首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Prostaglandin E (PGE) receptor is coupled to a pertussis toxin-insensitive GTP-binding protein in bovine adrenal medulla, but PGE receptor partially purified from bovine adrenal medulla was functionally reconstituted with Gi into phospholipid vesicles (Negishi, M., Ito, S., Yokohama, H., Hayashi, H., Katada, T., Ui, M., and Hayaishi, O. (1988) J. Biol. Chem. 263, 6893-6900). We demonstrate here that PGE2 inhibited forskolin-induced accumulation of cAMP in cultured bovine chromaffin cells. In plasma membranes prepared from bovine adrenal medulla, PGE2 inhibited forskolin-stimulated adenylate cyclase activity in a GTP-dependent manner. This inhibitory action of PGE2 was abolished by treatment of the membrane with pertussis toxin. Reconstitution of the membranes ADP-ribosylated by pertussis toxin with Gi purified from bovine brain restored the potency of PGE2 to inhibit the adenylate cyclase activity. Inhibition of forskolin-induced cAMP accumulation by PGE2 was also abolished by exposure to the toxin in the cells, indicating that PGE receptors are coupled to Gi. In contrast, PGE2 stimulated the formation of inositol phosphates in chromaffin cells, but this effect was not affected by treatment of the cells with pertussis toxin, suggesting that the PGE receptors are coupled to phosphoinositide metabolism via a pertussis toxin-insensitive G-protein. Both the inhibitory action of cAMP accumulation and stimulation of phosphoinositide metabolism were specific for PGE1 and PGE2, and the Scatchard plot analysis of PGE2 binding to the membrane showed a single high-affinity binding site (Kd = 2 nM). In bovine adrenal chromaffin cells PGE2 enhanced catecholamine release in the presence of ouabain by stimulation of phosphoinositide metabolism (Yokohama, H., Tanaka, T., Ito, S., Negishi, M., Hayashi, H., and Hayaishi, O. (1988) J. Biol. Chem. 263, 1119-1122). We further examined the modulation of catecholamine release by PGE2 through its inhibitory coupling to the adenylate cyclase system. Prior exposure of chromaffin cells to forskolin or dibutyryl-cAMP reduced nicotine-stimulated catecholamine release, and PGE2 attenuated forskolin-induced inhibition of catecholamine release stimulated by nicotine, but not dibutyryl-cAMP-induced inhibition. In the absence of evidence that PGE receptor subtypes exist, these results suggest that the PGE receptor is coupled to two signal transduction systems leading to inhibition of cAMP accumulation via Gi and to production of inositol phosphates via a pertussis toxin-insensitive G-protein, both of which may modulate catecholamine release from bovine chromaffin cells.  相似文献   

2.
In bovine adrenal chromaffin cells, prostaglandin E2 (PGE2) stimulates the formation of inositol phosphates and Ca2+ mobilization through its specific receptor [Yokohama, Tanaka, Ito, Negishi, Hayashi & Hayaishi (1988) J. Biol. Chem. 263, 1119-1122]. Here we show that PGE2-induced phosphoinositide metabolism was blocked by pretreatment with 12-O-tetradecanoylphorbol 13-acetate (TPA). Using intact cells, we also examined the inhibitory effect of TPA on the individual steps of the activation process of phosphoinositide metabolism. The inhibition was observed within 1 min and complete by 10 min after addition of 1 microM-TPA, and half-maximal inhibition by TPA occurred at 20 nM. TPA prevented Ca2+ mobilization induced by PGE2, but not by the Ca2+ ionophore ionomycin. The inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate did not inhibit the formation of inositol phosphates and Ca2+ mobilization by PGE2. TPA treatment affected neither the high-affinity binding of [3H]PGE2 to intact cells and membrane fractions nor the ability of guanosine 5'-[gamma-thio]triphosphate to decrease the binding in membrane fractions. TPA also abolished phosphoinositide metabolism induced by muscarinic-receptor activation. NaF plus AlCl3 and ionomycin caused the accumulation of inositol phosphates, probably by directly activating a GTP-binding protein(s) and phospholipase C respectively; neither accumulation was inhibited by TPA treatment. These results suggest that protein kinase C serves as a feedback regulator for PGE2-induced phosphoinositide metabolism. The site of action of TPA appears to be distal to the coupling of the receptor to GTP-binding protein, but on a component(s) specific to the agonist-induced phosphoinositide metabolism.  相似文献   

