alleles were absent or fixed in a population, which implies that risk alleles identified in one population do not necessarily account for disease prevalence in all human populations.

Conclusion

Although differences in risk allele frequencies between human populations are not unusually large and are thus likely not due to positive local selection, there is substantial variation in risk allele frequencies between populations which may account for differences in disease prevalence between human populations.  相似文献   

2.
Kim KJ  Lee HJ  Park MH  Cha SH  Kim KS  Kim HT  Kimm K  Oh B  Lee JY 《Genomics》2006,88(5):535-540
Understanding patterns of linkage disequilibrium (LD) across genomes may facilitate association mapping studies to localize genetic variants influencing complex diseases, a recognition that led to the International Haplotype Mapping Project (HapMap). Divergent patterns of haplotype frequency and LD across global populations require that the HapMap database be supplemented with haplotype and LD data from additional populations. We conducted a pilot study of the LD and haplotype structure of a genomic region in a Korean population. A total of 165 SNPs were identified in a 200-kb region of 22q13.2 by direct sequencing. Unphased genotype data were generated for 76 SNPs in 90 unrelated Korean individuals. LD, haplotype diversity, and recombination rates were assessed in this region and compared with the HapMap database. The pattern of LD and haplotype frequencies of Korean samples showed a high degree of similarity with Japanese data. There was a strong correlation between high LD and low recombination frequency in this region. We found considerable similarities in local LD patterns between three Asian populations (Han Chinese, Japanese, and Korean) and the CEPH population. Haplotype frequencies were, however, significantly different between them. Our results should further the understanding of distinctive Korean genomic features and assist in designing appropriate association studies.  相似文献   

3.
There is presently much interest in utilizing patterns of linkage disequilibrium (LD) to further genetic association studies. This is particularly pertinent in the class III region of the human major histocompatibility complex (MHC), which has been extensively studied as a disease susceptibility locus in a number of ethnic groups. To date, however, few studies of LD in the MHC have considered non-Caucasian populations. With the advent of large-scale haplotyping of the human genome, the question of utilizing LD patterns across populations has come to the fore. We have previously used LD mapping to direct an MHC class III association study in a UK Caucasian population. As an extension of this, we sought to determine to what extent the pattern of LD observed in that study could be used to conduct a similar study in a West African Gambian population. We found that broad patterns of LD were similar in the two populations, resulting in similar candidate region delineations, but at a higher resolution, marker-specific patterns of LD and population-dependent allele frequencies confounded the choice of regional tagging SNPs. Our results have implications for the applicability of large-scale haplotype maps such as the HapMap to complex regions like the MHC.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

4.
钱源  孙浩  林克勤  史磊  史荔  褚嘉祐 《遗传》2008,30(3):321-323
为调查HIV-1感染相关等位基因CCR2-64Ⅰ在我国南方14个少数民族群体的频率和多态性分布, 从上述人群外周血中抽提基因组DNA, 采用PCR和PCR-RFLP等方法进行基因分型。在791例调查对象中, 636例是野生纯合子基因型, 104例为杂合子基因型, 51例为突变纯合子基因型。上述各群体等位基因型的分布符合Hardy-Weinberg平衡。14个民族群体的平均突变基因频率为13.6%, 等位基因频率范围分布在1.6%~30.3%之间, 14个民族群体之间突变基因频率具有显著差异(P<0.05)。广西壮族群体CCR2-64Ⅰ突变基因频率最低, 为1.6%, 云南的六库傈僳族频率最高, 为30.3%。12个群体的突变基因频率均低于中国汉族健康群体, 南方3个少数民族群体基因突变频率显著低于西南11个少数民族群体, 该突变基因在艾滋病发病过程中的影响值得进一步深入研究。  相似文献   

