首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 654 毫秒
1.
Expansins: expanding importance in plant growth and development   总被引:8,自引:0,他引:8  
Expansins were originally identified as cell wall-loosening proteins. The existence and various roles of expansins have been discovered in many plants. Expansins are encoded by a superfamily of genes comprised of subfamilies that evolved from a common ancestor and encode the α-expansins (EXPAs), the β-expansins (EXPBs), the expansin-like A (EXLA), and expansin-like B (EXLB) proteins. Several expansin-like genes have also been identified in non-plant organisms (e.g. a slime mold, fungi, nematodes, and a mollusk). Localization of EXPA and EXPB in the cell wall was confirmed by immunogold electron microscopy. Studies using transgenic plants provided evidence for a broad range of biological roles of expansins in diverse aspects of plant growth and development, such as cell wall extension, fruit softening, abscission, floral organ development, symbiosis, and the response to environmental stresses.  相似文献   

2.
丛枝菌根共生体中碳、氮代谢及其相互关系   总被引:1,自引:1,他引:0  
丛枝菌根共生体(arbuscular mycorrhiza, AM)是丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)与宿主植物之间形成的互惠共生形式.共生体中的碳、氮交换和代谢影响着宿主植物和共生真菌之间的营养平衡和资源重新分配,在物质和能量循环中发挥着重要作用.宿主植物光合固定的碳输送到真菌内,并且分解和释放真菌所需的生命物质和能量,包括促进孢子萌发、菌丝生长和提高氮等营养元素的吸收;而菌根真菌利用宿主植物提供的碳骨架和能量,发生氮的转化和运输,最终传递给宿主植物供其利用.本文综述了丛枝菌根共生体中碳、氮传输和代谢的主要模式,碳、氮的交互影响和调控机制,以促进丛枝菌根在可持续农业和生态系统中的应用.  相似文献   

3.
Arbuscular mycorrhizal (AM) symbiosis, established between AM fungi (AMF) and roots of higher plants, occurs in most terrestrial ecosystems. It has been well demonstrated that AM symbiosis can improve plant performance under various environmental stresses, including drought stress. However, the molecular basis for the direct involvement of AMF in plant drought tolerance has not yet been established. Most recently, we cloned two functional aquaporin genes, GintAQPF1 and GintAQPF2, from AM fungus Glomus intraradices. By heterologous gene expression in yeast, aquaporin localization, activities and water permeability were examined. Gene expressions during symbiosis in expose to drought stress were also analyzed. Our data strongly supported potential water transport via AMF to host plants. As a complement, here we adopted the monoxenic culture system for AMF, in which carrot roots transformed by Ri-T DNA were cultured with Glomus intraradices in two-compartment Petri dishes, to verify the aquaporin gene functions in assisting AMF survival under polyethylene glycol (PEG) treatment. Our results showed that 25% PEG significantly upregulated the expression of two aquaporin genes, which was in line with the gene functions examined in yeast. We therefore concluded that the aquaporins function similarly in AMF as in yeast subjected to osmotic stress. The study provided further evidence to the direct involvement of AMF in improving plant water relations under drought stresses.  相似文献   

4.
5.
Arbuscular mycorrhizal (AM) symbiosis is an association between obligate biotrophic fungi and more than 80% of land plants. During the pre-symbiotic phase, the host plant releases critical metabolites necessary to trigger fungal growth and root colonization. We describe the isolation of a semipurified fraction from exudates of carrot hairy roots, highly active on germinating spores of Gigaspora gigantea, G. rosea, and G. margarita. This fraction, isolated on the basis of its activity on hyphal branching, contains a root factor (one or several molecules) that stimulates, directly or indirectly, G. gigantea nuclear division. We demonstrate the presence of this active factor in root exudates of all mycotrophic plant species tested (eight species) but not in those of nonhost plant species (four species). We negatively tested the hypothesis that it was a flavonoid or a compound synthesized via the flavonoid pathway. We propose that this root factor, yet to be chemically characterized, is a key plant signal for the development of AM fungi.  相似文献   

6.
The arbuscular mycorrhizal fungi (AMF) enhance the resistance to pathogen infection in host plant. However, it is unclear how the AMF are involved in the systemic acquired resistance of host plant against pathogen. Here, an experiment was carried out to clarify the role of the AMF in soybean’s defense against the infection from pathogen Phytophthora sojae. It was found that the AMF contributed to the resistance of soybean against Phytophthora sojae by the release of hydrogen peroxide and by the accumulation of jasmonic acid in response to pathogenic invasion. Furthermore, the trade of nitrogen (N) from the fungus for carbon from the host was accelerated in the AM symbiosis in the defense reaction, which was indicated by the increased soluble sugar level, NO content and enzyme activities involved in N metabolism in the AM symbiosis.  相似文献   

