首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In this study, we examined the potential role of phosphate (P; 0, 50, 100 mg kg?1) on growth, gas exchange attributes, and photosynthetic pigments of Brassica napus and Brassica juncea under arsenic (As) stress (0, 25, 50, 75 mg kg?1) in a pot experiment. Results revealed that phosphate supplementation (P100) to As-stressed plants significantly increased shoot As concentration, dry biomass yield, and As uptake, in addition to the improved morphological and gas exchange attributes and photosynthetic pigments over P0. However, phosphate-assisted increase in As uptake was substantially (up to two times) greater for B. napus, notably due to higher shoot As concentration and dry biomass yield, compared to B. juncea at the P100 level. While phosphate addition in soil (P100) led to enhanced shoot As concentration in B. juncea, it reduced shoot dry biomass, primarily after 50 and 75 mg kg?1 As treatments. The translocation factor and bioconcentration factor values of B. napus were higher than B. juncea for all As levels in the presence of phosphate. This study demonstrates that phosphate supplementation has a potential to improve As phytoextraction efficiency, predominantly for B. napus, by minimizing As-induced damage to plant growth, as well as by improving the physiological and photosynthetic attributes.  相似文献   

2.
A growth chamber study was conducted to evaluate the effect of application of phosphate fertilizer on soil solution dynamics of cadmium (Cd) and Cd accumulation in durum wheat (Triticum turgidum L. var. durum). Treatments consisted of three phosphate fertilizer sources containing 3.4, 75.2, and 232 mg Cd kg?1 applied at three rates (20, 40 and 80 mg P kg?1) plus a no fertilization control. An unplanted treatment at 40 mg P kg?1 was included to separate the effects on soil solution Cd dynamics of the crop from that of the fertilizer. Soil solution samples were obtained using soil moisture samplers every 10 days after germination. The experimental results indicated that plant biomass significantly increased with P application rates and decreased with increased Cd concentration in the phosphate fertilizers. Total cadmium concentration in soil solution was not consistently affected by phosphate fertilization rate and fertilizer sources, and therefore Cd concentration in the fertilizer. Application of phosphate fertilizer, however, increased the concentration and accumulation of Cd and shoot Cd/Zn ratio, and decreased shoot Zn concentration in durum wheat. Phosphate sources had a marginally significant effect (P?=?0.05) on shoot Cd concentration and did not affect Cd accumulation in durum wheat. Concentration of Cd in soil solution was unrelated to Cd concentration in durum wheat. These results suggest that the immediate increase in Cd concentration and Cd accumulation in durum wheat with phosphate application is due more to competition between Zn and Cd for absorption into plants, enhanced root to shoot translocation and enhanced root development, than to a direct addition effect from Cd contained in phosphate fertilizer. In the short term, application of phosphate fertilizers can increase Cd concentration in the crops, regardless of the Cd concentration of the fertilizer. An optimal P fertilization, possibly in combination with Zn application, may offer an important strategy for decreasing Cd concentration and accumulation in crops.  相似文献   

3.
One-pass harvest equipment has been developed to collect corn (Zea mays L.) grain, stover, and cobs that can be used as bioenergy feedstock. Nutrients removed in these feedstocks have soil fertility implication and affect feedstock quality. The study objectives were to quantify nutrient concentrations and potential removal as a function of cutting height, plant organ, and physiological stage. Plant samples were collected in 10-cm increments at seven diverse geographic locations at two maturities and analyzed for multiple elements. At grain harvest, nutrient concentration averaged 5.5 g?N kg?1, 0.5 g?P kg?1, and 6.2 g?K kg?1 in cobs, 7.5 g?N kg?1, 1.2 g?P kg?1, and 8.7 g?K kg?1 in the above-ear stover fraction, and 6.4 g?N kg?1, 1.0 g?P kg?1, and 10.7 g?K kg?1 in the below-ear stover fraction (stover fractions exclude cobs). The average collective cost to replace N, P, and K was $11.66 Mg?1 for cobs, $17.59 Mg?1 for above-ear stover, and $18.11 Mg?1 for below-ear stover. If 3 Mg ha?1 of above-ear stover fraction plus 1 Mg of cobs are harvested, an average N, P, and K replacement cost was estimated at $64 ha?1. Collecting cobs or above-ear stover fraction may provide a higher quality feedstock while removing fewer nutrients compared to whole stover removal. This information will enable producers to balance soil fertility by adjusting fertilizer rates and to sustain soil quality by predicting C removal for different harvest scenarios. It also provides elemental information to the bioenergy industry.  相似文献   

