首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 610 毫秒
1.
Extracellular human granulocyte-macrophage colony stimulating factor (hGM-CSF) expression was studied under the control of the GAP promoter in recombinant Pichia pastoris in a series of continuous culture runs (dilution rates from 0.025 to 0.2 h−1). The inlet feed concentration was also varied and the steady state biomass concentration increased proportionally demonstrating efficient substrate utilization and constancy of the biomass yield coefficient (Yx/s) for a given dilution rate. The specific product formation rate (qP) showed a strong correlation with dilution rates demonstrating growth associated product formation of hGM-CSF. The volumetric product concentration achieved at the highest feed concentration (4×) and a dilution rate of 0.2 h−1 was 82 mg l−1 which was 5-fold higher compared to the continuous culture run with 1× feed concentration at the lowest dilution rate thus translating to a 40 fold increase in the volumetric productivity. The specific product yield (YP/X) increased slightly from 2 to 2.5 mg g−1, with increasing dilution rates, while it remained fairly invariant, for all feed concentrations demonstrating negligible product degradation or feed back inhibition. The robust nature of this expression system would make it easily amenable to scale up for industrial production.  相似文献   

2.
Candida utiilis NRRL Y-900 was grown on pineapple cannery waste as the sole carbon and energy source in a chemostat at dilution rates ranging between 0.05 and 0.65 h−1 to determine the growth kinetics. The cell yield coefficient varied with dilution rate and a maximum value of 0.662 ± 0.002 gx/gcarb was obtained at a dilution rate of 0.4 h−1. At steady state, the concentrations of carbohydrate, reducing sugar, and chemical oxygen demand (COD) appeared to follow Monod kinetics. At maximum specific growth rate (μmax) 0.65 h−1, the saturation constants for carbohydrate, reducing sugar and COD were 0.51 ± 0.02 gcarb/1, 0.046 ± 0.003 grs/1, and 1.036 ± 0.001 gCOD/1, respectively. Maximum biomass productivity (Q x max) 2.8 ± 0.03 gx/1 h was obtained at a dilution rate of 0.5 h−1. At this dilution rate, only 71.0 ± 0.41% COD was removed whereas at a dilution rate of 0.1 h−1, 98.2 ± 0.35% reduction in COD was achieved. At a dilution rate of 0.4 h−1, the optimal yeast productivity and reduction in COD were 2.7 ± 0.13 gp/1 h, and 84.2 ± 0.42%, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Corynebacterium acetoacidophilum RYU3161 was cultivated in al-histidine-limited fed-batch culture. To investigate the effect of cell growth on thel-proline production, 5l fed-batch culture was performed using an exponential feeding rate to obtain the specific growth rates (μ) of 0.04, 0.06, 0.08, and 0.1 h−1. The results show that the highest production ofl-proline was obtained at μ=0.04 h−1. The specificl-proline production rate (Qp) increased proportionally as a function of the specific growth rate, but decreased after it revealed the maximum value at μ=0.08 h−1. Thus, the highest productivity ofl-proline was 1.66 g L−1 h−1 at μ=0.08 h−1. The results show that the production of L-proline inC. acetoacidophilum RYU3161 has mixed growth-associated characteristics.  相似文献   

4.
The effect of phosphate (P i ) concentration on the growth behavior of Saccharomyces cerevisiae strain CEN.PK113-5D in phosphate-limited batch and chemostat cultures was studied. The range of dilution rates used in the present study was 0.08–0.45 h−1. The batch growth of yeast cells followed Monod relationship, but growth of the cells in phosphate-limited chemostat showed change in growth kinetics with increasing dilution rates. The difference in growth kinetics of the yeast cells in phosphate-limited chemostat for dilution rates below and above approximately 0.2 h−1 has been discussed in terms of the batch growth kinetic data and the change in the metabolic activity of the yeast cells. Immunological detection of a C-terminally myc epitope-tagged Pho84 fusion protein indicated derepressive expression of the Pho84 high-affinity P i transporter in the entire range of dilution rates employed in this study. Phosphate transport activity mediated by Pho84 transporter was highest at very low dilution rates, i.e. 0.08–0.1 h−1, corresponding to conditions in which the amount of synthesized Pho84 was at its maximum.  相似文献   