3.
We recently reported that prostaglandin E2 (PGE2) stimulated phosphoinositide metabolism in cultured bovine adrenal chromaffin cells and that PGE2 and ouabain, an inhibitor of Na+,K+-ATPase, synergistically induced a gradual secretion of catecholamines from the cells. The effect on catecholamine release was specific for prostaglandin E1 (PGE1) and PGE2 among prostaglandins tested (E1 = E2 greater than F2 alpha greater than D2). The release evoked by PGE2 plus ouabain was greatly reduced in Na+-depleted medium and not observed in Ca2+-free medium. Here we examined the synergistic effect of PGE2 and ouabain on the release with specific reference to ion fluxes. Regardless of the presence of PGE2, ouabain stimulated the release in a dose-dependent manner with half-maximal stimulation at 1 microM, and omission of K+ from the medium, a condition which suppresses the Na+,K+-ATPase activity, also enhanced the release from chromaffin cells exposed to PGE2. Ouabain induced a continuous accumulation of 22Na+ and 45Ca2+, as well as secretion of catecholamines. Although PGE2 itself showed hardly any effects on these cellular responses, PGE2 potentiated all of them induced by ouabain. The time course of catecholamine release was correlated with that of accumulation of 45Ca2+ rather than with that of 22Na+. The release evoked by PGE2 and ouabain was inhibited in a dose-dependent manner by amiloride and the analogue ethylisopropylamiloride, inhibitors of the Na+,H+-antiport, but not by the Na+-channel inhibitor tetrodotoxin nor by the nicotinic receptor antagonist hexamethonium. Ethylisopropylamiloride at 1 microM inhibited PGE2-enhanced accumulation of 22Na+ and 45Ca2+ and release of catecholamine by 40, 83, and 71%, respectively. Activation of the Na+,H+-antiport by elevation of the extracellular pH from 6.6 to 8.0 increased the release of catecholamines linearly. Furthermore, PGE2 induced a sustained increase in intracellular pH by about 0.1 pH unit above the resting value, which was abolished by amiloride or in Na+-free medium. These results taken together indicate that PGE2 activates the Na+,H+-antiport by stimulating phosphoinositide metabolism and that the increase in intracellular Na+ by both inhibition of Na+,K+-ATPase and activation of Na+,H+-antiport may lead to the redistribution of Ca2+, which is the initial trigger of catecholamine release.  相似文献   

4.
We have reported recently that prostaglandin E2 (PGE2) stimulated phosphoinositide metabolism in bovine adrenal chromaffin cells and that PGE2 and ouabain, an inhibitor of Na+, K(+)-ATPase, synergistically induced a gradual secretion of catecholamines from the cells. Here we examined the involvement of a GTP-binding protein(s) in PGE receptor-induced responses by using NaF. In the presence of Ca2+ in the medium, NaF stimulated the formation of all three inositol phosphates, i.e., inositol monophosphate, bisphosphate, and trisphosphate, linearly over 30 min in a dose-dependent manner (15-30 mM). This effect on phosphoinositide metabolism was accompanied by an increase in cytosolic free Ca2+. NaF also induced catecholamine release from chromaffin cells, and the dependency of stimulation of the release on NaF concentration was well correlated with those of NaF-enhanced inositol phosphate formation and increase in cytosolic free Ca2+. Although the effect of NaF on PGE2-induced catecholamine release in the presence of ouabain was additive at concentrations below 20 mM, there was no additive effect at 25 mM NaF. Furthermore, the time course of catecholamine release stimulated by 20 mM NaF in the presence of ouabain was quite similar to that by 1 microM PGE2, and both stimulations were markedly inhibited by amiloride, with half-maximal inhibition at 10 microM. Pretreatment of the cells with pertussis toxin did not prevent, but rather enhanced, PGE2-induced catecholamine release over the range of concentrations examined. These results demonstrate that NaF mimics the effect of PGE2 on catecholamine release from chromaffin cells and suggest that PGE2-evoked catecholamine release may be mediated by the stimulation of phosphoinositide metabolism through a putative GTP-binding protein insensitive to pertussis toxin.  相似文献   

