首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
In the present study, we find that cyclopentenone prostaglandins (PGs) of the J(2) series, naturally occurring derivatives of PGD(2), are potential inducers of intracellular oxidative stress that mediates cell degeneration. Based on an extensive screening of diverse chemical agents on induction of intracellular production of reactive oxygen species (ROS), we found that the cyclopentenone PGs, such as PGA(2), PGJ(2), Delta(12)-PGJ(2), and 15-deoxy-Delta(12,14)-PGJ(2), showed the most potent pro-oxidant effect on SH-SY5Y human neuroblastoma cells. As the intracellular events that mediate the PG cytotoxicity, we observed (i) the cellular redox alteration represented by depletion of antioxidant defenses, such as glutathione and glutathione peroxidase; (ii) a transient decrease in the mitochondrial membrane potential (Deltapsi); (iii) the production of protein-bound lipid peroxidation products, such as acrolein and 4-hydroxy-2-nonenal; and (iv) the accumulation of ubiquitinated proteins. These events correlated well with the reduction in cell viability. In addition, the thiol compound, N-acetylcysteine, could significantly inhibit the PG-induced ROS production, thereby preventing cytotoxicity, suggesting that the redox alteration is closely related to the pro-oxidant effect of cyclopentenone PGs. More strikingly, the lipid peroxidation end products, acrolein and 4-hydroxy-2-nonenal, detected in the PG-treated cells potently induced the ROS production, which was accompanied by the accumulation of ubiquitinated proteins and cell death, suggesting that the membrane lipid peroxidation products may represent one of the causative factors that potentiate the cytotoxic effect of cyclopentenone PGs by accelerating intracellular oxidative stress. These data suggest that the intracellular oxidative stress, represented by ROS production/lipid peroxidation and redox alteration, may underlie the well documented biological effects, such as antiproliferative and antitumor activities, of cyclopentenone PGs.  相似文献   

3.
Prostaglandins (PGs) originate from the degradation of membranar arachidonic acid by cyclooxygenases (COX-1 and COX-2). The prostaglandin actions in the nervous system are multiple and have been suggested to play a significant role in neurodegenerative disorders. Some PGs have been reported to be toxic and, interestingly, the cyclopentenone PGs have been reported to be cytoprotective at low concentration and could play a significant role in neuronal plasticity. They have been shown to be protective against oxidative stress injury; however, the cellular mechanisms of protection afforded by these PGs are still unclear. It is postulated that the cascade leading to neuronal cell death in acute and chronic neurodegenerative conditions, such as cerebral ischemia and Alzheimer's disease, would be mediated by free radical damage. We tested the hypothesis that the neuroprotective action of cyclopentanone could be caused partially by an induction of heme oxygenase 1 (HO-1). We and others have previously reported that modulation of HO total activity may well have direct physiological implications in stroke and in Alzheimer's disease. HO acts as an antioxidant enzyme by degrading heme into iron, carbon monoxide, and biliverdin that is rapidly converted into bilirubin. Using mouse primary neuronal cultures, we demonstrated that PGs of the J series induce HO-1 in a dose-dependent manner (0, 0.5, 5, 10, 20, and 50 micro g/ml) and that PGJ(2) and dPGJ(2) were more potent than PGA(2), dPGA(2), PGD(2), and PGE(2). No significant effects were observed for HO-2 and actin expression. In regard to HO-3 expression found in rat, with its protein deducted sequence highly homologous to HO-2, no detection was observed in HO-2(-/-) mice, suggesting that HO-3 protein would not be present in mouse brain. We are proposing that several of the protective effects of PGJ(2) could be mediated through beneficial actions of heme degradation and its metabolites. The design of new mimetics based on the cyclopentenone structure could be very useful as neuroprotective agents and be tested in animal models of stroke and Alzheimer's disease.  相似文献   

4.
PGJ2 and delta 12PGJ2 (1 microM to 30 microM) inhibited the growth of human astrocytoma cells (1321N1) in a time-dependent manner within 48 hrs, determined by [3H]thymidine incorporation into acid-insoluble fraction or amounts of protein. The EC50 values for PGJ2 and delta 12PGJ2 were approximately 8 microM and 6 microM, respectively. [3H]Thymidine incorporation to acid insoluble fraction was inhibited by these PGs within 1 hr, indicating that these PGs rapidly affect cell functions. Although it has been reported that an increase in cyclic AMP inhibits cell growth, PGJ2 and delta 12PGJ2, but not PGE1, reduced isoproterenol (10 microM)-induced accumulation of cyclic AMP, suggesting that PGJ2 and delta 12PGJ2 may disturb adenylate cyclase system, which might be independent on cell growth. On the other hand, these PGs inhibited the incorporation of [3H]inositol into phospholipid fraction within 6 hrs. Furthermore, PGJ2 and delta 12PGJ2 inhibited carbachol- and/or histamine-induced accumulation of inositol phosphates with a similar dose-dependency to their inhibitions of cell growth. In membrane preparations, however, PGJ2 and delta 12PGJ2 failed to inhibit GTP gamma S (10 microM)- nor Ca2+ (1 mM)-induced accumulation of inositol phosphates. The site of PGJ2 or delta 12PGJ2 in inhibition of inositol phosphate accumulation would not be phospholipase C nor a putative GTP binding protein involved in activation of phospholipase C. The present results indicate that PGJ2 and delta 12PGJ2 inhibit cell growth in human astrocytoma cells and the inhibition of phosphoinositide turnover by these PGs might be involved in the inhibition of cell growth.  相似文献   