5.
Compared with steady state, oscillation in continuous very-high-gravity ethanol fermentation with Saccharomyces cerevisiae improved process productivity, which was thus introduced for the fermentation system composed of a tank fermentor followed by four-stage packed tubular bioreactors. When the very-high-gravity medium containing 280 g l−1 glucose was fed at the dilution rate of 0.04 h−1, the average ethanol of 15.8% (v/v) and residual glucose of 1.5 g l−1 were achieved under the oscillatory state, with an average ethanol productivity of 2.14 g h−1 l−1. By contrast, only 14.8% (v/v) ethanol was achieved under the steady state at the same dilution rate, and the residual glucose was as high as 17.1 g l−1, with an ethanol productivity of 2.00 g h−1 l−1, indicating a 7% improvement under the oscillatory state. When the fermentation system was operated under the steady state at the dilution rate of 0.027 h−1 to extend the average fermentation time to 88 h from 59 h, the ethanol concentration increased slightly to 15.4% (v/v) and residual glucose decreased to 7.3 g l−1, correspondingly, but the ethanol productivity was decreased drastically to 1.43 g h−1 l−1, indicating a 48% improvement under the oscillatory state at the dilution rate of 0.04 h−1.  相似文献   

6.
A series of continuous cultures was performed to understand the product formation kinetics of recombinant human interferon gamma (rhIFN-γ) in Escherichia coli at different dilution rates ranging from 0.1 to 0.3 h−1 in different media. A T7 promoter-based vector was used for expression of IFN-γ in E. coli BL21 (DE3) cells. The recombinant protein was produced as inclusion bodies, thus allowing a rapid buildup of rhIFN-γ inside the cell, with the specific product yield (Y p/X ) reaching a maximum value of 182 mg g−1 dry cell weight (DCW). In all the media tested, the specific product formation rate (q p ) was found to be strongly correlated with the specific growth rate (μ), demonstrating the growth-associated nature of product formation. The q p values show no significant decline with time postinduction, even though the recombinant protein has been over produced inside the cell. The maximum q p level of 75.5 mg g−1 h−1 was achieved at the first hour of induction at the dilution rate of 0.3 h−1. Also, this correlation between q p and μ was not critically dependent on media composition, which would made it possible to grow cells in defined media in the growth phase and then push up the specific growth rate just before induction by pulse addition of glucose and yeast extract. This would ensure the twin objectives of high biomass and high specific productivities, leading to high volumetric product concentration.  相似文献   

7.
The behavior of Streptomyces peucetius var. caesius N47 was studied in a glucose limited chemostat with a complex cultivation medium. The steady-state study yielded the characteristic constants μ max over 0.10 h−1, Y XS 0.536 g g−1, and mS 0.54 mg g−1 h−1. The product of secondary metabolism, ɛ-rhodomycinone, was produced with characteristics Y PX 12.99 mg g−1 and m P 1.20 mg g−1 h−1. Significant correlations were found for phosphate and glucose consumption with biomass and ɛ-rhodomycinone production. Metabolic flux analysis was conducted to estimate intracellular fluxes at different dilution rates. TCA, PPP, and shikimate pathway fluxes exhibited bigger values with production than with growth. Environmental perturbation experiments with temperature, airflow, and pH changes on a steady-state chemostat implied that an elevation of pH could be the most effective way to shift the cells from growing to producing, as the pH change induced the biggest transient increase to the calculated ɛ-rhodomycinone flux.  相似文献   

8.
The photosynthetic responses of the tropical tree species Acacia nigrescens Oliv. grown at different atmospheric CO2 concentrations—from sub-ambient to super-ambient—have been studied. Light-saturated rates of net photosynthesis (A sat) in A. nigrescens, measured after 120 days exposure, increased significantly from sub-ambient (196 μL L−1) to current ambient (386 μL L−1) CO2 growth conditions but did not increase any further as [CO2] became super-ambient (597 μL L−1). Examination of photosynthetic CO2 response curves, leaf nitrogen content, and leaf thickness showed that this acclimation was most likely caused by reduction in Rubisco activity and a shift towards ribulose-1,5-bisphosphate regeneration-limited photosynthesis, but not a consequence of changes in mesophyll conductance. Also, measurements of the maximum efficiency of PSII and the carotenoid to chlorophyll ratio of leaves indicated that it was unlikely that the pattern of A sat seen was a consequence of growth [CO2] induced stress. Many of the photosynthetic responses examined were not linear with respect to the concentration of CO2 but could be explained by current models of photosynthesis.  相似文献   