5.
In the presence of ouabain, prostaglandin (PG) E2 stimulated a gradual secretion of catecholamines from cultured bovine adrenal chromaffin cells. PGE2 or ouabain alone evoked a marginal secretory response. The synergism of ouabain was also observed with muscarine. PGE2, like muscarine, induced a concentration-dependent formation of inositol phosphates: rapid rises in inositol trisphosphate and inositol bisphosphate followed by a slower accumulation of inositol monophosphate. This effect on phosphoinositide metabolism was accompanied by an increase in cytosolic free Ca2+. The potency of PGs (PGE2 greater than PGF2 alpha greater than PGD2) to stimulate catecholamine release was well correlated with that to affect phosphoinositide metabolism and that to increase the level of intracellular Ca2+. PGE2 did not stimulate cAMP generation significantly in bovine chromaffin cells. The effect of PGE2 on catecholamine release was mimicked by 12-O-tetradecanoylphorbol 13-acetate and A23187, but not by the cAMP analogue dibutyryl cAMP nor by forskolin. These results indicate that PGE2 may enhance catecholamine release from chromaffin cells by activating protein kinase C in concert with the increment of intracellular Ca2+.  相似文献   

6.
The effects of staurosporine and K-252a, potent inhibitors of protein kinases, and 12-O-tetradecanoylphorbol-13-acetate (TPA) on catecholamine secretion and protein phosphorylation in digitonin-permeabilized bovine adrenal medullary cells were investigated. Staurosporine and K-252a (0.01-10 microM) did not cause large changes in catecholamine secretion evoked by Ca2+ in digitonin-permeabilized cells whereas these compounds strongly prevented TPA-induced enhancement of catecholamine secretion in a concentration-dependent manner. Incubation of digitonin-permeabilized cells with [gamma-32P]ATP resulted in 32Pi incorporation into a large number of proteins, detected as several major bands and darkened background in autoradiograms. Ca2+ and TPA increased phosphorylation of these proteins. Staurosporine and K-252a markedly inhibited Ca(2+)-induced and TPA-induced increases in protein phosphorylation as well as basal (0 Ca2+) protein phosphorylation in digitonin-permeabilized cells. Long term treatment (24 h) of adrenal medullary cells with 1 microM TPA markedly decreased total cellular protein kinase C activity to about 5.3% of control. Pretreatment of the cells with 1 microM TPA strongly inhibited the TPA-induced enhancement of catecholamine secretion whereas it did not cause large changes in total cellular catecholamine amounts, Ca(2+)-induced catecholamine secretion, and cAMP-induced enhancement of catecholamine secretion from digitonin-permeabilized cells. From these results we conclude that protein kinase C plays a modulatory role in catecholamine secretion rather than being essential for initiating catecholamine secretion.  相似文献   

7.
Prostaglandin E2 (PGE2) was found to bind specifically to a 100,000 x g pellet prepared from bovine adrenal medulla. The PGE receptor was associated with a GTP-binding protein (G-protein) and could be covalently cross-linked with this G-protein by dithiobis(succinimidyl propionate) in the 100,000 x g pellet (Negishi, M., Ito, S., Tanaka, T., Yokohama, H., Hayashi, H., Katada, T., Ui, M., and Hayaishi, O. (1987) J. Biol. Chem. 262, 12077-12084). In order to characterize the G-protein associated with the PGE receptor and reconstitute these proteins in phospholipid vesicles, we purified the G-protein to apparent homogeneity from the 100,000 x g pellet. The G-protein served as a substrate of pertussis toxin but differed in its alpha subunit from two known pertussis toxin substrate G-proteins (Gi and Go) purified from bovine brain. The molecular weight of the alpha subunit was 40,000, which is between those of Gi and Go. The purified protein was also distinguished immunologically from Gi and Go and was referred to as Gam. PGE receptor was solubilized by 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid and freed from G-proteins by wheat germ agglutinin column chromatography. Reconstitution of the PGE receptor with pure Gam, Gi, or Go in phospholipid vesicles resulted in a remarkable restoration of [3H]PGE2 binding activity in a GTP-dependent manner. The efficiency of these three G-proteins in this capacity was roughly equal. When pertussis toxin- or N-ethylmaleimide-treated G-proteins, instead of the native ones, were reconstituted into vesicles, the restoration of binding activity was no longer observed. The displacement of [3H]PGE2 binding was specific for PGE1 and PGE2. Furthermore, addition of PGE2 stimulated the GTPase activity of the G-proteins in reconstituted vesicles. These results indicate that the PGE receptor can couple functionally with Gam, Gi, or Go in phospholipid vesicles and suggest that Gam may be involved in signal transduction of the PGE receptor in bovine adrenal medulla.  相似文献   

