首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Agriculture intensification has drastically altered farmland mosaics, while semi-natural grasslands have been considerably reduced and fragmented. Bird declines in northern temperate latitudes are attributed to habitat loss and degradation in farmed landscapes. Conversely, landscape-modification effects on grassland/farmland bird communities are less studied in the South American temperate grasslands. We investigated how bird communities were influenced by landscape characteristics in the Rolling Pampa (Argentina). We sampled bird communities in 356 landscapes of 1-km radius that varied in cover and configuration of pastureland, flooding grassland and cropland. Using generalized linear models, we explored the relationship between both bird species richness and abundance, and landscape structure. Analyses were carried out for all species, and open-habitat, grassland and aquatic species. Pasture area was far the most important factor, followed by landscape composition, in predicting species richness and abundance, irrespective of specific habitat preferences, followed by partially-flooded grassland cover and its mean shape index. Grassland fragmentation did not affect species richness or abundance. When comparing the effects of landscape variables on bird richness and abundance (using mean model coefficients), pasture and grassland area effects were on average more than four times greater than those of compositional heterogeneity, and about ten times greater than shape effects. To conserve species-rich bird communities persisting in Rolling Pampa farmland, we recommend the preservation of pasture and grassland habitats, irrespective of their fragmentation level, in intensively managed farmland mosaics.  相似文献   

2.
ABSTRACT Conservation grasslands can provide valuable habitat resource for breeding songbirds, but their value for wintering raptors has received little attention. We hypothesized that increased availability of grassland habitat through the Conservation Reserve Enhancement Program (CREP) has resulted in an increase or redistribution in numbers of four species of raptors in Pennsylvania since 2001. We tested this by analyzing winter raptor counts from volunteer surveys, conducted from 2001 to 2008, for Red‐tailed Hawks (Buteo jamaicensis), Rough‐legged Hawks (Buteo lagopus), Northern Harriers (Circus cyaneus), and American Kestrels (Falco sparverius). During that period, numbers of wintering Northern Harriers increased by more than 20% per year. Log‐linear Poisson regression models show that all four species increased in the region of Pennsylvania that had the most and longest‐established conservation grasslands. At the county scale (N= 67), Bayesian spatial models showed that spatial and temporal population trends of all four species were positively correlated with the amount of conservation grassland. This relationship was particularly strong for Northern Harriers, with numbers predicted to increase by 35.7% per year for each additional 1% of farmland enrolled in CREP. Our results suggest that conservation grasslands are likely the primary cause of the increase in numbers of wintering Northern Harriers in Pennsylvania since 2001.  相似文献   

3.
Increased production of bioenergy crops in North America is projected to exacerbate already heavy demands upon existing agricultural landscapes with potential to impact biodiversity negatively. Grassland specialist birds are an imperilled avifauna for which perennial-based, next-generation agroenergy feedstocks may provide suitable habitat. We take a multi-scaled spatial approach to evaluate the ability of two candidate second-generation agroenergy feedstocks (switchgrass, Panicum virgatum, and mixed grass–forb plantings) to act as spring migratory stopover habitat for birds. In total, we detected 35 bird species in mixed grass–forb plantings and switchgrass plantings, including grassland specialists and species of state and national conservation concern (e.g., Henslow’s Sparrow, Ammodramus henslowii). Some evidence indicated that patches with higher arthropod food availability attracted a greater diversity of migrant bird species, but species richness, total bird abundance, and the abundance of grassland specialist species were similar in fields planted with either feedstock. Species richness per unit area (species density) was relatively higher in switchgrass fields. The percent land cover of forest in landscapes surrounding study fields was negatively associated with bird species richness and species density. Habitat patch size and within-patch vegetation structure were unimportant in predicting the diversity or abundance of spring en route bird assemblages. Our results demonstrate that both switchgrass and mixed grass–forb plantings can attract diverse assemblages of migrant birds. As such, industrialized production of these feedstocks as agroenergy crops has the potential to provide a source of en route habitat for birds, particularly where fields are located in relatively unforested landscapes. Because industrialization of cellulosic biomass production will favor as yet unknown harvest and management regimes, predicting the ultimate value of perennial-based biomass plantings for spring migrants remains difficult.  相似文献   

