首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Application of zinc sulphate mixed with compost/poultry manure proved to be equivalent to the effect of dipping the seedling roots in 4% ZnO suspension with respect to rice yields but Zn-amended organic manures were superior to other treatments with regards to total Zn uptake. A marked residual effect of soil applied treatments was recorded on the succeeding maize crop. Application of poultry manure alone was about one and a half times more effective than compost alone in increasing the rice and maize grain yields. Poultry manure surpassed compost in increasing zinc uptake by the crops and at the same time it built up more available Zn in soil than compost for the following crop. The magnitude of yields and Zn uptake response were magnified when zinc sulphate was applied along with organic manures. Application of 25 kg zinc sulphate/ha alone had the same effect as 50 quintals poultry manure alone or 12.5 kg zinc sulphate applied with 50 quintals compost/ha with respect to crop yields. A significant positive correlation was, recorded in both the crops between Zn concentration in grain or straw and their respective yields.  相似文献   

2.
YU  Q.; RENGEL  Z. 《Annals of botany》1999,83(2):175-182
The effect of copper (Cu), zinc (Zn) or manganese (Mn) deficiencyon the growth and activity of superoxide dismutase (SOD) formswas investigated in seedlings of narrow-leafed lupins (LupinusangustifoliusL.). Plants grown without Zn developed Zn deficiencysymptoms 24 d after sowing (DAS), and those grown without Mnshowed Mn deficiency symptoms 31 DAS. However, plants grownwithout Cu did not show visible leaf symptoms. Shoot dry weightwas decreased by Zn and Mn deficiency 24 DAS, and by Cu deficiency31 DAS. Soluble protein concentration was reduced considerablyby Zn deficiency 24 DAS, but was not affected by Cu deficiencyuntil 31 DAS. In contrast, soluble protein concentration inMn-deficient plants was higher than in control plants 31 DAS.Shoot concentration of micronutrients which were not suppliedto plants decreased significantly, with a simultaneous increasein concentration of one or more of the other nutrients analysed.The activities of total SOD, MnSOD and Cu/ZnSOD on a fresh weightbasis declined drastically in -Cu and -Zn plants 24 DAS. Onthe contrary, the activities of total SOD and Cu/ZnSOD on eithera fresh weight or soluble protein basis increased markedly in-Mn plants 24 DAS, and MnSOD activity increased significantlyin these plants 31 DAS. It was concluded that micronutrientdeficiency (Cu, Zn or Mn) altered the activities of SOD formsdepending on the kind and severity of the deficiency stress.Manipulation of the capacity of plants to tolerate oxidativestress may influence their capacity to tolerate micronutrientdeficiency.Copyright 1999 Annals of Botany Company. Copper,Lupinus angustifolius, manganese, deficiency, superoxide dismutase, zinc.  相似文献   

3.
The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu) in maize (Zea mays L.) were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain). Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N) levels. Fe, Mn and Cu RIEs (average 64.4, 18.1and 5.3 g, respectively) were less affected by the yield and N levels. ZnRIE increased by 15% with an increased N supply but decreased from 36.3 to 18.0 g with increasing yield. The effect of cultivars on ZnRIE was similar to that of yield ranges. The substantial decrease in ZnRIE may be attributed to an increased Zn harvest index (from 41% to 60%) and decreased Zn concentrations in straw (a 56% decrease) and grain (decreased from 16.9 to 12.2 mg kg−1) rather than greater shoot Zn accumulation. Shoot Fe, Mn and Cu accumulation at maturity tended to increase but the proportions of pre-silking shoot Fe, Cu and Zn accumulation consistently decreased (from 95% to 59%, 90% to 71% and 91% to 66%, respectively). The decrease indicated the high reproductive-stage demands for Fe, Zn and Cu with the increasing yields. Optimized N supply achieved the highest yield and tended to increase grain concentrations of micronutrients compared to no or lower N supply. Excessive N supply did not result in any increases in yield or micronutrient nutrition for shoot or grain. These results indicate that optimized N management may be an economical method of improving micronutrient concentrations in maize grain with higher grain yield.  相似文献   

4.

Background and aims

Malnutrition resulting from zinc (Zn) and iron (Fe) deficiency has become a global issue. Excessive phosphorus (P) application may aggravate this issue due to the interactions of P and micronutrients in soil crop. Crop grain micronutrients associated with P applications and the increase of grain Zn by Zn fertilization were field-evaluated.