8.
The effects of phorbol esters, dioctanoylglycerol (DiC8), and micromolar Ca2+ on protein phosphorylation and catecholamine secretion in digitonin-treated chromaffin cells were investigated. [gamma-32P]ATP was used as a substrate for phosphorylation in the permeabilized cells. 12-O-Tetradecanoylphorbol-13-acetate (TPA) enhanced Ca2+-dependent catecholamine secretion from digitonin-permeabilized cells. The enhancement required MgATP. Only those phorbol esters which activate protein kinase C in vitro enhanced both catecholamine secretion and protein phosphorylation. DiC8, which activates protein kinase C in vitro and mimics phorbol ester effects in situ, also enhanced both catecholamine secretion and protein phosphorylation. Preincubation of intact cells with TPA or DiC8 was necessary for maximal effects on both catecholamine secretion and protein phosphorylation in subsequently digitonin-treated chromaffin cells. The TPA-induced enhancement of protein phosphorylation was almost entirely Ca2+-independent, whereas DiC8-induced enhancement of protein phosphorylation was mainly Ca2+-dependent. Micromolar Ca2+ alone also enhanced the phosphorylation of a large number of proteins. Most of the proteins phosphorylated in response to TPA or potentiated by DiC8 in combination with Ca2+ were also phosphorylated by micromolar Ca2+ in the absence of exogenous protein kinase C activators. In intact cells, 1,1-dimethyl-4-phenylpiperazinium (DMPP) induced Ca2+-dependent phosphorylation of at least 17 proteins which were detected by two-dimensional gel electrophoresis. All of the proteins phosphorylated upon incubation with 1,1-dimethyl-4-phenylpiperazinium were phosphorylated upon incubation with micromolar Ca2+ in digitonin-treated cells. These results demonstrate that TPA- or DiC8-enhanced Ca2+-dependent catecholamine secretion is associated with enhanced protein phosphorylation which is probably mediated by protein kinase C and that activation of protein kinase C modulates catecholamine secretion from digitonin-treated chromaffin cells.  相似文献   

9.
In quiescent cultures of Swiss 3T3 cells, prostaglandin E1 (PGE1) known to elevate cAMP increased rapidly cytoplasmic free Ca2+ concentration ([Ca2+]i) as measured with the fluorescent Ca2+ indicator quin2. The primary source of the PGE1-induced elevation of [Ca2+]i was extracellular. Pretreatment of the cells with various doses of 12-O-tetradecanoylphorbol-13-acetate (TPA), a potent protein kinase C-activating phorbol ester, inhibited the PGE1-induced elevation of [Ca2+]i in a dose-dependent manner. Inversely, TPA enhanced slightly the PGE1-induced increase of cAMP. TPA alone did not affect the basal level of [Ca2+]i or cAMP in the absence of PGE1. The inhibitory action of TPA on the PGE1-induced elevation of [Ca2+]i was mimicked by other protein kinase C-activating agents such as phorbol 12,13-dibutyrate and 1-oleoyl-2-acetylglycerol. 4 alpha-Phorbol 12,13-didecanoate known to be inactive for protein kinase C was ineffective in this capacity. Prolonged treatment of the cells with phorbol 12,13-dibutyrate resulted in the down-regulation and disappearance of protein kinase C. In these protein kinase C-deficient cells, PGE1 still elevated [Ca2+]i to the same extent as that in the control cells, but TPA did not inhibit the PGE1-induced elevation of [Ca2+]i. These results strongly suggest that protein kinase C serves as an inhibitor for PGE1-induced Ca2+ influx in Swiss 3T3 cells.  相似文献   