5.
Telomeres form the ends of eukaryotic chromosomes and are vital in maintaining genetic integrity. Telomere dysfunction is associated with cancer and several chronic diseases. Patterns of genetic variation across individuals can provide keys to further understanding the evolutionary history of genes. We investigated patterns of differentiation and population structure of 37 telomere maintenance genes among 53 worldwide populations. Data from 898 unrelated individuals were obtained from the genome-wide scan of the Human Genome Diversity Panel (HGDP) and from 270 unrelated individuals from the International HapMap Project at 716 single-nucleotide polymorphism (SNP) loci. We additionally compared this gene set to HGDP data at 1396 SNPs in 174 innate immunity genes. The majority of the telomere biology genes had low to moderate haplotype diversity (45-85%), high ancestral allele frequencies (>60%) and low differentiation (FST<0.10). Heterozygosity and differentiation were significantly lower in telomere biology genes compared with the innate immunity genes. There was evidence of evolutionary selection in ACD, TERF2IP, NOLA2, POT1 and TNKS in this data set, which was consistent in HapMap 3. TERT had higher than expected levels of haplotype diversity, likely attributable to a lack of linkage disequilibrium, and a potential cancer-associated SNP in this gene, rs2736100, varied substantially in genotype frequency across major continental regions. It is possible that the genes under selection could influence telomere biology diseases. As a group, there appears to be less diversity and differentiation in telomere biology genes than in genes with different functions, possibly due to their critical role in telomere maintenance and chromosomal stability.  相似文献   

6.
曹宗富  马传香  王雷  蔡斌 《遗传》2010,32(9):921-928
在复杂疾病的全基因组关联研究中,人群分层现象会增加结果的假阳性率,因此考虑人群遗传结构、控制人群分层是很有必要的。而在人群分层研究中,使用随机选择的SNP的效果还有待进一步探讨。文章利用HapMap Phase2人群中无关个体的Affymetrix SNP 6.0芯片分型数据,在全基因组上随机均匀选择不同数量的SNP,同时利用f值和Fisher精确检验方法筛选祖先信息标记(Ancestry Informative Markers,AIMs)。然后利用HapMap Phase3中的无关个体的数据,以F-statistics和STRUCTURE分析两种方法评估所选出的不同SNP组合对人群的区分效果。研究发现,随机均匀分布于全基因组的SNP可用于识别人群内部存在的遗传结构。文章进一步提示,在全基因组关联研究中,当没有针对特定人群的AIMs时,可在全基因组上随机选择3000以上均匀分布的SNP来控制人群分层。  相似文献   

7.
The prevalence of type 2 diabetes (T2D) is greater in populations of African descent compared to European-descent populations. Genetic risk factors may underlie the disparity in disease prevalence. Genome-wide association studies (GWAS) have identified >60 common genetic variants that contribute to T2D risk in populations of European, Asian, African and Hispanic descent. These studies have not comprehensively examined population differences in cumulative risk allele load. To investigate the relationship between risk allele load and T2D risk, 46 T2D single nucleotide polymorphisms (SNPs) in 43 loci from GWAS in European, Asian, and African-derived populations were genotyped in 1,990 African Americans (n = 963 T2D cases, n = 1,027 controls) and 1,644 European Americans (n = 719 T2D cases, n = 925 controls) ascertained and recruited using a common protocol in the southeast United States. A genetic risk score (GRS) was constructed from the cumulative risk alleles for each individual. In African American subjects, risk allele frequencies ranged from 0.024 to 0.964. Risk alleles from 26 SNPs demonstrated directional consistency with previous studies, and 3 SNPs from ADAMTS9, TCF7L2, and ZFAND6 showed nominal evidence of association (p < 0.05). African American individuals carried 38–67 (53.7 ± 4.0, mean ± SD) risk alleles. In European American subjects, risk allele frequencies ranged from 0.084 to 0.996. Risk alleles from 36 SNPs demonstrated directional consistency, and 10 SNPs from BCL11A, PSMD6, ADAMTS9, ZFAND3, ANK1, CDKN2A/B, TCF7L2, PRC1, FTO, and BCAR1 showed evidence of association (p < 0.05). European American individuals carried 38–65 (50.9 ± 4.4) risk alleles. African Americans have a significantly greater burden of 2.8 risk alleles (p = 3.97 × 10?89) compared to European Americans. However, GRS modeling showed that cumulative risk allele load was associated with risk of T2D in European Americans, but only marginally in African Americans. This result suggests that there are ethnic-specific differences in genetic architecture underlying T2D, and that these differences complicate our understanding of how risk allele load impacts disease susceptibility.  相似文献   