4.
This study, comprising three independent experiments, was conducted to optimize the zinc (Zn) application through seed coating for improving the productivity and grain biofortification of wheat. Experiment 1 was conducted in petri plates, while experiment 2 was conducted in sand-filled pots to optimize the Zn seed coating using two sources (ZnSO4, ZnCl2) of Zn. In the first two experiments, seeds of two wheat cultivars Lasani-2008 and Faisalabad-2008 were coated with 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00 g Zn kg?1 seed using ZnSO4 and ZnCl2 as Zn sources. The results of experiment I revealed that seed coating with 1.25 and 1.50 g Zn kg?1 seed using both sources of Zn improved the seedling emergence. However, seed coated with 1.25 and 1.50 g Zn kg?1 seed using ZnSO4 was better regarding improvement in seedling growth and seedling dry weight. The results of the second experiment indicated that seed coated with 1.25 and 1.50 g Zn kg?1 seed using ZnSO4 improved the seedling emergence and seedling growth of tested wheat cultivars. However, seed coating beyond 1.5 g Zn kg?1 seed using either Zn source suppressed the seedling emergence. Third experiment was carried out in glass house in soil-filled earthen pots. Seeds of both wheat cultivars were coated with pre-optimized treatments (1.25, 1.50 g Zn kg?1 seed) using both Zn sources. Seed coating with all treatments of ZnSO4 and seed coating with 1.25 g Zn kg?1 seed using ZnCl2 improved the seedling emergence and yield-related traits of wheat cultivars. Seed coating with 1.25 g Zn kg?1 seed also improved the chlorophyll a and b contents. Maximum straw Zn contents, before and after anthesis, were recorded from seed coated with 1.5 g Zn kg?1 seed using either Zn source. Increase in grain yield from seed coating followed the sequence 1.25 g Zn kg?1 seed (ZnSO4) >1.25 g Zn kg?1 seed (ZnCl2) >1.5 g Zn kg?1 seed (ZnSO4). However, increase in grain Zn contents from seed coated was 1.5 g Zn kg?1 seed (ZnCl2) >1.25 and 1.5 g Zn kg?1 seed (ZnCl2, ZnSO4) >1.25 g Zn kg?1 seed (ZnSO4). Seed coating with Zn increased the grain Zn contents from 21 to 35 %, while 33–55 % improvement in grain yield was recorded. In conclusion, wheat seeds may be coated with 1.25 g Zn kg?1 seed using either source of Zn for improving the grain yield and grain Zn biofortification.  相似文献   

5.
The critical value of soil Olsen-P is the point above which the probability of crop yield response to fertilizer P is small or nil. Determining this critical value is fundamental when making appropriate P fertilizer recommendations. In this study, the critical values were determined for continuous maize (Zea mays L.)-winter wheat (Triticum aestivum L.) cropping systems from a 15-year field experiment across three sites in China using linear-linear, linear-plateau and Mitscherlich models. The mean critical values for maize using the three models ranged from 12.1 to 17.3 mg P kg?1 (average 15.3 mg P kg?1) and for winter wheat from 12.5 to 19.0 mg P kg?1 (average 16.3 mg P kg?1) among study sites. The mean critical value for maize was approximately 7% lower than that for winter wheat across all sites based on the three models. Critical values identified by the Mitscherlich model were 1.4 to 2.1 times those from linear-linear and 1.3 to 1.9 times of those from linear-plateau and were crop and site dependent. There was a significant negative correlation (P?<?0.05) between the mean critical value from the three models and the observed P uptake by either maize or wheat. Our study shows that the critical values can vary with sites, crops and models used, and thus caution should be taken when selecting the most appropriate one when making P fertilizer recommendations for agronomic return and to minimize chances of negative environment impact from overfertilization.  相似文献   