4.
Importance of patch scale vs landscape scale on selected forest birds   总被引:8,自引:0,他引:8  
The management and protection of natural areas have primarily occurred in isolation from surrounding land management. The structure of surrounding land cover, however, may be important to the abundance and reproductive success of birds within a habitat patch. We investigated the relative importance of forest patch area, within patch habitat and surrounding landscape forest cover on the abundance of three Neotropical migrant bird species thought to be area-sensitive (ovenbird [ Seiurus aurocapillus ], wood thrush [ Hylocichla mustelina ] and red-eyed vireo [ Vireo olivaceus ]), and on pairing success of the ovenbird. We selected 31 isolated forest patches of differing sizes, and three 80-ha plots in continuous forest each centered within non-overlapping 200-ha landscapes, such that patch area and landscape forest cover were uncorrelated among landscapes. Each study plot was surveyed to estimate abundances of territorial males and ovenbird pairing success. Landscape forest cover ( p <0.05) explained the most variation in ovenbird abundance, while percent deciduous forest cover within patches ( p <0.05) and patch size ( p <0.05) explained the most variation in red-eyed vireo and wood thrush abundance, respectively. Patch size was a significant ( p <0.05) predictor of abundance for all three study species; however, density for all species decreased significantly ( p <0.05) with patch size. Ovenbird pairing success was higher in continuous forest plots than in forest patches ( p =0.018). This study's findings suggest that the relative importance of within patch characteristics, patch size and landscape forest cover varies for different bird species, and that conservation efforts would benefit from the inclusion of all three factors.  相似文献   

5.
Å. Berg 《Bird Study》2013,60(2):153-165
CapsuleThe amount of forest (at local and landscape scales) and occurrence of residual habitats at the local scale are shown to be the major factors influencing bird community composition in farmland–forest landscapes in central Sweden.

Aims To investigate the importance of local habitat and landscape structure for breeding birds in farmland–forest landscapes in central Sweden.

Methods Breeding birds were censused at 292 points. A detailed habitat mapping was made within 300 m of the points. Within a 300–600 m radius only two major habitats (forests and arable fields) were identified.

Results Cluster analyses of bird communities identified three site types that also differed in habitat composition: (i) partially forested sites in forested landscapes; (ii) heterogeneous sites with residual habitats in mosaic landscapes; and (iii) field-dominated farmland sites in open landscapes. A total of 19 of 25 farmland bird species (restricted to farmland or using both farmland and forest) had the highest abundance in farmland sites with mosaics of forest and farmland, while only six farmland species had the highest abundance in field-dominated sites. The bird community changed from being dominated by farmland species to being dominated by forest species (common in forest landscapes without farmland) at small proportions (10–20%) of forest at the local scale. A major difference in habitat composition between heterogeneous and field-dominated sites was the occurrence of different residual habitats (e.g. shrubby areas and seminatural grasslands). These habitats seemed to influence bird community composition more than land-use, despite covering <10% of the area. Seminatural grasslands were important for bird community composition and species-richness, but grazing seemed to be less important. Among different land-use types, cereal crops were the least preferred fields. Set-asides with tall vegetation and short rotation coppices were positively associated with species-richness of farmland birds.