8.
Genetic epidemiological studies of complex diseases often rely on data from the International HapMap Consortium for identification of single nucleotide polymorphisms (SNPs), particularly those that tag haplotypes. However, little is known about the relevance of the African populations used to collect HapMap data for study populations conducted elsewhere in Africa. Toll-like receptor (TLR) genes play a key role in susceptibility to various infectious diseases, including tuberculosis. We conducted full-exon sequencing in samples obtained from Uganda (n = 48) and South Africa (n = 48), in four genes in the TLR pathway: TLR2, TLR4, TLR6, and TIRAP. We identified one novel TIRAP SNP (with minor allele frequency [MAF] 3.2%) and a novel TLR6 SNP (MAF 8%) in the Ugandan population, and a TLR6 SNP that is unique to the South African population (MAF 14%). These SNPs were also not present in the 1000 Genomes data. Genotype and haplotype frequencies and linkage disequilibrium patterns in Uganda and South Africa were similar to African populations in the HapMap datasets. Multidimensional scaling analysis of polymorphisms in all four genes suggested broad overlap of all of the examined African populations. Based on these data, we propose that there is enough similarity among African populations represented in the HapMap database to justify initial SNP selection for genetic epidemiological studies in Uganda and South Africa. We also discovered three novel polymorphisms that appear to be population-specific and would only be detected by sequencing efforts.  相似文献   

9.
Single-nucleotide polymorphisms (SNPs) may be extremely important for deciphering the impact of genetic variation on complex human diseases. The ultimate value of SNPs for linkage and association mapping studies depends in part on the distribution of SNP allele frequencies and intermarker linkage disequilibrium (LD) across populations. Limited information is available about these distributions on a genomewide scale, particularly for LD. Using 114 SNPs from 33 genes, we compared these distributions in five American populations (727 individuals) of African, European, Chinese, Hispanic, and Japanese descent. The allele frequencies were highly correlated across populations but differed by >20% for at least one pair of populations in 35% of SNPs. The correlation in LD was high for some pairs of populations but not for others (e.g., Chinese American or Japanese American vs. any other population). Regardless of population, average minor-allele frequencies were significantly higher for SNPs in noncoding regions (20%-25%) than for SNPs in coding regions (12%-16%). Interestingly, we found that intermarker LD may be strongest with pairs of SNPs in which both markers are nonconservative substitutions, compared to pairs of SNPs where at least one marker is a conservative substitution. These results suggest that population differences and marker location within the gene may be important factors in the selection of SNPs for use in the study of complex disease with linkage or association mapping methods.  相似文献   

10.
The completion of the International HapMap Project marks the start of a new phase in human genetics. The aim of the project was to provide a resource that facilitates the design of efficient genome-wide association studies, through characterising patterns of genetic variation and linkage disequilibrium in a sample of 270 individuals across four geographical populations. In total, over one million SNPs have been typed across these genomes, providing an unprecedented view of human genetic diversity. In this review we focus on what the HapMap project has taught us about the structure of human genetic variation and the fundamental molecular and evolutionary processes that shape it.  相似文献   

11.
The angiotensin-converting enzyme gene (ACE) insertion/deletion polymorphism was determined in 211 Mexican healthy individuals belonging to different Mexican ethnic groups (98 Mestizos, 64 Teenek, and 49 Nahuas). ACE polymorphism differed among Mexicans with a high frequency of the D allele and the D/D genotype in Mexican Mestizos. The D/D genotype was absent in Teenek and present in only one Nahua individual (2.0%). When comparisons were made, we observed that Caucasian, African, and Asian populations presented the highest frequencies of the D allele, whereas Amerindian (Teenek and Pima) and Australian Aboriginals showed the highest frequencies of the I allele. The distribution of I/D genotype was heterogeneous in all populations: Australian Aboriginals presented the lowest frequency (4.9%), whereas Nahuas presented the highest (73.4%). The present study shows the frequencies of a polymorphism not analyzed previously in Mexican populations and establishes that this polymorphism distinguishes the Amerindian populations of other groups. On the other hand, since ACE alleles have been associated with genetic susceptibility to developing cardiovascular diseases and hypertension, knowledge of the distribution of these alleles could help to define the true significance of ACE polymorphism as a genetic susceptibility marker in the Amerindian populations.  相似文献   