7.
Summary

Mycorrhizal associations vary widely in structure and function, but the commonest interaction is the Arbuscular Mycorrhizal (AM) symbiosis which forms between the roots of over 80% of all terrestrial plant species and Zygomycete fungi of the Order Glomales. These are obligate symbionts which colonise plant root cells. This symbiosis confers benefits directly to the host plants through the acquisition of phosphate and other mineral nutrients from the soil by the fungus while the fungus receives a carbon source from the host. In addition, the symbiosis may also enhance the plants resistance to biotic and abiotic stresses. The beneficial effects of AM symbioses occur as a result of a complex molecular dialogue between the two symbiotic partners. Identifying the molecules and genes involved in the dialogue is necessary for a greater understanding of the symbiosis. This paper reviews the process of AM fungal colonisation of plant roots and the underlying molecular mechanisms associated with the formation and functioning of an AM symbiosis.  相似文献   

8.
Most plants form root symbioses with arbuscular mycorrhizal (AM) fungi, which provide them with phosphate and other nutrients. High soil phosphate levels are known to affect AM symbiosis negatively, but the underlying mechanisms are not understood. This report describes experimental conditions which triggered a novel mycorrhizal phenotype under high phosphate supply: the interaction between pea and two different AM fungi was almost completely abolished at a very early stage, prior to the formation of hyphopodia. As demonstrated by split-root experiments, down-regulation of AM symbiosis occurred at least partly in response to plant-derived signals. Early signalling events were examined with a focus on strigolactones, compounds which stimulate pre-symbiotic fungal growth and metabolism. Strigolactones were also recently identified as novel plant hormones contributing to the control of shoot branching. Root exudates of plants grown under high phosphate lost their ability to stimulate AM fungi and lacked strigolactones. In addition, a systemic down-regulation of strigolactone release by high phosphate supply was demonstrated using split-root systems. Nevertheless, supplementation with exogenous strigolactones failed to restore root colonization under high phosphate. This observation does not exclude a contribution of strigolactones to the regulation of AM symbiosis by phosphate, but indicates that they are not the only factor involved. Together, the results suggest the existence of additional early signals that may control the differentiation of hyphopodia.  相似文献   

9.
The arbuscular mycorrhizal (AM) symbiosis is widespread throughout the plant kingdom and important for plant nutrition and ecosystem functioning. Nonetheless, most terrestrial ecosystems also contain a considerable number of non‐mycorrhizal plants. The interaction of such non‐host plants with AM fungi (AMF) is still poorly understood. Here, in three complementary experiments, we investigated whether the non‐mycorrhizal plant Arabidopsis thaliana, the model organism for plant molecular biology and genetics, interacts with AMF. We grew A. thaliana alone or together with a mycorrhizal host species (either Trifolium pratense or Lolium multiflorum) in the presence or absence of the AMF Rhizophagus irregularis. Plants were grown in a dual‐compartment system with a hyphal mesh separating roots of A. thaliana from roots of the host species, avoiding direct root competition. The host plants in the system ensured the presence of an active AM fungal network. AM fungal networks caused growth depressions in A. thaliana of more than 50% which were not observed in the absence of host plants. Microscopy analyses revealed that R. irregularis supported by a host plant was capable of infecting A. thaliana root tissues (up to 43% of root length colonized), but no arbuscules were observed. The results reveal high susceptibility of A. thaliana to R. irregularis, suggesting that A. thaliana is a suitable model plant to study non‐host/AMF interactions and the biological basis of AM incompatibility.  相似文献   

10.
Arbuscular mycorrhizal (AM) symbiosis alleviates drought stress in plants. However, the intimate mechanisms involved, as well as its effect on the production of signalling molecules associated with the host plant–AM fungus interaction remains largely unknown. In the present work, the effects of drought on lettuce and tomato plant performance and hormone levels were investigated in non‐AM and AM plants. Three different water regimes were applied, and their effects were analysed over time. AM plants showed an improved growth rate and efficiency of photosystem II than non‐AM plants under drought from very early stages of plant colonization. The levels of the phytohormone abscisic acid, as well as the expression of the corresponding marker genes, were influenced by drought stress in non‐AM and AM plants. The levels of strigolactones and the expression of corresponding marker genes were affected by both AM symbiosis and drought. The results suggest that AM symbiosis alleviates drought stress by altering the hormonal profiles and affecting plant physiology in the host plant. In addition, a correlation between AM root colonization, strigolactone levels and drought severity is shown, suggesting that under these unfavourable conditions, plants might increase strigolactone production in order to promote symbiosis establishment to cope with the stress.  相似文献   