Conclusion In general, the composition of the landscape was important for bird community composition, although amount and distribution of forests, occurrence of residual habitats and land-use of fields at the local scale had the strongest influence on bird community composition. The possible implications of these patterns for managing farmland–forest landscapes are discussed.  相似文献   

6.
HUW LLOYD 《Ibis》2008,150(4):735-745
Habitat restoration strategies for fragmented high Andean forest landscapes must consider the influence of within‐patch habitat quality on bird abundance. I examined vegetation and bird abundance at three locations within a highly fragmented Polylepis forest landscape in the Cordillera Vilcanota, southern Peru. Across the landscape, there was significant variation in the vegetation structure of Polylepis forest patches of different size categories, especially in terms of tree girth, tree height, tree density, and canopy vegetation structure. Principal Component Analysis extracted five factors of habitat quality, which together accounted for 74.2% of the variability within 15 habitat variables. Polylepis bird species differed in their responses to habitat quality but, overall, variation in Polylepis bird abundance was not fully captured by the range of habitat quality variables. Tall, dense vegetation cover was clearly important for 11 conservation‐important species, a high density of large trees was important for 10 species and primary forest ground cover was important for eight species. Habitat quality exhibited no significant influence on the abundance of only one species –Asthenes urubambensis. The abundance of seven species was associated with lower elevation forest, but only one species was associated with higher elevation forest. Management of habitat quality in large and medium remnant forest patches throughout the Cordillera Vilcanota, particularly in the 3800–4200 m elevation range, will be a cornerstone in ensuring the persistence of the majority of conservation‐important bird species populations.  相似文献   

7.
Habitat use by seed-eating birds: a scale-dependent approach   总被引:2,自引:0,他引:2  
The seedbank in arable farmland represents an important foraging resource for birds, particularly in grassland landscapes where alternative foraging opportunities may be scarce. We used a stepwise approach to examine the importance of seed food resources for farmland birds in winter. First, results from a large-scale experiment in which seed resources were manipulated to test the notion that birds aggregate at food resources, subject to a minimum threshold level. Secondly, a multiscale approach was used to characterize habitat use at a landscape scale and how this may inform agri-environment implementation. Overall seed resources declined sharply over the winter and were relatively low in most arable fields. Large-scale declines in the arable seedbank mean that much habitat may not be of sufficient quality to support foraging bird populations through a winter. At a landscape scale, extensive analyses of breeding season abundance show that bird abundance is most influenced by arable (i.e. seed-rich) habitat in grassland landscapes. The scale at which birds respond to habitat differs between species, and is related to the extent of between-season movements. Implementation of agri-environment schemes will need to consider both the quality of habitat and the context in which it is provided if recent declines in farmland bird populations are to be reversed.  相似文献   

8.
One response to biodiversity decline is the definition of ecological networks that extend beyond protected areas and promote connectivity in human-dominated landscapes. In farmland, landscape ecological research has focused more on wooded than open habitat networks. In our study, we assessed the influence of permanent grassland connectivity, described by grassland amount and spatial configuration, on grassland biodiversity. We selected permanent grasslands in livestock farming areas of north-western France, which were sampled for plants, carabids and birds. At two spatial scales we tested the effects of amount and configuration of grasslands, wooded habitats and crops on richness and abundance of total assemblages and species ecological groups. Grassland connectivity had no significant effects on total richness or abundance of any taxonomic group, regardless of habitat affinity or dispersal ability. The amount of wooded habitat and length of wooded edges at the 200 m scale positively influenced forest and generalist animal groups as well as grassland plant species, in particular animal-dispersed species. However, for animal groups such as open habitat carabids or farmland bird specialists, the same wooded habitats negatively influenced richness and abundance at the 500 m scale. The scale and direction of biodiversity responses to landscape context were therefore similar among taxonomic groups, but opposite for habitat affinity groups. We conclude that while grassland connectivity is unlikely to contribute positively to biodiversity, increasing or maintaining wooded elements near grasslands would be a worthwhile conservation goal. However, the requirements of open farmland animal species groups must be considered, for which such action may be deleterious.  相似文献   