12.
The common-variant/common-disease model predicts that most risk alleles underlying complex health-related traits are common and, therefore, old and found in multiple populations, rather than being rare or population specific. Accordingly, there is widespread interest in assessing the population structure of common alleles. However, such assessments have been confounded by analysis of data sets with bias toward ascertainment of common alleles (e.g., HapMap and Perlegen) or in which a relatively small number of genes and/or populations were sampled. The aim of this study was to examine the structure of common variation ascertained in major U.S. populations, by resequencing the exons and flanking regions of 3,873 genes in 154 chromosomes from European, Latino/Hispanic, Asian, and African Americans generated by the Genaissance Resequencing Project. The frequency distributions of private and common single-nucleotide polymorphisms (SNPs) were measured, and the extent to which common SNPs were shared across populations was analyzed using several different estimators of population structure. Most SNPs that were common in one population were present in multiple populations, but SNPs common in one population were frequently not common in other populations. Moreover, SNPs that were common in two or more populations often differed significantly in frequency from one population to another, particularly in comparisons of African Americans versus other U.S. populations. These findings indicate that, even if the bulk of alleles underlying complex health-related traits are common SNPs, geographic ancestry might well be an important predictor of whether a person carries a risk allele.  相似文献   

13.
Expression of hereditary hemochromatosis as well as predisposition to iron overload syndrome and sporadic porphyria cutanea tarda are currently believed to be associated with the inheritance of certain allelic variants of the HFE gene. Allele frequencies of the C282Y (845A) and H63D (187G) mutations in the HFE gene in human populations of different races are remarkably different, and the prevalence of the S65C (193T) mutation is still poorly studied. In the present study we estimated allele frequencies of HFE mutations in Russians and in a number of Siberian ethnic indigenous populations. In Russians, allele frequencies of the C282Y, H63D and S65C mutations were 3.7, 13.3 and 1.7%, respectively. These values were similar to those observed in populations of Europe. The C282Y mutation was not detected in the population samples of Siberian ethnic groups, including Mansis, Khantys (Finno-Ugric group), Altaians, and Nivkhs (Mongoloids), suggesting that the frequency of this allele in the populations examined was lower than 1%. The frequency of the C282Y allele in the Tuvinian and Chukchi samples (Mongoloids) constituted 0.45 and 0.8%, respectively. Furthermore, pedigree analysis of both Chukchi carriers discovered showed that some of their ancestors were from other ethnic groups. Low frequencies of this allelic variant is typical of many Eastern Asian populations, which are also characterized by rather low frequencies of the H63D variant. In contrast, in some ethnic groups of Western Siberia allelic frequency of the H63D mutation is rather high, constituting 8.7% in Altaians, 15.5% in Mansis, and 11.3% in Khantys. The frequency of this allele in Tuvinians, Nivkhs, and Chukchis constituted 5, 4.7, and 0.8%, respectively. These findings make it possible to estimate the proportion of individuals predisposed to iron overload syndrome in different Russian ethnic groups. The HFE allele frequency distribution patterns observed in the populations examined pointed to pre-Celtic appearance of the CY82 allele. It also provides elucidation of the evolutionary genetic relationships between Siberian ethnic groups and the contemporary populations of Eastern and Western Europe.  相似文献   