9.
Symbiotic dinoflagellates of the species Amphidinium are expected to be pharmaceutically useful microalgae because they produce antitumor macrolides. A microalgae production system with a large number of cells at a high density has been developed for the efficient production of macrolide compounds. In the present study, the effects of culture conditions on the cellular growth rate of dinoflagellates were investigated to determine the optimum culture conditions for obtaining high yields of microalgae. Amphidinium species was cultured under conditions with six temperature levels (21–35°C), six levels of photosynthetic photon flux density (15–70 μmol photons m−2 s−1), three levels of CO2 concentration (0.02–0.1%), and three levels of O2 concentration (0.2–21%). The number of cells cultured in a certain volume of solution was monitored microscopically and the cellular growth rate was expressed as the specific growth rate. The maximum specific growth rate was 0.022 h−1 at a temperature of 26°C and O2 concentration of 5%, and the specific growth rate was saturated at a CO2 concentration of 0.05%, a photosynthetic photon flux density of 35 μmol photons m−2 s−1 and a photoperiod of 12 h day−1 upon increasing each environmental parameter. The results demonstrate that Amphidinium species can multiply efficiently under conditions of relatively low light intensity and low O2 concentration.  相似文献   

10.
Nisin production in continuous cultures of bioengineered Lactococcus lactis strains that incorporate additional immunity and regulation genes was studied. Highest nisin activities were observed at 0.2 h–1 dilution rate and 12.5 g l–1 fructose concentration for all strains. Recombinant strains were able to produce greater amounts of nisin at dilution rates below 0.3 h−1 compared to the control strain. However, this significant difference disappeared at dilution rates of 0.4 and 0.5 h–1. For the strains LL27, LAC338, LAC339, and LAC340, optimum conditions for nisin production were determined to be at 0.29, 0.26, 0.27, and 0.27 h–1 dilution rates and 11.95, 12.01, 11.63, and 12.50 g l–1 fructose concentrations, respectively. The highest nisin productivity, 496 IU ml–1 h–1, was achieved with LAC339. The results of this study suggest that low dilution rates stabilize the high specific nisin productivity of the bioengineered strains in continuous fermentation. Moreover, response surface methodology analysis showed that regulation genes yielded high nisin productivity at wide ranges of dilution rates and fructose concentrations.  相似文献   

11.
Growth space of Lactococcus lactis subsp. lactis IL1403 was studied at constant growth rate using D-stat cultivation technique. Starting from steady state conditions in a chemostat culture (μ = 0.2 h−1), the pH and/or temperature were continuously changed in the range of 5.4–6.4 and 26–34°C, respectively, followed by the return to the initial environmental conditions. Based on substrate consumption and product formation yields and expression changes of 1,920 genes, it was shown that changes of physiological state were not dependent on the direction of movement (from pH 6.3 to 5.4 or from 5.4 to 6.3), showing that quasi steady state values in D-stat corresponded to the steady state values in chemostats. Relative standard deviation of growth characteristics in triplicate D-stat experiments was below 10%. Continuing the experiment and reestablishing initial growth conditions revealed in average 7% difference (hysteresis) in growth characteristics when comparing chemostat steady state cultures prior and after the change of environmental conditions. Similarly, shifts were also seen at gene expression levels. The large amount of quantitatively reliable data obtained in this study provided a new insight into dynamic properties of bacterial physiology, and can be used for describing the growth space of microorganisms by modeling cell metabolism.  相似文献   

12.
Lee S  Kim J  Shin SG  Hwang S 《Biotechnology letters》2008,30(6):1011-1016
The biokinetics of glucose metabolism were evaluated in Aeromonas hydrophila during growth in an anaerobic biosystem. After approx 34 h growth, A. hydrophila metabolized 5,000 mg glucose l−1 into the end-products ethanol, acetate, succinate and formate. The maximum growth rate, μ m, half saturation coefficients, K s, microbial yield coefficient, Y, cell mass decay rate coefficient, k d, and substrate inhibition coefficient, K si were 0.25 ± 0.03 h−1, 118 ± 31 mg glucose l−1, 0.12 μg DNA mg glucose−1, 0.01 h−1, and 3,108 ± 1,152 mg glucose l−1, respectively. These data were used to predict the performance of a continuous growth system with an influent glucose concentration of 5,000 mg l−1. Results of the analysis suggest that A. hydrophila will metabolize glucose at greater than 95% efficiency when hydraulic retention times (HRTs) exceed 7 h, whereas the culture is at risk of washing out at an HRT of 6.7 h.  相似文献   