9.
The Conservation Reserve Program (CRP) is a primary tool for restoring grassland in the United States, in part as wildlife habitat, which has benefited declining grassland bird populations. Among potential mid-contract management practices used to maintain early-successional CRP grasslands, cattle grazing had been prohibited and is currently disincentivized during the primary nesting season for birds (much of the growing season), despite the important role that large herbivores historically played in structuring grassland ecosystems. Conservative grazing of CRP grasslands could increase spatial heterogeneity in vegetation structure and plant diversity, potentially supporting higher densities of some grassland bird species and higher bird diversity. Our objective was to determine the effect of experimental cattle grazing on species-specific relative abundance and occupancy, species diversity, and community dissimilarity of grassland birds on CRP grasslands across the longitudinal extent of Kansas, USA (a 63.5-cm precipitation gradient) during the 2017–2019 avian breeding seasons. Fifty-three of 108 fields were grazed by cattle during the growing seasons of 2017 and 2018 and all fields were rested from grazing in 2019. For all analyses, we examined separate model sets for semiarid western versus more mesic eastern Kansas. Using data from line transect surveys, we modeled relative abundances of 5 songbird species: grasshopper sparrow (Ammodramus savannarum), dickcissel (Spiza americana), eastern meadowlark (Sturnella magna), western meadowlark (Sturnella neglecta), and brown-headed cowbird (Molothrus ater). Grazing had delayed yet positive effects on abundances of grasshopper sparrow in western Kansas, and eastern meadowlark in eastern Kansas, but negative effects on dickcissel abundance in western Kansas and especially on burned fields in eastern Kansas. Somewhat counterintuitively, brown-headed cowbirds in western Kansas were more abundant on ungrazed versus grazed fields in the years after grazing began. In addition, we modeled multi-season occupancy of 3 gamebird species (ring-necked pheasant [Phasianus colcicus], northern bobwhite [Colinus virginianus], mourning dove [Zenaida macroura]) and Henslow's sparrow (Centronyx henslowii); grazing did not affect occupancy of these species. In eastern Kansas, species diversity was highest in grazed, unburned fields. In western Kansas, bird communities in grazed and ungrazed fields were dissimilar, as determined from multivariate analysis. Though regionally variable, conservative stocking of cattle on CRP grasslands during the nesting season as a mid-contract management tool might increase bird species diversity by restructuring habitat that accommodates a greater variety of species and decreasing abundances of species associated with taller, denser stands of vegetation.  相似文献   

10.
Of 6 million ha of prairie that once covered northern and western Missouri, <36,500 ha remain, with planted, managed, and restored grasslands comprising most contemporary grasslands. Most grasslands are used as pasture or hayfields. Native grasses largely have been replaced by fescue (Festuca spp.) on most private lands (almost 7 million ha). Previously cropped fields set aside under the Conservation Reserve Program (CRP) varied from a mix of cool-season grasses and forbs, or mix of native warm-season grasses and forbs, to simple tall-grass monocultures. We used generalized linear mixed models and distance sampling to assess abundance of 8 species of breeding grassland birds on 6 grassland types commonly associated with farm practices in Missouri and located in landscapes managed for grassland-bird conservation. We selected Bird Conservation Areas (BCAs) for their high percentage of grasslands and grassland-bird species, and for <5% forest cover. We used an information-theoretic approach to assess the relationship between bird abundance and 6 grassland types, 3 measures of vegetative structure, and 2 landscape variables (% grassland and edge density within a 1-km radius). We found support for all 3 levels of model parameters, although there was less support for landscape than vegetation structure effects likely because we studied high-percentage-grassland landscapes (BCAs). Henslow's sparrow (Ammodramus henslowii) counts increased with greater percentage of grassland, vegetation height-density, litter depth, and shrub cover and lower edge density. Henslow's sparrow counts were greatest in hayed native prairie. Dickcissel (Spiza americana) counts increased with greater vegetation height-density and were greatest in planted CRP grasslands. Grasshopper sparrow (A. savannarum) counts increased with lower vegetation height, litter depth, and shrub cover. Based on distance modeling, breeding densities of Henslow's sparrow, dickcissel, and grasshopper sparrow in the 6 grassland types ranged 0.9–2.6, 1.4–3.2, and 0.1–1.5 birds/ha, respectively. We suggest different grassland types and structures (vegetation height, litter depth, shrub cover) are needed to support priority grassland-bird species in Missouri. © 2011 The Wildlife Society.  相似文献   