14.
The vitamin D receptor (VDR) is an essential protein related to bone metabolism. Some VDR alleles are differentially distributed among ethnic populations and display variable patterns of linkage disequilibrium (LD). In this study, 200 unrelated Brazilians were genotyped using 21 VDR single nucleotide polymorphisms (SNPs) and 28 ancestry informative markers. The patterns of LD and haplotype distribution were compared among Brazilian and the HapMap populations of African (YRI), European (CEU) and Asian (JPT+CHB) origins. Conditional regression and haplotype-specific analysis were performed using estimates of individual genetic ancestry in Brazilians as a quantitative trait. Similar patterns of LD were observed in the 5' and 3' gene regions. However, the frequency distribution of haplotype blocks varied among populations. Conditional regression analysis identified haplotypes associated with European and Amerindian ancestry, but not with the proportion of African ancestry. Individual ancestry estimates were associated with VDR haplotypes. These findings reinforce the need to correct for population stratification when performing genetic association studies in admixed populations.  相似文献   

15.
Single nucleotide polymorphisms (SNPs) that lead to non-synonymous changes in proteins may have functional effects and be subject to selection. Hence they are of particular interest in the study of genetic diseases. We have genotyped approximately 28,000 such SNPs in three ethnic populations (the HapMap plates) and ten primate species and analyzed these data for evidence of selection. We find SNPs predicted by PolyPhen to be damaging, have lower allele frequencies, and are particularly likely to be population-specific. We have also grouped SNPs by molecular function or biological process of the associated genes and find evidence that selection may be acting in concert on classes of genes. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. James Ireland and Victoria E.H. Carlton contributed equally  相似文献   

16.
OBJECTIVES: Spontaneous preterm birth (PTB) has a significant ethnic disparity with people of African descent having an almost 2-fold higher incidence than those of European descent in the United States. This disparity may be caused by differences in the distribution of genetic risk factors. The objective of this study is to examine genetic differences between African-Americans and European Americans for single nucleotide polymorphisms (SNPs) in candidate genes for PTB. METHODS: We examined patterns of variation in 19 SNPs in 3 candidate genes for preterm birth: TNF-alpha, TNF-receptor 1 and TNF-receptor 2. Allele, genotype and haplotype frequencies were compared between African-Americans (AA) and European-Americans (EA) in cases and controls separately. Both maternal and fetal genotypes were studied, as it is unclear whether one or both of these are important in the etiology of PTB. RESULTS: The vast majority of the SNPs differed significantly between ethnic groups, although there are only a few suggestive results comparing cases and controls within an ethnic group. For TNF-alpha, four of six SNPs; for TNF-R1, 5/6; and for TNF-R2, 6/7 showed significant differences between ethnic groups in either allele and/or genotype frequency. CONCLUSIONS: Our data demonstrate highly significant genetic differences between ethnic groups in genes that may play a role in the risk of PTB.  相似文献   

17.
MYH9 was recently identified as renal susceptibility gene (OR 3–8, p<10−8) for major forms of kidney disease disproportionately affecting individuals of African descent. The risk haplotype (E-1) occurs at much higher frequencies in African Americans (≥60%) than in European Americans (<4%), revealing a genetic basis for a major health disparity. The population distributions of MYH9 risk alleles and the E-1 risk haplotype and the demographic and selective forces acting on the MYH9 region are not well explored. We reconstructed MYH9 haplotypes from 4 tagging single nucleotide polymorphisms (SNPs) spanning introns 12–23 using available data from HapMap Phase II, and by genotyping 938 DNAs from the Human Genome Diversity Panel (HGDP). The E-1 risk haplotype followed a cline, being most frequent within sub-Saharan African populations (range 50–80%), less frequent in populations from the Middle East (9–27%) and Europe (0–9%), and rare or absent in Asia, the Americas, and Oceania. The fixation indexes (FST) for pairwise comparisons between the risk haplotypes for continental populations were calculated for MYH9 haplotypes; FST ranged from 0.27–0.40 for Africa compared to other continental populations, possibly due to selection. Uniquely in Africa, the Yoruba population showed high frequency extended haplotype length around the core risk allele (C) compared to the alternative allele (T) at the same locus (rs4821481, iHs = 2.67), as well as high population differentiation (FST(CEU vs. YRI) = 0.51) in HapMap Phase II data, also observable only in the Yoruba population from HGDP (FST = 0.49), pointing to an instance of recent selection in the genomic region. The population-specific divergence in MYH9 risk allele frequencies among the world''s populations may prove important in risk assessment and public health policies to mitigate the burden of kidney disease in vulnerable populations.  相似文献   