10.
Rat pancreatic islet homogenates display protein kinase C activity. This phospholipid-dependent and calcium-sensitive enzyme is activated by diacylglycerol or the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). In the presence of TPA, the Ka for Ca2+ is close to 5 microM. TPA does not affect phosphoinositide turnover but stimulates [32P]- and [3H]choline-labelling of phosphatidylcholine in intact islets. Exogenous phospholipase C stimulates insulin release, in a sustained and glucose-independent fashion. The secretory response to phospholipase C persists in media deprived of CaCl2. It is proposed that protein kinase C participates in the coupling of stimulus recognition to insulin release evoked by TPA, phospholipase C and, possibly, those secretatogues causing phosphoinositide breakdown in pancreatic islets.  相似文献   

11.
The role of protein kinase C in phospholipase A2 (PLA2) activation in rat basophilic leukemia cells (RBL-2H3) and macrophages was investigated. 12-O-Tetradecanoyl phorbol 13-acetate (TPA) doubled ionomycin-induced PLA2 activity, assessed by [3H]arachidonate release. Protein kinase C inhibitors, staurosporine and K252a (100 nM) or H-7 (15 micrograms/ml) inhibited ionomycin-stimulation of PLA2 activity by 62, 75 and 80%, respectively. Down-regulation of protein kinase C by prolonged treatment with TPA inhibited Ca2(+)-ionophore A23187 or antigen-stimulation of [3H]arachidonate release by 80%. We examined whether the inhibitory effect of dexamethasone (DEX) on PLA2 activity is related to modulation of protein kinase C activity. The 50% inhibition by DEX of ionomycin elevation of [3H]arachidonate release was almost overcome by addition of TPA. The Ca2+ ionophore and antigen-induced increase in [3H]TPA binding to intact RBL cells was not impaired by DEX. However, DEX markedly reduced phosphorylation of several proteins. 1-Oleoyl-2-acetyl-glycerol (OAG) had a sustained stimulatory effect on PLA2 activity in isolated plasma membranes derived from treated bone-marrow intact mouse macrophages, while both DEX and staurosporine reduced elevated PLA2 activity by 68 and 84%, respectively. The results support an essential role for protein kinase C in regulation of PLA2 activity.  相似文献   

12.
Parietal cells are a major source of gastric mucosal prostaglandins in various species. We examined cholinergic stimulation of prostaglandin E2 (PGE2) release from human parietal cells; using activators of the protein kinase C we attempted to get an indirect insight into cellular mechanisms which control PGE2 release. Gastric mucosal specimens were obtained at surgery and the cells were dispersed by collagenase and pronase E. Parietal cells were enriched to 65-80% by a Percoll gradient, and were incubated for 30 min. PGE2 release into the medium (radioimmunoassay) was 74-126 pg/10(6) cells/30 min under basal conditions and was 2.6-fold increased by carbachol (10(-5) and 10(-4) M). Similarly, PGE2 release was stimulated by phospholipase C (20-200 mU/ml, 364% above basal), 1-oleoyl-2-acetyl-sn-glycerol (10(-9)-10(-5) M, 229%), 12-O-tetradecanoylphorbol-13-acetate (TPA; 10(-9)-10(-5) M, 283%) and calcium ionophore A23187 (10(-7)-10(-5) M, 219%). Simultaneous presence of A23187 and TPA synergistically induced stimulation which was slightly higher than the sum of the individual responses. N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide W-7, a putative calmodulin antagonist, inhibited TPA-induced PGE2 release at concentrations regarded specific for blocking calmodulin (IC50 = 1.5 X 0(-6) M). We conclude that in human parietal cells PGE2 is released upon cholinergic stimulation and that phospholipase C and protein kinase C are involved in the control of PGE2 release. We speculate that calmodulin might interact with a protein phosphorylated by protein kinase C to cause PGE2 release.  相似文献   