11.
12.
Loss and degradation of grasslands in the Great Plains region have resulted in major declines in abundance of grassland bird species. To ensure future viability of grassland bird populations, it is crucial to evaluate specific effects of environmental factors among species to determine drivers of population decline and develop effective conservation strategies. We used threshold models to quantify the effects of land cover and weather changes in "lesser prairie‐chicken" and "greater prairie‐chicken" (Tympanuchus pallidicinctus and T. cupido, respectively), northern bobwhites (Colinus virginianus), and ring‐necked pheasants (Phasianus colchicus). We demonstrated a novel approach for estimating landscape conditions needed to optimize abundance across multiple species at a variety of spatial scales. Abundance of all four species was highest following wet summers and dry winters. Prairie chicken and ring‐necked pheasant abundance was highest following cool winters, while northern bobwhite abundance was highest following warm winters. Greater prairie chicken and northern bobwhite abundance was also highest following cooler summers. Optimal abundance of each species occurred in landscapes that represented a grassland and cropland mosaic, though prairie chicken abundance was optimized in landscapes with more grassland and less edge habitat than northern bobwhites and ring‐necked pheasants. Because these effects differed among species, managing for an optimal landscape for multiple species may not be the optimal scenario for any one species.  相似文献   

13.
Plebejus argyrognomon is one of the grassland‐dwelling butterflies undergoing rapid decline in recent decades. Grassland habitats for butterflies are generally threatened by fragmentation and invasive species, hence are among the most vulnerable ecosystems. We studied the seasonal abundance of P. argyrognomon at habitat patches along the banks of the Kinugawa River in eastern Japan, to identify environmental factors suitable for population persistence of this species, including habitat patch connectivity. Results showed that the patch's host plant cover had a positive effect on abundance in all three seasons, while the shading of the host plants by surrounding non‐host plants and nearby forested area showed negative effects. Additionally, habitat patch connectivity and nectar richness could be considered as positive factors in autumn and summer, respectively. Analysis of habitat connectivity also showed that the Kinugawa River did not appear to act as a dispersal barrier for P. argyrognomon. Our findings emphasize the importance of understanding environmental factors that may vary among seasons, and such understanding could contribute to habitat management of multivoltine butterflies in fragmented landscapes.  相似文献   

14.
Grassland birds are in steep decline, with population declines reported in 74% of North American grassland species in the past 50 years. Declines are particularly severe in the eastern United States where they are influenced by habitat loss and alteration due to urbanization, forest regrowth, and agricultural intensification. The United States National Park Service maintains civil war battlefields in the eastern United States as historical and cultural parks that may also provide habitat refuge for grassland birds within an increasingly urbanized matrix. To assess the conservation importance of battlefield parks and the role of park management in sustaining grassland birds, we surveyed for 2 declining grassland-breeding species, eastern meadowlark (Sturnella magna) and grasshopper sparrow (Ammodramus savannarum), at 242 points across 4 battlefield parks in Maryland, Virginia, and West Virginia, USA, from 2014–2019 and in 2021. We modeled the effects of park management activities (prescribed fire, agricultural leases, and delayed harvest) and habitat and landscape characteristics on breeding-season occupancy. There was support for the influence of local habitat features, landscape, and management. Breeding-season occupancy of both species was consistently higher in hayfields and pasture than in row crops, and both species responded positively to hay and crop harvest delays intended for grassland bird conservation. Prescribed fire within the past 2 years had a positive effect on occupancy of grasshopper sparrows but did not influence eastern meadowlarks. Eastern meadowlarks responded to land cover at multiple spatial scales that are influenced by land use within and outside the parks. Management activities that maintain the parks' cultural goals, including partnerships between national parks and private agricultural operators, are likely to provide valuable habitat for these 2 obligate grassland birds.  相似文献   