6.
Genotypic differences in acquiring immobile P exist among species or cultivars within one species. We investigated the P-efficiency mechanisms of rapeseed (Brassica napus L.) in low P soil by measuring plant growth, P acquisition and rhizosphere properties. Two genotypes with different P efficiencies were grown in a root-compartment experiment under low P (P15: 15 mg P kg?1) and high P (P100: 100 mg P kg?1) treatments. The P-efficient genotype produced more biomass, and had a high seed yield and high P acquisition efficiency under low P treatment. Under both P treatments, both genotypes decreased inorganic P (Pi) and organic P (Po) fractions in the rhizosphere soil. However there was no decrease in NaHCO3-Po at P100. For the P15 treatment, the concentrations of NaHCO3-Po and NaOH-Po were negatively correlated with soil acid phosphatase activity. The P-efficient genotype 102 differed from the P-inefficient genotype 105 in the following ways. In the rhizosphere the soil pH was lower, acid phosphatase activity was higher, and depletion of P was greater. Further the depletion zones were wider. These results suggested that improving P efficiency based on the character of P efficiency acquisition in P-efficient genotype would be a potential approach for maintaining rapeseed yield potential in soils with low P bioavailability.  相似文献   

7.
The effect of natural and artificial reduction on P extractability from soils used for rice production and the relation of these values to response to fertilizer P were investigated. Soil solution P increased from a mean of 3.8 mg P·kg?1 soil for naturally oxidized slurries of 28 soils to 19.8mg P·kg?1 when the soils were naturally reduced. The mean values were further increased to 40.8 and 45.3 mg·kg?1 when the soils were reduced with 0.1M Na2S2O4 and 0.2M Na2S2O4, respectively. These P-values compare with 18.2 mg kg?1 when the dry soils were extracted with Bray No. 1 extractant. When the yields of rice were correlated with solution and extracted P, the R2's for the quadratic relationships were 0.40**, 0.31*, 0.34**, 0.30*, and 0.55** for the naturally oxidized, the naturally reduced, 0.1M Na2S2O4, 0.2M Na2S2O4 and Bray No. 1, respectively. The Cate-Nelson calculation confirmed the superiority of the weak acid Bray extractant and the critical value of 8.6 mg P·kg?1 soil needed for satisfactory yields of rice. There was little response of rice to added fertilizer P on soils with solution P-values greater than 0.09 mg P·l?1 in oxygenated soil slurries. Some soils with solution P of this order and high amounts of Bray No. 1 extractable P still gave modest responses to fertilizer P. Although natural or chemically induced reduction increased soil solution P, it did not improve prediction of yield response of rice to added fertilizer P.  相似文献   

8.
Organic fertilizers can improve soil health while providing nutrients for perennial grass growth for bioenergy feedstock, particularly under marginal soil conditions. The impact of organic fertilizer application on perennial grass composition needs clarification. Our objective was to evaluate feedstock composition, and N, P, and K dynamics of switchgrass (Panicum virgatum L.), tall fescue [Lolium arundinaceum (Schreb.)], and reed canarygrass (Phalaris arundinacea L.) provided with either inorganic or organic fertilizer sources. Grasses were established on a sandy soil and a clay soil at the Cornell University Willsboro Research Farm in Willsboro, NY. The experiment was a split-split plot randomization of a randomized block design with six replicates. Sites were whole plots, grass species were subplots, and fertility treatments were sub-subplots. Six treatments were (1) 168 kg ha?1 of N fertilizer for cool-season grasses; 84 kg ha?1 for switchgrass, (2) 56 kg ha?1 of 0-46-0 P fertilizer plus N (#1), (3) 112 kg ha?1 of 0-0-60 K fertilizer plus N (#1), (4) 89.6 Mg dairy manure ha?1, (5) 44.8 Mg dairy manure compost ha?1, and (6) a control without fertilizer. Organic fertilizers produced a net positive P and K balance, while other treatments had negative balances. Organic fertilizer treatments resulted in lower lignin and gross energy values, and higher total ash and Cl, compared to inorganic fertilizer treatments. Switchgrass biomass had higher fiber and gross energy, lower total ash, and much lower Cl content under organic fertilizer applications than cool-season grasses, making switchgrass a more desirable feedstock regardless of conversion process.  相似文献   