11.
12.
Arbuscular mycorrhiza: the mother of plant root endosymbioses   总被引:9,自引:0,他引:9  
Arbuscular mycorrhiza (AM), a symbiosis between plants and members of an ancient phylum of fungi, the Glomeromycota, improves the supply of water and nutrients, such as phosphate and nitrogen, to the host plant. In return, up to 20% of plant-fixed carbon is transferred to the fungus. Nutrient transport occurs through symbiotic structures inside plant root cells known as arbuscules. AM development is accompanied by an exchange of signalling molecules between the symbionts. A novel class of plant hormones known as strigolactones are exuded by the plant roots. On the one hand, strigolactones stimulate fungal metabolism and branching. On the other hand, they also trigger seed germination of parasitic plants. Fungi release signalling molecules, in the form of 'Myc factors' that trigger symbiotic root responses. Plant genes required for AM development have been characterized. During evolution, the genetic programme for AM has been recruited for other plant root symbioses: functional adaptation of a plant receptor kinase that is essential for AM symbiosis paved the way for nitrogen-fixing bacteria to form intracellular symbioses with plant cells.  相似文献   

13.
Song F Q  Song G  Dong A R  Kong X S 《农业工程》2011,31(6):322-327
Arbuscular mycorrhizal (AM) fungi colonize the roots of over 80% of terrestrial plant species, forming mutually beneficial symbioses. During the colonization process, symbiotic partners recognize each other, and undergo observable morphological and physiological changes; indicating that symbiosis formation involves multiple factors that are finely regulated. Sometimes host plants generate a transient, weak, defense response. This response and its down-regulation play a very important role in the development of AM symbioses. Although AM fungi can infect a wide range of host root tissues, which host defense may play a crucial role is hypothesized from the fact that hyphal expansion is only observed in the root cortex.
We discuss five defense mechanisms. (1) The degradation of exogenous elicitors. The host’s weak defense response may be due to the degradation of the exogenous elicitor chitin, or the prevention of release of an endogenous inductor from the plant cell wall. (2) The inactivation of defense signal molecules. Some defense signal molecules such as hydrogen peroxidase, salicylic acid (SA), and jasmonic acid (JA), are inactivated in host plants. This helps to avoid the turn-on of defense-related genes and facilitate mycorrhizal formation. (3) The regulation of plant hormones and plant photosynthates. Plant hormone levels and plant photosynthate metabolism both change during AM colonization. These mechanisms need further exploration. (4) Changes in levels of phosphorous (P), and (iso)flavonoids. High P levels can induce some defense genes to express hydrogen peroxidase, chitinase, and glucanase. These gene products can repress colonization by AM fungi. The plant defense response regulatory effect for different (iso)flavonoids varies, and their levels are regulated by P. (5) The suppressed expression of symbiotic genes. Some symbiosis-related genes inhibit plant defense responses, but it is still unclear which mechanisms underlie gene regulation. We provide here a theoretical basis for research into AM symbiosis that may promote study of host plant resistance and the mechanisms of symbiosis formation.
We provide a deeper insight into the signal transduction pathways of mycorrhization that will aid understanding and analysis of plant defense mechanisms in the AM context. The on-going development of genome sequencing technology will contribute greatly to the detailed study of symbiosis-related genes, and pathogenesis-related protein genes. These related genes may be induced to express corresponding proteins, be repressed, postpone expression or even shutdown, or both may work together to form symbioses. Elucidation of these features will help us understand the roles that plant defenses play in mycorrhizal formation; providing an unprecedented opportunity for research into mycorrhizal molecular biology and the interaction of symbiotic partners, and allowing the underlying mechanisms to be gradually uncovered.  相似文献   