18.
Lim J  Kim YJ  Yoon Y  Kim SO  Kang H  Park J  Han AR  Han B  Oh B  Kimm K  Yoon B  Song K 《Genomics》2006,87(3):392-398
The extent and pattern of linkage disequilibrium (LD) in the human genome provide important information for disease gene mapping. Previous studies have shown that LDs vary depending on chromosomal regions and populations. As the Asian samples of the International HapMap Project consisted of Japanese and Chinese populations, it was of interest whether we could use the HapMap data as a reference to carry out association studies of common complex diseases in a closely related population, such as Koreans. We have compared the LD and recombination patterns defined by single-nucleotide polymorphisms (SNPs) in ENCODE region ENm010, chromosome 7p15.2, in Korean, Japanese, and Chinese samples and further tested the robustness of tagSNPs among the Asian samples. We genotyped 792 SNPs in 500 kb (chromosome 7: 26699793-27199792, NCBI build 34) from 90 unrelated Koreans by fluorescence polarization detection and compared the data with Asian data from the HapMap project. Despite some differences in the position of high LD region boundaries, the overall patterns of LD were remarkably similar across the three samples, reflecting strong genetic affinities among them. Furthermore, the haplotype tag SNP transferability across the three samples was greater than 90%. Our results support the initial suggestion that the populations genotyped in the HapMap project might serve as reference populations for the selection of tagSNPs in association studies.  相似文献   

19.
Genome-wide association studies (GWAS) have detected many disease associations. However, the reported variants tend to explain small fractions of risk, and there are doubts about issues such as the portability of findings over different ethnic groups or the relative roles of rare versus common variants in the genetic architecture of complex disease. Studying the degree of sharing of disease-associated variants across populations can help in solving these issues. We present a comprehensive survey of GWAS replicability across 28 diseases. Most loci and SNPs discovered in Europeans for these conditions have been extensively replicated using peoples of European and East Asian ancestry, while the replication with individuals of African ancestry is much less common. We found a strong and significant correlation of Odds Ratios across Europeans and East Asians, indicating that underlying causal variants are common and shared between the two ancestries. Moreover, SNPs that failed to replicate in East Asians map into genomic regions where Linkage Disequilibrium patterns differ significantly between populations. Finally, we observed that GWAS with larger sample sizes have detected variants with weaker effects rather than with lower frequencies. Our results indicate that most GWAS results are due to common variants. In addition, the sharing of disease alleles and the high correlation in their effect sizes suggest that most of the underlying causal variants are shared between Europeans and East Asians and that they tend to map close to the associated marker SNPs.  相似文献   

20.
DNA variants underlying the inheritance of risk for common diseases are expected to have a wide range of population allele frequencies. The detection and scoring of the rare alleles (at frequencies of <0.01) presents significant practical problems, including the requirement for large sample sizes and the limitations inherent in current methodologies for allele discrimination. In the present report, we have applied mutational spectrometry based on constant denaturing capillary electrophoresis (CDCE) to DNA pools from large populations in order to improve the prospects of testing the role of rare variants in common diseases on a large scale. We conducted a pilot study of the cytotoxic T lymphocyte-associated antigen-4 gene (CTLA4) in type 1 diabetes (T1D). A total of 1228 bp, comprising 98% of the CTLA4 coding sequence, all adjacent intronic mRNA splice sites, and a 3′ UTR sequence were scanned for unknown point mutations in pools of genomic DNA from a control population of 10,464 young American adults and two T1D populations, one American (1799 individuals) and one from the United Kingdom (2102 individuals). The data suggest that it is unlikely that rare variants in the scanned regions of CTLA4 represent a significant proportion of T1D risk and illustrate that CDCE-based mutational spectrometry of DNA pools offers a feasible and cost-effective means of testing the role of rare variants in susceptibility to common diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号