9.
Abelmoschus manihot, an ornamental plant, was examined for phytoremediation purposes in accordance with the ability to accumulate cadmium and physiological mechanisms of cadmium tolerance. A net photosynthetic rate (A N) glasshouse experiment for 60 days was conducted to investigate the influence of different cadmium amounts (0–100 mg kg?1) on the growth, biomass, photosynthetic performance, reactive oxygen species (ROS) production, antioxidative enzyme activities, Cd uptake and accumulation of A. manihot. Exposure to cadmium enhanced plant growth even at 100 mg kg?1, without showing symptoms of visible damage. The cadmium concentration of shoots (stems or leaves) and roots was more than the critical value of 100 mg kg?1 and reached 126.17, 185.26 and 210.24 mg kg?1, respectively. BCF values of A. manihot plants exceeded the reference value 1.0 for all the Cd treatments, and TF values were greater than 1 at 15–60 mg kg?1 Cd treatment. The results also showed that cadmium concentrations of 60 mg kg?1 or less induced a significant enhancement in plant net photosynthetic rate (A N), stomatal conductance (G s), transpiration rate (T r), photosynthetic pigments and F v/F m. These parameters were slightly decreased at the higher concentration (100 mg kg?1). The ROS production (O2 ?, H2O2) and antioxidative response including SOD, CAT and POD were significantly enhanced by increasing cadmium. These results suggest that A. manihot can be considered as a Cd-hyperaccumulator and the hormetic effects may be taken into consideration in remediation of Cd contamination soil.  相似文献   

10.
This study examined the effects of molybdenum (Mo) and boron (B) on the rhizosphere microorganisms and the soil enzyme activities of soybean. The soybeans were treated with seven different Mo and B supplements (control: without Mo and B) Mo1 (0.0185 g kg?1), B1 (0.08 g kg?1), Mo1 + B1 (0.0185 + 0.08 g kg?1), Mo2 (0.185 g kg?1), B2 (0.3 g kg?1) and Mo2 + B2 (0.185 + 0.3 g kg?1) throughout the plants’ four growth stages. The results showed that Mo, B, and combined Mo and B treatments increased the soil microbial populations, stimulated the rhizosphere metabolisms, and improved the soil enzyme activities. These stimulatory effects varied in intensity among the treatment groups. The Mo and B combination treatments were more beneficial for the soybean rhizosphere soil than that of Mo-only or the B-only treatments, which suggests that the two elements have complementary functions in the biological processes of the soybean rhizosphere.  相似文献   

11.

Background and aims

Sufficient soil phosphorus (P) is important for achieving optimal crop production, but excessive soil P levels may create a risk of P losses and associated eutrophication of surface waters. The aim of this study was to determine critical soil P levels for achieving optimal crop yields and minimal P losses in common soil types and dominant cropping systems in China.

Methods

Four long-term experiment sites were selected in China. The critical level of soil Olsen-P for crop yield was determined using the linear-plateau model. The relationships between the soil total P, Olsen-P and CaCl2-P were evaluated using two-segment linear model to determine the soil P fertility rate and leaching change-point.

Results

The critical levels of soil Olsen-P for optimal crop yield ranged from 10.9 mg kg?1 to 21.4 mg kg?1, above which crop yield response less to the increasing of soil Olsen-P. The P leaching change-points of Olsen-P ranged from 39.9 mg kg?1 to 90.2 mg kg?1, above which soil CaCl2-P greatly increasing with increasing soil Olsen-P. Similar change-point was found between soil total P and Olsen-P. Overall, the change-point ranged from 4.6 mg kg?1 to 71.8 mg kg?1 among all the four sites. These change-points were highly affected by crop specie, soil type, pH and soil organic matter content.

Conclusions

The three response curves could be used to access the soil Olsen-P status for crop yield, soil P fertility rate and soil P leaching risk for a sustainable soil P management in field.  相似文献   

12.
Switchgrass (Panicum virgatum L.), tall fescue [Lolium arundinaceum (Schreb.)], and reed canarygrass (Phalaris arundinacea L.) are known for high biomass productivity and for various traits that make these species more suitable for marginal environmental growing conditions. The goal of this study was to evaluate the impact of organic vs. inorganic fertilizer application on grass biomass production and soil nutrient status. Switchgrass, tall fescue, and reed canarygrass were established on a sandy soil and a clay soil at the Cornell University Willsboro Research Farm in Willsboro, NY. The experiment was a split-split plot randomized block design with six replicates. Sites were whole plots, grass species were subplots, and fertility treatments were sub-subplots. The six treatments were (1) 168 kg ha?1 of N fertilizer for cool-season grasses, 84 kg ha?1 for switchgrass; (2) 56 kg ha?1 of 0-46-0 P fertilizer plus N (#1); (3) 112 kg ha?1 of 0-0-60 K fertilizer plus N (#1); (4) 89.6 Mg dairy manure ha?1; (5) 44.8 Mg dairy manure compost ha?1; and (6) no fertilizer applied (control plots). Switchgrass with a single harvest per season yielded on average 13.0 Mg ha?1, while tall fescue and reed canarygrass averaged 8.4 and 7.7 Mg ha?1, respectively, under two-cut systems. Switchgrass with no fertilization produced 84% of maximum yield of fertilized treatments. Application of a similar amount of organic N with fresh and composted dairy manure resulted in greater yields for fresh dairy manure. Organic fertilizers strongly impacted the P and K status of soils. Switchgrass is capable of high yields in marginal environments and can provide a land base for environmentally acceptable application of animal manure, although from a yield standpoint it is not very responsive to fertilizer applications.  相似文献   