Methods

A field experiment with wheat was conducted to quantify the effect of P applications on grain micronutrient quality during two cropping seasons. The effect of foliar Zn applications on grain Zn quality with varied P applications was tested in 2011.

Results

Phosphorus applications decreased grain Zn concentration by 17–56%, while grain levels of Fe, manganese (Mn) and copper (Cu) either remained the same or increased. Although P applications increased grain yield, they restricted the accumulation of shoot Zn, but enhanced the accumulation of shoot Fe, Cu and especially Mn. In 2011, foliar Zn application restored the grain Zn to levels occurring without P and Zn application, and consequently reduced the grain P/Zn molar ratio by 19–53% than that without Zn application.

Conclusions

Foliar Zn application may be needed to achieve both favorable yield and grain Zn quality of wheat in production areas where soil P is building up.  相似文献   

5.
Most research on micronutrients in maize has focused on maize grown as a monocrop. The aim of this study was to determine the effects of intercropping on the concentrations of micronutrients in maize grain and their acquisition via the shoot. We conducted field experiments to investigate the effects of intercropping with turnip (Brassica campestris L.), faba bean (Vicia faba L.), chickpea (Cicer arietinum L.), and soybean (Glycine max L.) on the iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn) concentrations in the grain and their acquisition via the above-ground shoots of maize (Zea mays L.). Compared with monocropped maize grain, the grain of maize intercropped with legumes showed lower concentrations of Fe, Mn, Cu, and Zn and lower values of their corresponding harvest indexes. The micronutrient concentrations and harvest indexes in grain of maize intercropped with turnip were the same as those in monocropped maize grain. Intercropping stimulated the above-ground maize shoot acquisition of Fe, Mn, Cu and Zn, when averaged over different phosphorus (P) application rates. To our knowledge, this is the first report on the effects of intercropping on micronutrient concentrations in maize grain and on micronutrients acquisition via maize shoots (straw+grain). The maize grain Fe and Cu concentrations, but not Mn and Zn concentrations, were negatively correlated with maize grain yields. The concentrations of Fe, Mn, Cu, and Zn in maize grain were positively correlated with their corresponding harvest indexes. The decreased Fe, Mn, Cu, and Zn concentrations in grain of maize intercropped with legumes were attributed to reduced translocation of Fe, Mn, Cu, and Zn from vegetative tissues to grains. This may also be related to the delayed senescence of maize plants intercropped with legumes. We conclude that turnip/maize intercropping is beneficial to obtain high maize grain yield without decreased concentrations of Fe, Mn, Cu, and Zn in the grain. Further research is required to clarify the mechanisms underlying the changes in micronutrient concentrations in grain of intercropped maize.  相似文献   

6.
Nutrient management recommendations for fruit crops lack the understanding of the efficiency of soil fertilisation with manganese (Mn) and zinc (Zn), which could substitute, in part, the traditional foliar applications. Fruit yield of trees in response to Zn and Mn supply via soil may be limited either by sorption reactions with soil colloids or low solubility of fertilisers. We investigated the effects of fertiliser sources and rates of Mn and Zn applied to soils with different sorption capacities on nutrient uptake, biochemical responses and biomass of Citrus. Two experiments were carried out with 2‐year‐old sweet orange trees that received applications of Mn or Zn. The first experiment evaluated the application of Mn fertilisers (MnCO3 and MnSO4) at three levels of the nutrient (0, 0.7 and 3.5 g plant?1 of Mn) in two types of soil (18.1% and 64.4% of clay, referred to as sandy loam and clay soils, respectively). The second experiment, likewise, evaluated Zn fertilisers (ZnO and ZnSO4) and nutrient levels (0, 1.0 and 5.0 g plant?1 of Zn). Application of Mn and Zn increased nutrient availability in the soils as well as leaf nutrient concentrations in the trees. The lowest rates, 0.7 g plant?1 of Mn and 1.0 g plant?1 of Zn, both as sulphate, were sufficient to supply these micronutrients to sufficient levels in leaves, flowers and fruits. Metal toxicity to plants occurred with higher doses of both nutrients and to a large extent in the sandy soil. In this case, protein bands lower than 25 kDa were observed as well a decrease on leaf chlorophyll content. In the clay soil, despite increased micronutrient concentrations in the plant, responses were less pronounced because of higher adsorption of metals in the soil. Superoxide dismutase (SOD, EC 1.15.1.1) isoenzyme activity was determined by non‐denaturing polyacrylamide gel electrophoresis (PAGE). The Cu/Zn‐SOD isoenzymes increased with increased Zn rates, but in contrast, when Mn was applied at the highest rate, the activity of Cu/Zn‐SODs decreased. The SOD activity pattern observed indicated increased production of superoxide and consequently an oxidative stress condition at the highest rates of Zn and Mn applied. The results demonstrated that the soil application of Mn and Zn can supply nutrient demands of orange trees, however the low solubility of fertilisers and the high sorption capacity of soils limit fertilisation efficiency. On the contrary, application of sulphate source in sandy soils may cause excess uptake of Mn and Zn and oxidative stress, which impairs the photosynthetic apparatus and consequently tree growth.  相似文献   