13.
Kumar P  Nemati M  Hill GA 《Biodegradation》2011,22(6):1087-1093
Combining chemical and biological treatments is a potentially economic approach to remove high concentration of recalcitrant compounds from wastewaters. In the present study, the biodegradation of 1,4-benzoquinone, an intermediate compound formed during phenol oxidation by chlorine dioxide, was investigated using Pseudomonas putida (ATCC 17484) in batch and continuous bioreactors. Batch experiments were conducted to determine the effects of 1,4-benzoquinone concentration and temperature on the microbial activity and biodegradation kinetics. Using the generated data, the maximum specific growth rate and biodegradation rate were determined as 0.94 h−1 and 6.71 mg of 1,4-benzoquinone l−1 h−1. Biodegradation in a continuous bioreactor indicated a linear relationship between substrate loading and biodegradation rates prior to wash out of the cells, with a maximum biodegradation rate of 246 mg l−1 h−1 observed at a loading rate of 275 mg l−1 h−1 (residence time: 1.82 h). Biokinetic parameters were also determined using the steady state substrate and biomass concentrations at various dilution rates and compared to those obtained in batch cultures.  相似文献   

14.
This paper focuses on modelling the growth rate and exopolysaccharides production of Anabaena sp. ATCC 33047, to be used in carbon dioxide removal and biofuels production. For this, the influence of dilution rate, irradiance and aeration rate on the biomass and exopolysaccharides productivity, as well as on the CO2 fixation rate, have been studied. The productivity of the cultures was maximum at the highest irradiance and dilution rate assayed, resulting to 0.5 gbio l−1 day−1 and 0.2 geps l−1 day−1, and the CO2 fixation rate measured was 1.0 gCO2 l−1 day−1. The results showed that although Anabaena sp. was partially photo-inhibited at irradiances higher than 1,300 μE m−2 s−1, its growth rate increases hyperbolically with the average irradiance inside the culture, and so does the specific exopolysaccharides production rate. The latter, on the other hand, decreases under high external irradiances, indicating that the exopolysaccharides metabolism hindered by photo-damage. Mathematical models that consider these phenomena have been proposed. Regarding aeration, the yield of the cultures decreased at rates over 0.5 v/v/min or when shear rates were higher than 60 s−1, demonstrating the existence of thus existence of stress damage by aeration. The behaviour of the cultures has been verified outdoors in a pilot-scale airlift tubular photobioreactor. From this study it is concluded that Anabaena sp. is highly recommended to transform CO2 into valuable products as has been proved capable of metabolizing carbon dioxide at rates of 1.2 gCO2 l−1 day−1 outdoors. The adequacy of the proposed equations is demonstrated, resulting to a useful tool in the design and operation of photobioreactors using this strain.  相似文献   

15.
Summary Pseudomonas putida (ATCC 111 72) was studied in a continuous culture at various dilution rates with asparagine as the sole carbon source and limiting factor. Under the experimental conditions applied, a considerable number of the cells became attached to the fermentor walls and equipment. The viable count of the attached cells was of the same magnitude as those in suspension. The following steady-state characteristics were obtained: The cell-mass (OD620 and dry weight) versus dilution rate (D) had maxima at 0.63 and 1.1 h−1. The corresponding plot of viable count had a minimum at 0.94 h−1 whereafter it reached a maximum at 1.3 h−1. Largest yield coefficient obtained was 0.44 g dry weight/g asparagine (D=1.1 h−1). The productivity of the culture increased with D up to 1.1 h−1, which is far above the D corresponding to the maximum specific growth rate (μmax) of a batch culture (0.59 h−1). The cell mass was not completly washed-out of the fermentor even at a D of 2.2 h−1. The influence of attached growth for the steady-state characteristics, and the significance of the results in relation to chemostate as an instrument for testing environmental factors, are discussed. It is suggested that the attached cells had a significantly higher (μmax) value than the suspended ones.  相似文献   

16.
Changes in oxygen consumption rate and Na+/K+-ATPase activity during early development were studied in the sea urchin Paracentrotus lividus Lam. The oxygen consumption rate increased from 0.12 μmol O2 mg protein−1 h−1 in unfertilized eggs to 0.38 μmol O2 mg protein−1 h−1 25 min after fertilization. Specific activity of the Na+/K+-ATPase was significantly stimulated after fertilization, ranging up to 1.07 μmol Pi h−1 mg protein−1 in the late blastula stage and slightly lower values in the early and late pluteus stages.  相似文献   

17.
Continuous hydrogen gas evolution by self-flocculated cells of Enterobacter aerogenes, a natural isolate HU-101 and its mutant AY-2, was performed in a packed-bed reactor under glucose-limiting conditions in a minimal medium. The flocs that formed during the continuous culture were retained even when the dilution rate was increased to 0.9 h−1. The H2 production rate increased linearly with increases in the dilution rate up to 0.67 h−1, giving maximum H2 production rates of 31 and 58 mmol l−1 h−1 in HU-101 and AY-2 respectively, at a dilution rate of more than 0.67 h−1. The molar H2 yield from glucose in AY-2 was maintained at about 1.1 at dilution rates between 0.08 h−1 and 0.67 h−1, but it decreased rapidly at dilution rates more than 0.8 h−1. Received: 27 August 1997 / Received revision: 11 November 1997 / Accepted: 14 December 1997  相似文献   