13.
In order to elucidate the role of guanine-nucleotide-binding proteins (G-proteins) in endothelial prostacyclin (PGI2) production, human umbilical vein endothelial cells, prelabelled with either [3H]inositol or [3H]arachidonic acid, were stimulated with the non-specific G-protein activator aluminium fluoride (AlF4-). AlF4- caused a dose- and time-dependent generation of inositol phosphates, release of arachidonic acid and production of PGI2. The curves for the three events were similar. When the cells were stimulated in low extracellular calcium (60 nM), they released [3H]arachidonic acid and produced PGI2, but depleting the intracellular Ca2+ stores by pretreatment with the Ca2+ ionophore A23187 totally inhibited both events, although the cells still responded when extracellular Ca2+ was added. The Ca2+ ionophore did not inhibit the generation of inositol phosphates in cells maintained at low extracellular Ca2+. Pertussis toxin pretreatment (14 h) altered neither inositol phosphate nor PGI2 production in response to AlF4-. To investigate the functional role of the diacylglycerol/protein kinase C arm of the phosphoinositide system, the cells were pretreated with the protein kinase C activator 12-O-tetradecanoylphorbol 13-acetate (TPA) or the protein kinase C inhibitor 1-(5-isoquinolinylsulphonyl)-2-methylpiperazine (H7). TPA inhibited the AlF4(-)-induced inositol phosphate generation but stimulated both the release of arachidonic acid and the production of PGI2. H7 had opposite effects both on inositol phosphate generation and on PGI2 production. These results suggest that AlF4(-)-induced PGI2 production is mediated by a pertussis-toxin-insensitive G-protein which activates the phosphoinositide second messenger system. This production of PGI2 can be modulated by protein kinase C activation, both at the level of inositol phosphate generation and at the level of arachidonic acid release.  相似文献   

14.
The involvement of Ca2+/phospholipid-dependent protein kinase (protein kinase C, PKC) and cyclic AMP-dependent protein kinase in the K+-evoked release of norepinephrine (NE) was studied using guinea pig brain cortical synaptosomes preloaded with [3H]NE. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a potent activator of PKC, enhanced the K+-evoked release of [3H]NE, in a concentration-dependent manner, but with no effect on the spontaneous outflow and uptake of [3H]NE in the synaptosomes. The apparent affinity of the evoked release for added calcium but not the maximally evoked release was increased by TPA (10(-7) M). Inhibitors of PKC, polymyxin B, and a more potent inhibitor, staurosporine, counteracted the TPA-induced potentiation of the evoked release. Both forskolin and dibutyryl cyclic AMP (DBcAMP) enhanced the evoked release, but reduced the TPA-potentiated NE release. A novel inhibitor of cyclic AMP-dependent protein kinase, KT5720, blocked both the forskolin-induced increase in the evoked release and its inhibition of TPA-induced potentiation in the evoked release, thereby suggesting that forskolin or DBcAMP counteracts the Ca2+-dependent release of NE by activating cyclic AMP-dependent protein kinase. These results suggest that the activation of PKC potentiates the evoked release of NE and that the activation of cyclic AMP-dependent protein kinase acts negatively on the PKC-activated exocytotic neurotransmitter release process in brain synaptosomes of the guinea pig.  相似文献   

15.
In rat pituitary cells in primary culture glucocorticoids specifically inhibit PGE2 and ACTH secretions induced by TPA, a potent phorbol ester derivative (triamcinolone acetonide greater than dexamethasone greater than cortisol greater than or equal to corticosterone). However, while PGE2 secretion can be inhibited up to 80%, ACTH secretion can only be inhibited up to 40%. Similar inhibitory effects are observed with mepacrine, an inhibitor of phospholipase A2 (PLA2). Glucocorticoids having also been described as PLA2-inhibitors, their inhibitory effect on TPA-induced secretions could thus be related to their anti-PLA2 activity. Their inhibitory effect on PLA2 has been attributed to their ability to induce the synthesis of lipocortin, the activity of which could be regulated by activation of kinase C or EGF-receptor kinase. Since in our model, EGF-induced PGE2 secretion is also inhibited by dexamethasone, these results suggest that a lipocortin-like protein could be present in pituitary cells and involved in the effect of TPA and EGF on PGE2, and, at least partly, on ACTH release.  相似文献   