5.
The aim of this study was to evaluate, using a rat model of balloon angioplasty, whether prostaglandin (PG) J(2) and 2-cyclopenten-1-one are able to reduce restenosis. We found that both PGJ(2) and 2-cyclopenten-1-one, administered by local application on carotid arteries, caused a dose-dependent inhibition of neointimal formation. Furthermore, both agents prevented vascular negative remodeling. The effect of these compounds on restenosis was correlated with an inhibition of nuclear factor-kappaB (NF-kappaB) activation as well as of intercellular adhesion molecule-1 (ICAM-1) protein expression in injured carotid arteries of control animals. Our results show that cyclopentenone PGs and their derivatives reduce restenosis and may have therapeutic relevance for the prevention of human restenosis.  相似文献   

6.
Cyclopentenone prostaglandins, delta12-PGJ2 and 15d-PGJ2, have potent anti-tumour and anti-inflammatory activities, and have been shown to induce apoptosis in amnion-derived WISH cells. In this study, we have investigated the protective effects of serum and its constituents (growth factors and albumin) on delta12-PGJ2 and 15d-PGJ2-induced apoptosis in WISH cells. Serum (0.5% w/v) was protective against both delta12-PGJ2 and 15d-PGJ2-induced apoptosis. This was not due to the presence of serum-derived growth factors (EGF, IGF-1 and IGF-2), since they had no significant effect on 15d-PGJ2-induced cell death. In contrast, IGF-1 partially inhibited etoposide-induced apoptosis, confirming the presence of a functional IGF-1 receptor signalling system. Albumin was identified as the key survival factor in serum, since albumin and delipidated albumin exhibited the same level of protection from 15d-PGJ2-induced apoptosis as serum itself. The potential for serum albumin to regulate the bioactivity of cyclopentenone PGs may be of considerable importance in pathological conditions where roles for cyclopentenone PGs have been identified.  相似文献   

7.
8.
9.
10.
Apoptosis has been described in placental (trophoblast) tissues during both normal and abnormal pregnancies. We have studied the effects of the cyclopentenone prostaglandins (PGs) on trophoblast cell death using JEG3 choriocarcinoma cells. PGJ(2), Delta(12)PGJ(2), and 15-deoxy-Delta(12,14)-PGJ(2) (15dPGJ(2)) (10 microM) significantly reduced mitochondrial activity (MTT assay) over 16 h by 17.4 +/- 4.7%, 28 +/- 9.3%, and 62.5 +/- 2.8%, respectively (mean +/- sem), while PGA(2) and PGD(2) had no effect. The synthetic PPAR-gamma ligand ciglitizone (12.5 microM) had a potency similar to 15dPGJ(2) (69 +/- 3% reduction). Morphological examination of cultures treated with PGJ(2) and its derivatives revealed the presence of numerous cells with dense, pyknotic nuclei, a hallmark of apoptosis. FACS analysis revealed an abundance (approximately 40%) of apoptotic cells after 16-h treatment with 15dPGJ(2) (10 microM). The caspase inhibitor ZVAD-fmk (5 microM) significantly diminished the apoptotic effects of Delta(12)PGJ(2) and 15dPGJ(2). JEG3 cells expressed PPAR-gamma mRNA by Northern analysis. These novel findings imply a role for PPAR-gamma ligands in various processes associated with pregnancy and parturition.  相似文献   

11.
Potential role of microsomal prostaglandin E synthase-1 in tumorigenesis   总被引:8,自引:0,他引:8  
Microsomal prostaglandin E2 synthase-1 (mPGES-1) is a stimulus-inducible enzyme that functions downstream of cyclooxygenase (COX)-2 in the PGE2-biosynthetic pathway. Given the accumulating evidence that COX-2-derived PGE2 participates in the development of various tumors, including colorectal cancer, we herein examined the potential involvement of mPGES-1 in tumorigenesis. Immunohistochemical analyses demonstrated the expression of both COX-2 and mPGES-1 in human colon cancer tissues. HCA-7, a human colorectal adenocarcinoma cell line that displays COX-2- and PGE2-dependent proliferation, expressed both COX-2 and mPGES-1 constitutively. Treatment of HCA-7 cells with an mPGES-1 inhibitor or antisense oligonucleotide attenuated, whereas overexpression of mPGES-1 accelerated, PGE2 production and cell proliferation. Moreover, cotransfection of COX-2 and mPGES-1 into HEK293 cells resulted in cellular transformation manifested by colony formation in soft agar culture and tumor formation when implanted subcutaneously into nude mice. cDNA array analyses revealed that this mPGES-1-directed cellular transformation was accompanied by changes in the expression of a variety of genes related to proliferation, morphology, adhesion, and the cell cycle. These results collectively suggest that aberrant expression of mPGES-1 in combination with COX-2 can contribute to tumorigenesis.  相似文献   