14.
Arbuscular mycorrhiza (AM) are mutualistic interactions formed between soil fungi and plant roots. AM symbiosis is a fundamental and widespread trait in plants with the potential to sustainably enhance future crop yields. However, improving AM fungal association in crop species requires a fundamental understanding of host colonisation dynamics across varying agronomic and ecological contexts. To this end, we demonstrate the use of betalain pigments as in vivo visual markers for the occurrence and distribution of AM fungal colonisation by Rhizophagus irregularis in Medicago truncatula and Nicotiana benthamiana roots. Using established and novel AM-responsive promoters, we assembled multigene reporter constructs that enable the AM-controlled expression of the core betalain synthesis genes. We show that betalain colouration is specifically induced in root tissues and cells where fungal colonisation has occurred. In a rhizotron setup, we also demonstrate that betalain staining allows for the noninvasive tracing of fungal colonisation along the root system over time. We present MycoRed, a useful innovative method that will expand and complement currently used fungal visualisation techniques to advance knowledge in the field of AM symbiosis.

Arbuscular mycorrhiza are mutualistic interactions formed between soil fungi and plant roots. This study presents the MycoRed system, which uses red plant pigments derived from beetroot to reveal how fungi establish symbiosis with living legume and wild tobacco roots.  相似文献   

15.
Individual plants typically interact with multiple mutualists and enemies simultaneously. Plant roots encounter both arbuscular mycorrhizal (AM) and dark septate endophytic (DSE) fungi, while the leaves are exposed to herbivores. AMF are usually beneficial symbionts, while the functional role of DSE is largely unknown. Leaf herbivory may have a negative effect on root symbiotic fungi due to decreased carbon availability. However, evidence for this is ambiguous and no inoculation-based experiment on joint effects of herbivory on AM and DSE has been done to date. We investigated how artificial defoliation impacts root colonization by AM (Glomus intraradices) and DSE (Phialocephala fortinii) fungi and growth of Medicago sativa host in a factorial laboratory experiment. Defoliation affected fungi differentially, causing a decrease in arbuscular colonization and a slight increase in DSE-type colonization. However, the presence of one fungal species had no effect on colonization by the other or on plant growth. Defoliation reduced plant biomass, with this effect independent of the fungal treatments. Inoculation by either fungal species reduced root/shoot ratios, with this effect independent of the defoliation treatments. These results suggest AM colonization is limited by host carbon availability, while DSE may benefit from root dieback or exudation associated with defoliation. Reductions in root allocation associated with fungal inoculation combined with a lack of effect of fungi on plant biomass suggest DSE and AMF may be functional equivalent to the plant within this study. Combined, our results indicate different controls of colonization, but no apparent functional consequences between AM and DSE association in plant roots in this experimental setup.  相似文献   

16.
17.
18.
丛枝菌根(AM)生物技术在现代农业体系中的生态意义   总被引:19,自引:5,他引:14  
菌根是植物根系与特定的土壤真菌形成的共生体,有利于生态系统中养分循环,协助植物抵御不良环境胁迫.自然条件下,大多数植物表现一定的菌根依赖性,在植株根系发育过程中如能与适宜的菌根真菌形成良好的菌根结构,可提高产量,改善品质,其中丛枝菌根是最普遍的类型.丛枝菌根帮助植物抵御不良环境胁迫及病虫害,促进植物健康生长,可减少化学肥料、杀虫剂施用量,以减少对环境、生态不利的化学物质施用量.丛枝菌根共生体可加速根系生长,提高对移动性低的无机离子吸收,加速养分循环利用,增强植物对不良胁迫(生物与非生物)因素的耐受力,形成良好的土壤结构,提高植物群体的多样性.文章综述了丛枝菌根真菌生态特征,丛枝菌根对寄主植物的影响,丛枝菌根生物技术应用于农业体系的生态意义及其应用潜力.  相似文献   

19.
20.
The effect of the arbuscular mycorrhizal symbiosis (AM) varies in plant cultivars. In the present study, we tested whether wild-type, old and modern tomato cultivars differ in the parameters of the AM interaction. Moreover, the bioprotective effect of AM against the soilborne tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol) was tested in the different cultivars. Ten tomato cultivars were inoculated with the arbuscular mycorrhizal fungus (AMF) Glomus mosseae alone or in combination with Fol. At the end of the experiment, AM root colonization, Fusarium infection, and the plant fresh weight was determined. The tomato cultivars differed in their susceptibility to AMF and Fol, but these differences were not cultivar age dependent. In all the cultivars affected by Fol, mycorrhization showed a bioprotective effect. Independent of the cultivar age, tomato cultivars differ in their susceptibility to AMF and Fol and the bioprotective effect of mycorrhization, indicating that the cultivar age does not affect the AM parameters tested in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号