15.
Aim This paper describes the development of novel indices of bird‐habitat preference to examine bird species’ use of habitats and their distributions relative to habitats. It assesses the implications for bird conservation regionally and the scope for biodiversity assessments generally. Location A 200 km by 400 km area of farmland with seminatural and urban areas, covering south‐eastern England. Methods Cluster analysis was used to link birds to landscapes. Cluster centroid coordinate values were processed to derive indices of bird‐habitat preference. Further developments assessed the relative values of individual habitats for birds. Results Clustering objectively linked birds to landscapes. Maps of the clusters showed strong regional patterns associated with distinctive habitat assemblages. Derived indices related bird species directly to individual habitats and habitats to birds. Even rare species and scarce habitats showed successful linkages, often to each other. Objective corroboration strongly supported the associations of coastal, wetland, urban and woodland birds and habitats; but, it suggested that farmland birds, whose numbers have nearly halved since 1977, may prefer alternative habitats. Main conclusions Land cover maps from remote sensing provide an effective way to link birds to habitats and vice versa. Thus, generalized habitat maps might be used to extrapolate localized or sample‐based bird observations or the results of autecological studies, helping to predict and understand bird distributions in the wider countryside. The weak links between farmland birds and farmland habitats in a region dominated by farming, suggests that reasons for the decline in farmland birds may be deep seated and thus hard to reverse. The procedures described are repeatable elsewhere and applicable more generally to evaluate landscapes and biodiversity. It is suggested that remote sensing could rarely be bettered as a means of assessing habitats, comprehensively, over wide areas, in most parts of the world.  相似文献   

16.
While wetlands have been converted into farmlands, large amounts of farmlands are now being abandoned, and this novel habitat is expected to be inhabited by species which depend on wetlands. Here we examined the effects of habitat and landscape variables on the densities of wetland bird species in abandoned farmlands. We surveyed birds in abandoned farmlands with different patch area, habitat, and landscape variables in Kushiro district, eastern Hokkaido, northern Japan. We also surveyed birds in 15 ha of the remaining wetlands as a reference habitat. We used abundance-based hierarchical community models (HCMs) to estimate patch-level estimates of abundance of each species based on sampling plots data that only partially covered the studied patches. We observed 14 wetland species and analyzed them with HCMs. Abandoned farmland patch areas had significant positive effects on the densities of two species. Tree densities and shrub coverage exerted positive and negative effects on some species. Amounts of surrounding wetland/grassland had positive effects on many species. Ensemble of species-level models suggested that 24.7 and 10.6 ha of abandoned farmlands would be needed to harbor a comparable total abundance and species richness in 15-ha wetlands, respectively. These required amounts can be increased/decreased depending on the covariates. The use of HCMs allows us to predict species- and community-level responses under varied conditions based on incomplete sampling data. A quantity of 1.6 times larger areas of abandoned farmlands may be required to restore wetland bird communities in eastern Hokkaido.  相似文献   

17.
We compared bird community responses to the habitat transitions of rainforest‐to‐pasture conversion, consequent habitat fragmentation, and post‐agricultural regeneration, across a landscape mosaic of about 600 km2 in the eastern Australian subtropics. Birds were surveyed in seven habitats: continuous mature rainforest; two size classes of mature rainforest fragment (4–21 ha and 1–3 ha); regrowth forest patches dominated by a non‐native tree (2–20 ha, 30–50 years old); two types of isolated mature trees in pasture; and treeless pasture, with six sites per habitat. We compared the avifauna among habitats and among sites, at the levels of species, functional guilds, and community‐wide. Community‐wide species richness and abundance of birds in pasture sites were about one‐fifth and one‐third, respectively, of their values in mature rainforest (irrespective of patch size). Many measured attributes changed progressively across a gradient of increased habitat simplification. Rainforest specialists became less common and less diverse with decreased habitat patch size and vegetation maturity. However, even rainforest fragments of 1–3 ha supported about half of these species. Forest generalist species were largely insensitive to patch size and successional stage. Few species reached their greatest abundance in either small rainforest fragments or regrowth. All pastures were dominated by bird species whose typical native habitats were grassland, wetland, and open eucalypt forest, while pasture trees modestly enhanced local bird communities. Overall, even small scattered patches of mature and regrowth forest contributed substantial bird diversity to local landscapes. Therefore, maximizing the aggregate rainforest area is a useful regional conservation strategy.  相似文献   