13.
Intermittently submergence and drainage status of paddy fields can cause alterations in morphological and chemical characteristics of soils. We conducted a sequential fractionation study to provide an insight into solubility of Sulfur (S) and Molybdenum (Mo) in flooded alluvial paddy soils. The samples (0–15 and 15–30 cm) were taken from marine and riverine alluvial soils in Kedah and Kelantan areas, respectively, and were sequentially extracted with NaHCO3, NaOH, HCl, and HClO4–HNO3. Total S in upper and lower layers of Kedah and Kelantan ranged between 273 and 1121 mg kg?1, and 177 to 1509 mg kg?1, respectively. In upper layers and subsoil of Kedah, average total Mo were 0.34 and 0.27 mg kg?1, respectively. Average total Mo in Kelantan were 0.25 mg kg?1 (surface layer) and 0.28 mg kg?1 (subsoil). Cation exchange capacity (CEC) was positively correlated with plant available amounts of Mo in upper layers of Kedah area. Also, total and medium-term plant-available S was correlated with total carbon (C) at lower layers of Kelantan soil series. But in surface layers of Kelantan soil series, CEC was strongly correlated with total and medium-term plant-available S. Our results indicates that the influence of flooding conditions on soil S and Mo contents in paddy fields may cause long-term changes in S and Mo chemical reactivities.  相似文献   

14.
In the present study, field micro-plot experiments were conducted to investigate the basal and foliar application of a tested organic fertilizer amendment (OFA) for decreasing the risk of Cd accumulating in rice. The results showed that applications of OFA significantly increased rice yields in Cd-polluted soil and reduced the level of Cd in rice plants, especially in rice grain. In addition, three application methods of OFA were investigated (single basal application (B1, B2, and B3), combined basal application (+LM, +D, and +Z), and foliar application (F1, F2)). Treat B, F, +LM, +D were all higher than control on rice yield with 25.03, 28.05, 30.61, 22.50 g pot?1 on average, respectively. Among which, rice cadmium depress to 0.33 mg kg?1 in foliar application is considered to be a more efficient and economical method of heavy metal remediation. The mechanism of foliar application to alleviate the accumulation of Cd in brown rice may be related to the probable Cd sequestration in the leaves and straws. And the doses of the foliar application were 2.25–3.75 kg hm?2, approximately 1.0–2.5% of the basal application amount yet with more effect (0.10 mg kg?1 more than single basal; 0.23 mg kg?1 more than combined basal) on Cd reduction.  相似文献   

15.

Purpose

Carbon footprint of field crops can be lowered through improved cropping practices. The objective of this study was to determine the carbon footprint of spring barley (Hordeum vulgare L.) in relation to various preceding oilseed crops that were fertilized at various rates of inorganic N the previous years. System boundary was from cradle-to-farm gate.

Materials and methods

Canola-quality mustard (Brassica juncea L.), canola (Brassica napus L.), sunflower (Helianthus annuus L.), and flax (Linum usitatissimum L.) were grown under the N fertilizer rates of 10, 30, 70, 90, 110, 150, and 200?kg?N?ha?1 the previous year, and spring barley was grown on the field of standing oilseed stubble the following year. The study was conducted at six environmental sites; they were at Indian Head in 2005, 2006 and 2007, and at Swift Current in 2004, 2005 and 2006, Saskatchewan, Canada.