18.
The gene (vgb) encoding the hemoglobin (VHb) ofVitreoscilla sp. was cloned intoBurkholderia sp. and the effect of VHb on the growth characteristics of genetically engineeredBurkholderia (YV1) were compared with wild typeBurkholderia (R34) using continuous flow reactors (chemostat) at various dilution rates under aerobic conditions. Batch oxygen uptake rate showed that YV1 has much higher oxygen uptake rate than R34 (i.e. 0.63 mg O2/g biomass/min vs. 1.43 mg O2/g biomass/min for R34 and YV1 respectively at a dilution rate of 1.2 day−1). Monod parameters, maximum growth rate (μmax) and half saturation coefficient (Ks) were found to be 7.03 day−1 and 691 mg/L for R34 respectively, compared to 5.49 day−1 and 404 mg/L for YV1 respectively. At low dilution rates (<2.5 day−1), when the substrate is present in low concentrations, the growth yield was much higher in YV1 (0.52) than in R34 (0.37). Although substrate utilization rates were similar between R34 and YV1, the latter showed much higher oxygen uptake rate than did R34 at all dilution rates. When the stability of VHb was tested on agar plates containing 40 μg/L of kanamycin and 100 μg/L of ampicillin,vgb gene containing VHb plasmid in YV1 was stable over 82 days. When survivability under oxygen limited conditions was tested, R34 survived only for 11 days whereas YV1 survived over 25 days in liquid media; in agar plate experiments, R34 did not survive more than 40 days whereas more than 75% of YV1 survived over 110 days.  相似文献   

19.
Bifidobacterium longum grew at 65 L pilot scale of the membrane bioreactor (MBR), externally fitted with ceramic membrane (0.7 m2). Cell mass at the MBR reached 22.18 g L−1 as dry cell weight in 12 h, which is 8.44 times higher than cell mass attained at the vial culture. The growth rate in the vial culture was μ = 0.385 h and at the batch culture was μ = 1.13 h in the exponential period and μ = 0.31 h−1 in the stationary period. In the fed-batch mode was μ = 1.102 h−1 for 6 h with inoculation and declined to μ = 0.456 h−1 with feeding of feed medium. The growth rate at the MBR was μ = 0.134 h−1. The number of viable cells was 6.01 × 1012 cfu L−1 at the batch culture, but increased to 1.15 × 1014 cfu L−1 at the MBR culture. The specific growth rate of viable cell number (colony-forming units per liter, per hour) improved by 6.01 times from the batch to the MBR culture. The wall shear stress mainly generated by the pump, and the membrane incorporated into the MBR was controlled during the cultivation at the MBR. The viability of B. longum declined to under 10% in the first 2 weeks of the 4-week stability test (40°C) as B. longum was exposed to over wall shear stress 713 Pa, but the viability improved to 30–40% in wall shear stress of 260 Pa or STR culture. The loss in the cell viability can be saved by managing with wall shear stress during the cultivation at the MBR.  相似文献   

20.
Candida cylindracea NRRL Y-17506 was grown to produce extracellular lipase from oleic acid as a carbon source. Through flask cultures, it was found that the optimum initial oleic acid concentration for cell growth was 20 g l−1. However, high initial concentrations of oleic acid up to 50 g l−1 were not inhibitory. The highest extracellular lipase activity obtained in flask culture was 3.0 U ml−1 after 48 h with 5 g l−1 of initial oleic acid concentration. Fed-batch cultures (intermittent and stepwise feeding) were carried out to improve cell concentration and lipase activity. For the intermittent feeding fed-batch culture, the final cell concentration was 52 g l−1 and the extracellular lipase activity was 6.3 U ml−1 at 138.5 h. Stepwise feeding fed-batch cultures were carried out to simulate an exponential feeding and to investigate the effects of specific growth rate (0.02, 0.04 and 0.08 h−1) on cell growth and lipase production. The highest final cell concentration obtained was 90 g l−1 when the set point of specific growth rate (μset) was 0.02 h−1. High specific growth rate (0.04 and 0.08 h−1) decreased extracellular lipase production in the later part of fed-batch cultures due to build-up of the oleic acid oversupplied. The highest extracellular lipase activity was 23.7 U ml−1 when μset was 0.02 h−1, while the highest lipase productivity was 0.31 U ml−1 h−1 at μset of 0.08 h−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号