18.
Bird populations are declining in agricultural landscapes, which is ongoing for decades now. With standardized breeding bird observation data of five years within 2001–2014 from six sites in Central Germany we investigated whether trends in bird abundance are reflected by trends in species richness and whether these trends depend on the landscape context. We further analyzed whether trends and their dependencies on the landscape context differ among species groups according to their particular traits. For most of the groups (farmland birds, large birds, resident birds, short distance migrators, insectivores, granivores and birds of prey) we found declining trends in abundance. However, these trends were not reflected by species richness. In contrast to our expectations, high amounts of semi-natural habitats in the landscape did not buffer the overall negative trends. Surprisingly, bird abundance declined most in landscapes characterized by larger ranges in altitude and initially highest bird abundance in 2001. We conclude that flat landscapes in Central Germany have been utilized with high intensity already for a long time and they simply maintained their already low bird abundance. On the other hand, a recent increase in agricultural intensity in landscapes with marked altitudinal reliefs, and presumably less usability and productivity, causes the drastic declines in bird abundances. Since these strong declines are not related to habitat loss, we assume that changes in the management of agricultural fields are responsible.  相似文献   

19.
Large tracts of natural habitat are being replaced by agriculture and urban sprawl in Mediterranean regions worldwide. We have limited knowledge about the effects of human activities on native species in these landscapes and which, if any, management practices might enhance the conservation of native biodiversity within them. Through a citizen volunteer bird-monitoring project, we compared bird abundance and species richness in northern Californian riparian zones surrounded by vineyards, urban areas, and natural areas. We assessed both local and landscape-level variables that may enhance native bird diversity in each land use type. We also demonstrate a new statistical approach, generalized estimating equations, to analyze highly variable data, such as that collected by volunteers. Avian abundance was highly correlated with both landscape context and local habitat variables, while avian richness was correlated with local habitat variables, specifically shrub richness, and percent of tree cover. In particular, shrub species richness has a strong positive correlation with riparian-preferring bird species. This suggests that active local management of riparian zones in human-dominated landscapes can increase our ability to retain native bird species in these areas.  相似文献   

20.
Sensitivity to habitat fragmentation often has been examined in terms of thresholds in landscape composition at which a species is likely to occur. Observed thresholds often have been low or absent, however, leaving much unexplained about habitat selection beyond initial thresholds of occurrence, even for species with strong habitat preferences. We examined responses to varying amounts of tree cover, a widely influential measure of habitat loss, for 40 woodland bird species in a mixed woodland/grassland landscape in eastern North Dakota, USA. We used LOESS smoothing to describe incidence for each species at three scales: within 200, 400, and 1200 m around sample locations. For the 200‐m scale, we also calculated the most‐preferred range of tree cover (within which at least half of observations were predicted to occur) for each species. Only 10 of 40 species had occurrence thresholds greater than about 10% tree cover. After initial occurrence, species showed three general patterns: some increased monotonically with tree cover; some increased up to an asymptote; some peaked at intermediate amounts of tree cover and then declined. These patterns approximate selection for interior woodlands and for edge‐rich environments, but incidence plots provide greater detail in landscape‐scale selection than do those categories. For most species, patterns persisted at larger scales, but for some, larger scales had distinctly different patterns than local scales. Preferred ranges of tree cover varied from <20% tree cover (common grackle, Quiscalus quiscula) to >60% (veery, Catharus fuscescens). We conclude that incidence patterns provide more information on habitat selection than do threshold measures for most species: in particular, they differentiate species preferring concentrated woodlands from those preferring mixed landscapes, and they show contrasting degrees of selectiveness. [Correction added on 16 October 2012, after first online publication: the Abstract section has been reworded].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号