Results and discussion

On average, barley grown at humid Indian Head emitted greenhouse gases (GHGs) of 1,003?kg?CO2eq?ha?1, or 53% greater than that at the drier Swift Current site. Production and delivery of fertilizer N to farm gate accounted for 26% of the total GHG emissions, followed by direct and indirect emissions of 28% due to the application of N fertilizers to barley crop. Emissions due to N fertilization were 26.6 times the emission from the use of phosphorous, 5.2 times the emission from pesticides, and 4.2 times the emission from various farming operations. Decomposition of crop residues contributed emissions of 173?kg?CO2eq?ha?1, or 19% of the total emission. Indian Head-produced barley had significantly greater grain yield, resulting in about 11% lower carbon footprint than Swift Current-produced barley (0.28 vs. 0.32?kg?CO2eq?kg?1 of grain). Emissions in the barley production was a linear function of the rate of fertilizer N applied to the previous oilseed crops due to increased emissions from crop residue decomposition coupled with higher residual soil mineral N.

Conclusions

The key to lower the carbon footprint of barley is to increase grain yield, make a wise choice of crop types, reduce N inputs to crops grown in the previous and current growing seasons, and improved N use efficiency.  相似文献   

16.
Spatial soil-K availability for no-till soybean [Glycine max (L.) Merr.] has not been studied extensively. We characterize soybean growth- and yield-component and quantify root parameters as a function of soil depth in K-stratified soils with 1 M ammonium acetate extractable-K ranges 60–290 at 0–10 cm increment and 50–90 mg kg?1 at the 10–20 cm increment. Shoots and roots (five depth increments to 50 cm) were collected during development and grain at harvest during 2 years. Soil K at or above the critical level (104 mg K kg?1) increased early-season leaf area and root K-uptake rates early and late in reproductive development. Greater number of seeds plant?1 increased yield for soils with K near the critical level. Soil-K above the critical level increased luxury K-uptake without improving yield, seed-K concentration and accumulation, or seed oil and protein concentration. Greater root length density (>41% of the total) in surface soil coupled with previous results showing greater water content throughout the season in surface soil compared to deeper layers illustrates K stratification caused by no-till may enhance soybean K-uptake.  相似文献   

17.
Two shrub species (Piliostigma reticulatum (D.C.) Hochst (Caesalpinioideae) and Guiera senegalensis J.F. Gmel (Combretaceae) are commonly found in farmers’ fields at varying densities in semi-arid Senegal and throughout the Sahel where soils have chronically low phosphorus (P) availability. It seems plausible that shrub litter and the rhizospheres could influence P fractions and other chemical soil properties that affect crop productivity. Thus, a study was done at two sites, on the distribution of inorganic and organic soil P pools, organic C levels, and pH in soil beneath and outside the canopies of P. reticulatum and G. senegalensis (0-30 cm depth). Both sites had low total P ranging from 64 mg P kg?1 to 135 mg P kg-1, and low extractable PO4 (resin Pi) (1–6 mg P kg?1) with P fractions dominated by NaOH-P. Organic P (Po) made up about 50% of total P, and most of the organic P (>60%) was found in the NaOH-P fractions. The labile P, particularly bicarb-Po was higher in soil beneath shrub canopies (8.4 mg P kg ?1), than outside the canopy (6.2 mg P kg ?1). Similarly, C, N and P to a lesser extent, were more concentrated beneath shrub canopies. P. reticulatum soil was dominated by the NaOH-Po fraction, whereas G. senegalensis had higher bicarb-Po at one of the study sites. An index of biologically available organic P (Bicarb-Po) / (Bicarb-Po?+?Bicar-Pi?+?Resin Pi) was ?>?60% and indicates that biological processes represent an important part of P cycling in these shrub ecosystems. The differential ability of shrubs in modifying soil chemical properties under their canopies has major implications for biogeochemical cycling of nutrients and C in sandy soils of semi arid Sahelian ecosystems.  相似文献   

18.
Phytoextraction of Risk Elements by Willow and Poplar Trees   总被引:1,自引:0,他引:1  
To characterize the phytoextraction efficiency of two clones of willow trees (Salix x smithiana Willd., Salix rubens) and two clones of poplar trees (Populus nigra x maximowiczii, Populus nigra Wolterson) were planted in contaminated soil (0.4–2.0 mg Cd.kg?1, 78–313 mg Zn.kg?1, 21.3–118 mg Cu.kg?1). Field experiment was carried out in Czech Republic. The study investigated their ability to accumulate heavy metals (Cd, Zn, and Cu) in harvestable plant parts. The poplars produced higher amount of biomass than willows. Both Salix clones accumulated higher amount of Cd, Zn and Cu in their biomass (maximum 6.8 mg Cd.kg?1, 909 mg Zn.kg?1, and 17.7 mg Cu.kg?1) compared to Populus clones (maximum 2.06 mg Cd.kg?1, 463 mg Zn.kg?1, and 11.8 mg Cu.kg?1). There were no significant differences between clones of individual species. BCs for Cd and Zn were greater than 1 (the highest in willow leaves). BCs values of Cu were very low. These results indicate that Salix is more suitable plant for phytoextraction of Cd and Zn than Populus. The Cu phytoextraction potential of Salix and Populus trees was not confirmed in this experiment due to low soil availability of this element.  相似文献   