7.
BackgroundThe determination of dietary mineral solubility is one of the main steps in the evaluation of their availability for a given species.MethodsThis study proposed an in vitro digestion method (acidic and alkaline hydrolysis). The method was applied to evaluate the solubility of inorganic and organic forms of zinc (Zn), selenium (Se) and manganese (Mn) in salmonid diets. An inorganic mineral (IM) diet was supplemented with zinc sulphate, sodium selenite and manganous sulphate and an organic mineral (OM) diet was supplemented with zinc chelate of glycine, l-selenomethionine and manganese chelate of glycine.ResultsThe solubility of Zn was similar in both diets tested. The amount of soluble Zn was low in the acidic hydrolysis (3–8%) and lower in the alkaline hydrolysis (0.4–2%). The solubility of Se was higher in the OM diet (7–34%) compared with the IM diet (3–12%). Regarding Mn, after the acidic hydrolysis the solubility was higher in the IM diet (6–25%) than the OM diet (4–17%). The in vitro solubility were compared with in vivo availability of Zn, Se and Mn. Data obtained for solubility (%) of Zn, Se and Mn was lower when compared with apparent availability (%) of Zn, Se and Mn.ConclusionData obtained demonstrated that solubility of Zn, Se and Mn was influenced by the mineral chemical form supplemented to the diet and by the gastrointestinal environment. The solubility of Zn, Se and Mn was not comparable with the apparent availability of Zn, Se and Mn. Nevertheless, the effect of the chemical form of the minerals was similar for the solubility of Zn, Se and Mn and the apparent availability of Zn, Se and Mn. Considering the overall results of this study, the in vitro method could replace some of the in vivo studies for a qualitative evaluation but not for a quantitative evaluation.  相似文献   

8.
  • Development of alleviation strategies, which enhance plant growth under heavy metal stress, is important. Inorganic (zeolite) and organic (diethylene triamine penta‐acetic acid, DTPA) amendments affecting the alleviation of lead (Pb) stress in a calcareous soil were tested by investigating leaf nutrient uptake of tomato (Lycopersicon esculentum L.) plants.
  • Experimental quantities of lead (Pb) at 0, 50, 100 and 150 mg·kg?1 soil, zeolite (clinoptilolite) at 0%, 0.5% and 1%, and DTPA at 0, 50 and 100 mg·kg?1 soil were tested in a factorial experiment with three plant replicates.
  • According to the anova , Pb, zeolite, DTPA and their interactions significantly affected plant concentrations of nitrogen (N), potassium (K), iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and lead (Pb). With increasing DTPA concentration at different levels of zeolite and Pb, plant concentrations of macro‐ and micronutrients significantly increased. Increasing soil Pb increased leaf Pb concentration and decreased the uptake of N, K, Fe, Zn, Cu and Mn. Although with increasing Pb concentration the uptake of macro‐ and micronutrients decreased in tomato, the use of zeolite and DTPA alleviated this stress by increasing nutrient uptake compared to the control. Interestingly, however, increased levels of zeolite and DTPA led to a decreased uptake of nutrients by plants (compared with control), indicating the absorption of such nutrients by the two amendments and their partial release for further plant use.
  • Zeolite and DTPA may alleviate the negative effects of soil Pb on tomato growth by decreasing nutrient leaching and increasing plant nutrient uptake.
  相似文献   