16.
In cloned osteoblast-like MC3T3-E1 cells, PGE2 stimulated both cAMP accumulation and the formation of inositol trisphosphate (IP3) dose dependently. The cAMP accumulation showed the peak value at 5 min and decreased thereafter, whereas the IP3 formation reached a plateau almost within 10 min and sustained it up to 30 min. The effect of PGE2 on cAMP accumulation (EC50 was 80 nM) was more potent than that on IP3 formation (EC50 was 0.8 microM). 12-O-Tetradecanoyl-phorbol-13-acetate (TPA), a protein kinase C (PKC)-activating phorbol ester, reduced the PGE2-induced cAMP accumulation, whereas 4 alpha-phorbol 12,13-didecanoate, a PKC-nonactivating phorbol ester, had little effect on the cAMP accumulation. 1-Oleoyl-2-acetyl-glycerol, a specific activator for PKC, inhibited PGE2-induced cAMP accumulation. TPA had little effect on cAMP accumulation induced by forskolin or NaF, a GTP-binding protein activator. So, the effect of TPA is presumed to be exerted at the point between the PGE2 receptor and Gs. On the other hand, forskolin and dibutyryl cAMP had little effect on the IP3 formation stimulated by PGE2. H-7, a PKC inhibitor, enhanced the PGE2-induced cAMP accumulation in comparison with HA1004, a control for H-7. Our data suggest that PGE2 regulates cAMP production through self-induced activation of PKC. These results strongly suggest that there is an autoregulatory mechanism in PGE2 signaling, and PGE2 modulates osteoblast functions through a cross-talk interaction between cAMP production and phosphoinositide hydrolysis in osteoblast-like cells.  相似文献   

17.
A high concentration of the calcium ionophore A23187 (10 uM) stimulated release of labeled arachidonate and immunoreactive PGE2 from isolated superfused glomeruli. A lower concentration of A23187 (1 uM) or 12-0-tetradecanoyl phorbol-13-acetate (TPA, 0.1 uM), a direct activator of protein kinase C, when added alone was without effect on these parameters. Combined addition of A23187 (1 uM) and TPA (0.1 uM) synergistically stimulated arachidonate release and PGE2 production. 1-(5-isoquinolinyl)-2-methylpiperazine (H-7) a known inhibitor of protein kinase C in other tissues, suppressed increases in arachidonate release and PGE2 production mediated by A23187 (10 uM) or TPA plus A23187 (1 uM). H-7 inhibited while TPA stimulated protein kinase C activity that had been partially purified from soluble fractions of glomerular homogenates. These results support a role for protein kinase C in A23187 mediated arachidonate release.  相似文献   

18.
19.
Recently, we reported that in mouse mastocytoma P-815 cells the cytosol contains some factor(s) which promotes the release of GTP-activated Gi2 alpha from the membrane, and that thrombin induces the translocation of Gi2 alpha from the membrane to the cytosol (Takahashi, S., Negishi, M. and Ichikawa, A. (1991) J. Biol. Chem. 266, 5367-5370). Here we investigated the mechanism underlying the thrombin-induced translocation of Gi2 alpha in mastocytoma cells. Thrombin induced a rapid and transient increase in the intracellular Ca2+ concentration ([Ca2+]i) within 1 min, attenuated pertussis toxin-catalyzed ADP-ribosylation of Gi2 in the membrane, and caused the subsequent translocation of Gi2 alpha. Thrombin induced the translocation of protein kinase C from the cytosol to the membrane, and a protein kinase C inhibitor, staurosporine, completely inhibited the thrombin-induced translocation of Gi2 alpha. When cells were treated with thrombin, the ability of the cytosol to release Gi2 alpha from the membrane in the presence of GTP gamma S markedly increased. This stimulatory effect of thrombin on the ability of the cytosol was mimicked by 12-O-tetradecanoylphorbol 13-acetate (TPA), but not by the Ca2+ ionophore, ionomycin. The thrombin- and TPA-induced potentiation of the ability of the cytosol to release Gi2 alpha was completely abolished by staurosporine. Furthermore, phosphorylation of the cytosol by protein kinase C markedly potentiated the ability of the cytosol to release Gi2 alpha. These results together demonstrate that the thrombin-induced translocation of Gi2 alpha is due to enhancement of the ability of the cytosol to release Gi2 alpha via activation of protein kinase C.  相似文献   

20.
E Deli  Z Kiss  J F Kuo 《FEBS letters》1988,231(2):407-412
Interactions of protein kinase C (PKC) and cAMP-dependent protein kinase (PKA) systems were investigated in HL60 cells. It was found that the differentiating effects of 12-O-tetradecanoylphorbol-13-acetate (TPA) were potentiated by dibutyryl cAMP (dbcAMP) or prostaglandin E2 (PGE2). In addition, dbcAMP or PGE2 inhibited TPA-induced binding of PKC to plasma membrane, leading to decreased protein phosphorylation, and promoted subsequent redistribution of enzyme to the nuclear membrane region. The findings are consistent with the hypothesis that PKC and PKA systems regulate cooperatively the phenotypical differentiation of leukemic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号