19.
An experiment was conducted from 1997 to 2000 on an acid soil in Cameroon to assess the effectiveness of cultivating acid tolerant maize (Zea mays L.) cultivar and the use of organic and inorganic fertilizers as options for the management of soil acidity. The factors investigated were: phosphorus (0 and 60 kg ha?1), dolomitic lime (0 and 2 t ha?1), organic manure (no manure, 4 t ha?1 poultry manure, and 4 t ha?1 of leaves of Senna spectabilis), and maize cultivars (ATP-SR-Y – an acid soil-tolerant, and Tuxpeño sequia – an acid susceptible). On acid soil, maize grain yield of ATP-SR-Y was 61% higher than the grain yield of Tuxpeño sequia. Continuous maize cultivation on acid soil further increased soil acidity, which was manifested by a decrease in pH (0.23 unit), exchangeable Ca (31%) and Mg (36%) and by an increase in exchangeable Al (20%). Yearly application of 60 kg ha?1 of P for 3 years increased soil acidity through increases in exchangeable Al (8%) and H (16%) and a decrease in exchangeable Ca (30%), Mg (11%) and pH (0.07 unit). Lime application increased grain yield of the tolerant (82%) and susceptible (208%) cultivars. The grain yield increases were associated with a mean decrease of 43% in exchangeable Al, and 51% in H, a mean increase of 0.27 unit in pH, 5% in CEC, 154% in exchangeable Ca, and 481% in Mg contents of the soil. Poultry manure was more efficient than leaves of Senna producing 38% higher grain yield. This yield was associated with increases in pH, Ca, Mg and P, and a decrease in Al. The highest mean grain yields were obtained with lime added to poultry manure (4.70 t ha?1) or leaves of Senna (4.72 t ha?1). Grain yield increase was more related to the decrease in exchangeable Al (r = ?0.86 to ?0.95, P<0.01) and increase in Ca (r = 0.78–0.94, P<0.01), than to pH (r = ?0.57 (non-significant) to ?0.58 (P<0.05)). Exchangeable Al was the main factor determining pH (r = ?0.88 to ?0.92, P<0.01). The yield advantage of the acid tolerant cultivar was evident even after correcting for soil acidity. Acid soil-tolerant cultivars are capable of bringing unproductive acid soils into cultivation on the short run. The integration of soil amendments together with acid soil-tolerant cultivar offers a sustainable and comprehensive strategy for the management of acid soils in the tropics.  相似文献   

20.
Cadmium (Cd) and zinc (Zn) phytoavailability and their phytoextraction by Sedum plumbizincicola using different nitrogen fertilizers, nitrification inhibitor (dicyandiamide, DCD) and urease inhibitor (N-(n-Butyl) thiophosphoric triamide, NBPT) were investigated in pot experiments where the soil was contaminated with 0.99 mg kg?1 of Cd and 241 mg kg?1 Zn. The soil solution pH varied between 7.30 and 8.25 during plant growth which was little affected by the type of N fertilizer. The (NH4)2SO4+DCD treatment produced higher NH4+?N concentrations in soil solution than the (NH4)2SO4 and NaNO3 treatment which indicated that DCD addition inhibited the nitrification process. Shoot Cd and Zn concentrations across all treatments showed ranges of 52.9–88.3 and 2691–4276 mg kg?1, respectively. The (NH4)2SO4+DCD treatment produced slightly higher but not significant Cd and Zn concentrations in the xylem sap than the NaNO3 treatment. Plant shoots grown with NaNO3 had higher Cd concentrations than (NH4)2SO4+DCD treatment at 24.0 and 15.4 mg kg?1, respectively. N fertilizer application had no significant effect on shoot dry biomass. Total Cd uptake in the urea+DCD treatment was higher than in the control, urea+NBPT, urea+NBPT+DCD, or urea treatments, by about 17.5, 23.3, 10.7, and 25.1%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号