9.
BioMetals - The objective of the present study was to investigate the impact of iron deficiency and iron replenishment on serum iron (Fe), copper (Cu), manganese (Mn), and zinc (Zn) speciation and...  相似文献   

10.
The recycling of livestock manure in cropping systems is considered to enhance soil fertility and crop productivity. However, there have been no systematic long-term studies of the effects of manure application on soil and crop macro- and micro-nutrients, heavy metals, and crop yields in China, despite their great importance for sustainable crop production and food safety. Thus, we conducted field experiments in a typical cereal crop production area of the North China Plain to investigate the effects of compost manure application rates on wheat yield, as well as on the macro-/micro-nutrients and heavy metals contents of soil and wheat. We found that compost application increased the soil total N and the available K, Fe, Zn, and Mn concentrations, whereas the available P in soil was not affected, and the available Cu decreased. In general, compost application had no significant effects on the grain yield, biomass, and harvest index of winter wheat. However, during 2012 and 2013, the N concentration decreased by 9% and 18% in straw, and by 16% and 12% in grain, respectively. With compost application, the straw P concentration only increased in 2012 but the grain P generally increased, while the straw K concentration tended to decrease and the grain K concentration increased in 2013. Compost application generally increased the Fe and Zn concentrations in straw and grain, whereas the Cu and Mn concentrations decreased significantly compared with the control. The heavy metal concentrations increased at some compost application rates, but they were still within the safe range. The balances of the macro-and micro-nutrients indicated that the removal of nutrients by wheat was compensated for by the addition of compost, whereas the level of N decreased without the application of compost. The daily intake levels of micronutrients via the consumption of wheat grain were still lower than the recommended levels when sheep manure compost was applied, except for that of Mn.  相似文献   

11.
Compost application to turfgrasses can increase plant-available nutrient concentrations in soil and improve growth, but may alter micronutrient dynamics and increase leaching and runoff losses. The objectives of this study were to investigate the influence of compost on the seasonal dynamics of plant-available Mn, Fe, Cu, and Zn in soil after a single application to bermudagrass [Cynodon dactylon (L.) Pers.] turf. Extractable Mn increased from 270 to 670 mg kg(-1) and Cu from 0.36 to 9.89 mg kg(-1) from 0 to 29 months. In contrast, extractable Fe and Zn decreased by 52% and 57% during the same time period. Seasonal trends in extractable Mn and Cu were closely related to dissolved organic C (DOC), and appeared influenced by bermudagrass growth and dormancy patterns and subsequent impacts on DOC. Losses of Mn and Cu from the soil surface occurred after high levels of precipitation during winter dormancy but not during the growing season, while Fe and Zn exhibited an opposite pattern. Thus, seasonal variation of soil micronutrients was likely related to seasonal patterns of bermudagrass growth and dormancy and their effects on DOC, and precipitation events which probably leached DOC and complexed nutrients from surface soil. Composts only influenced the magnitude of changes in micronutrient concentrations, as similar seasonal trends occurred for both compost-amended and unamended soils.  相似文献   

12.
We investigated effect of farm yard manure (FYM) and compost applied to metal contaminated soil at rate of 1% (FYM-1, compost-1), 2% (FYM-2, compost-2), and 3% (FYM-3, compost-3). FYM significantly (P < 0.001) increased dry weights of shoots and roots while compost increased root dry weight compared to control. Amendments significantly increased nickel (Ni) in shoots and roots of maize except compost applied at 1%. FYM-3 and -1 caused maximum Ni in shoots (11.42 mg kg?1) and roots (80.92 mg kg?1), respectively while compost-2 caused maximum Ni (14.08 mg kg?1) and (163.87 mg kg?1) in shoots and roots, respectively. Plants grown in pots amended with FYM-2 and compost-1 contained minimum Cu (30.12 and 30.11 mg kg?1) in shoots, respectively. FYM-2 and compost-2 caused minimum zinc (Zn) (59.08 and 66.0 mg kg?1) in maize shoots, respectively. FYM-2 caused minimum Mn in maize shoots while compost increased Mn in shoots and roots compared to control. FYM and compost increased the ammonium bicarbonate diethylene triamine penta acetic acid (AB-DTPA) extractable Ni and Mn in the soil and decreased Cu and Zn. Lower remediation factors for all metals with compost indicated that compost was effective to stabilize the metals in soil compared to FYM.  相似文献   

13.
Abstract

Metal fractionation is a powerful tool for studying the mobility, bioavailability and toxicity of metals in sediments and soils. A seven-step sequential extraction technique was used to determine the potential mobility of selected heavy metals (Fe, Mn, Zn, Cu, Pb, Cd and Ni) in the sediments of Lake Naivasha. Results indicate that residual fraction was the most important phase for the elements Fe, Mn, Cu and Zn. However, Pb and Cd are highly enriched in the non-residual phases. Nickel on the other hand was distributed evenly between the non-residual and the residual fractions.

The total concentrations of the heavy metals suggested a decreasing order of iron ?> manganese ? zinc > nickel > copper ? lead > cadmium. However, the detailed sequential extraction data indicated an order of release or mobility of cadmium > lead ? nickel ? zinc > manganese > copper > iron. The high percentage of Cd and Pb in the mobile fractions suggests high bioavailability of these two elements in the study area and maybe a pointer to anthropogenic input of the two elements in the study area.  相似文献   

14.
In previous studies based on indirect procedures, we reported that Mg deficit increased the bioavailability of a number of elements such as calcium, zinc, iron, copper, manganese and decreased selenium absorption. The present study was designed to verify these findings by direct methods. We investigated the effect of dietary magnesium deficiency on enterocyte Ca, Fe, Zn, Cu, Mn and Se concentrations. Male Wistar rats were fed a Mg-deficient diet (129 mg Mg/kg food) for 70 days. Whole enterocytes from the upper jejunum were isolated and Ca, Fe, Zn, Cu, Mn and Se were determined. The results were compared with findings in a control group that was pair-fed with an identical diet except that it covered this species's nutritional requirements for Mg (480 mg Mg/kg food). The Mg-deficient diet significantly increased enterocyte content of Ca, Fe, Zn, Cu and Mn; however, we found no significant changes in the Se content of these cells. These data support the results obtained by indirect methods.  相似文献   

15.
The sorption of ferric iron, copper, zinc and manganese by wheatseedling roots and by discs of cellulose filter paper was measured.The magnitude of sorption at pH 5-0 was Fe(III) > Cu(II)> Zn(II) > Mn(II). Sorption of Cu(II), Zn(II) and Mn(II)increased with increasing pH whilst sorption of Fe(III) decreased.The patterns of sorption are discussed in the light of our knowledgeof the hydrolysis of the metal ions. It is suggested that metalsadsorbed on root surfaces may be remobilized by organic ligandswhich leak from the root cells. Where an external liquid diffusionpath away from the root does not exist, soluble metal ligandcomplexes might accumulate in the water free space and superficialwater film of the root, thus facilitating their uptake intoroot cells and translocation within the plant. Under such conditionsthe amounts of metal translocated to the shoots of wheat seedlingsare shown to be related to the amounts of metal adsorbed bytheir roots. Key words: Adsorption, Micronutrients, Roots  相似文献   

16.
The Lechang lead/zinc (Pb/Zn) mine and Dabao Shan copper (Cu) mine are located at the north of Guangdong Province in southern China. The residual tailings were permanently stored in tailings ponds which required revegetation to reduce their impact on the environment. A greenhouse study was conducted to evaluate the feasibility of using Vetiveria zizanioides (vetiver) and Phragmities australis (common reed) for the reclamation of Pb/Zn and Cu mine tailings and to evaluate the effects of organic amendments using manure compost (11.00, 22.03, 44.05 and 88.10 t/ha) and sewages sludge (11.00, 22.03, 44.05 and 88.10 t/ha) on the revegetation of these tailings. The results revealed that the applications of manure compost or sewage sludge not only increased N, P and K concentrations, but also decreased DTPA-extractable Pb and Zn contents in Pb/Zn tailings and DTPA-extractable Cu contents in Cu tailings. For Pb/Zn mine tailings, application of sewage sludge increased the yields of both species (highest yield at 44.05 t/ha), but not manure compost. For Cu mine tailings, application of manure compost (highest yield for both species at 44.05 and 22.03 t/ha for vetiver and common reed accordingly) or sewage sludge (highest yield at 22.03 and 44.05 t/ha for vetiver and common reed accordingly) increased the yield of both species. In general, vetiver achieved a higher yield when compared with common reed, under the same treatment. Plant tissue analysis showed that application of manure compost and sewage sludge could significantly reduce Pb uptake and accumulation, but not Cu in both vetiver and common reed.  相似文献   

17.
The influence of long-term exposure to cadmium (Cd) on essential minerals was investigated using a Caco-2 TC7 cells and a multi-analytical tool: microwave digestion and inductively coupled plasma mass spectrometry. Intracellular levels, effects on cadmium accumulation, distribution, and reference concentration ranges of the following elements were determined: Na, Mg, Ca, Cr, Fe, Mn, Co, Ni, Cu, Zn, Mo, and Cd. Results showed that Caco-2 TC7 cells incubated long-term with cadmium concentrations ranging from 0 to 10 μmol Cd/l for 5 weeks exhibited a significant increase in cadmium accumulation. Furthermore, this accumulation was more marked in cells exposed long-term to cadmium compared with controls, and that this exposure resulted in a significant accumulation of copper and zinc but not of the other elements measured. Interactions of Cd with three elements: zinc, copper, and manganese were particularly studied. Exposed to 30 μmol/l of the element, manganese showed the highest inhibition and copper the lowest on cadmium intracellular accumulation but Zn, Cu, and Mn behave differently in terms of their mutual competition with Cd. Indeed, increasing cadmium in the culture medium resulted in a gradual and significant increase in the accumulation of zinc. There was a significant decrease in manganese from 5 μmol Cd/l exposure, and no variation was observed with copper.  相似文献   

18.
Summary Boron, copper, iron, manganese and zinc concentrations were measured in sunflower leaves from plants grown hydroponically in a closed continuous flow system and with boron concentrations ranging from deficient to toxic. Leaves were analyzed at the stage of flower development. There was a highly significant inverse correlation between B concentration in solution and Mn concentration in leaves. Cu, Fe and Zn concentrations in the leaves were not changed by the different B levels, although the B concentration in leaves increased with an increasing concentration in solution, showing a close correlation each other.  相似文献   

19.
Lead, antimony, copper, and zinc are expected contaminants in firing-range soil due to their presence in bullets, shells, etc. These elements are also naturally occurring, so it is important to distinguish between naturally high background concentrations and actual contamination during site investigations. A data visualization technique based on geochemical principles has been successfully applied during range investigations to identify contaminated samples and confirm the success of remediation efforts. For example, at some locations, lead has a natural affinity to adsorb on manganese oxides, yielding positive correlations between lead and manganese concentrations and consistent Pb/Mn ratios in uncontaminated samples. Contaminated samples are identified by anomalously high Pb/Mn ratios. Plots of copper or zinc versus lead provide supporting evidence for a contaminant source; Cu/Pb or Zn/Pb ratios in oxic soils are distinctly different in uncontaminated samples versus samples co-contaminated with these metals. Two case studies are presented from facilities in the United States.  相似文献   

20.
根瘤菌对土壤铜、锌和镉形态分配的影响   总被引:13,自引:0,他引:13  
以湖南郴州红壤和河北巩义褐土为供试土壤。制备Cu、Zn、Cd污染土壤。接种大豆根瘤菌(Rhi-zobium fredii)HN01,用连续提取法浸提土壤中不同形态的重金属.结果表明。褐土接种根瘤菌后固相结合态Zn总量降低10%。专性吸附态、氧化锰结合态和有机结合态Zn减少达9%~26%.红壤中结合态Zn的总量变化不显著,但专性吸附态和氧化锰结合态Zn含量显著减少。交换态Zn含量显著增加.褐土中接种根瘤菌抑制了Cu向土壤溶液的释放,固相结合态Cu总量增加18%,可交换态、专性吸附态、氧化锰结合态和有机结合态的Cu增加20%~54%.接种根瘤菌对土壤中Cd的溶解没有明显的抑制或促进作用,但改变了红壤中各形态Cd的含量高低顺序.Cd污染红壤中可交换态和有机结合态Cd含量分别增加22%和11%,专性吸附态和氧化锰结合态Cd分别减少14%和29%.根瘤菌对不同类型重金属及不同土壤中重金属形态影响的差异主要与土壤pH降低有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号