12.
The effects of prostaglandins (PGs) A and J, which are anti-tumor eicosanoids, on the proliferation of cultured vascular smooth muscle cells were investigated. Serum-stimulated DNA synthesis was potently inhibited by PGA1, PGA2, PGJ2, and delta 12-PGJ2 in similar dose-dependent fashions. The effects of PGA1 and PGA2 were reversible when they were removed from the culture media, whereas recoveries were only partial in the cells treated with PGJ2 and delta 12-PGJ2. PGs were effective even if they were added immediately before entry into S phase. Inhibition of DNA synthesis was sustained when hydroxyurea, which blocks cell cycle at the G1/S border, was added after the removal of PGA2, and vice versa; PGs blocked DNA synthesis when they were added after the removal of hydroxyurea. Levels of c-myc mRNA formed two peaks during the G1 phase, at 1-2 h and at 8-12 h. The PGs did not affect the first elevation, but enhanced the second and sustained it up to 18-24 h, whereas in controls, c-myc mRNA decreased quickly after entry into S phase. The rate of degradation of c-myc mRNA was much smaller in PG-treated cells than in nontreated cells. We conclude, therefore, that PGA and PGJ inhibit a crucial event(s) in the cell cycle occurring at the G1/S border, but that this inhibition is not accompanied by the reduction in c-myc gene expression in contrast with some types of tumor cells treated with PGs.  相似文献   

13.
Activation of the macrophage cell line RAW 264.7 with LPS and IFN-gamma induces apoptosis through the synthesis of high concentrations of NO due to the expression of NO synthase-2. In addition to NO, activated macrophages release other molecules involved in the inflammatory response, such as reactive oxygen intermediates and PGs. Treatment of macrophages with cyclopentenone PGs, which are synthesized late in the inflammatory onset, exerted a negative regulation on cell activation by impairing the expression of genes involved in host defense, among them NO synthase-2. However, despite the attenuation of NO synthesis, the percentage of apoptotic cells increased with respect to activated cells in the absence of cyclopentenone PGs. Analysis of the mechanisms by which these PGs enhanced apoptosis suggested a potentiation of superoxide anion synthesis that reacted with NO, leading to the formation of higher concentrations of peroxynitrite, a more reactive and proapoptotic molecule than the precursors. The effect of the cyclopentenone 15-deoxy-Delta(12,14)-PGJ(2) on superoxide synthesis was dependent on p38 mitogen-activated protein kinase activity, but was independent of the interaction with peroxisomal proliferator-activated receptor gamma. The potentiation of apoptosis induced by cyclopentenone PGs involved an increase in the release of cytochrome c from the mitochondria to the cytosol and in the nitration of this protein. These results suggest a role for cyclopentenone PGs in the resolution of inflammation by inducing apoptosis of activated cells.  相似文献   

14.
Prostaglandin E(2) (PGE(2)), a major cyclooxygenase (COX-2) metabolite, plays important roles in tumor biology and its functions are mediated through one or more of its receptors EP1, EP2, EP3, and EP4. We have shown that the matrix glycoprotein fibronectin stimulates lung carcinoma cell proliferation via induction of COX-2 expression with subsequent PGE(2) protein biosynthesis. Ligands of peroxisome proliferator-activated receptor gamma (PPARgamma) inhibited this effect and induced cellular apoptosis. Here, we explore the role of the PGE(2) receptor EP2 in this process and whether the inhibition observed with PPARgamma ligands is related to effects on this receptor. We found that human non-small cell lung carcinoma cell lines (H1838 and H2106) express EP2 receptors, and that the inhibition of cell growth by PPARgamma ligands (GW1929, PGJ2, ciglitazone, troglitazone, and rosiglitazone [also known as BRL49653]) was associated with a significant decrease in EP2 mRNA and protein levels. The inhibitory effects of BRL49653 and ciglitazone, but not PGJ2, were reversed by a specific PPARgamma antagonist GW9662, suggesting the involvement of PPARgamma-dependent and -independent mechanisms. PPARgamma ligand treatment was associated with phosphorylation of extracellular regulated kinase (Erk), and inhibition of EP2 receptor expression by PPARgamma ligands was prevented by PD98095, an inhibitor of the MEK-1/Erk pathway. Butaprost, an EP2 agonist, like exogenous PGE(2) (dmPGE(2)), increased lung carcinoma cell growth, however, GW1929 and troglitazone blocked their effects. Our studies reveal a novel role for EP2 in mediating the proliferative effects of PGE(2) on lung carcinoma cells. PPARgamma ligands inhibit human lung carcinoma cell growth by decreasing the expression of EP2 receptors through Erk signaling and PPARgamma-dependent and -independent pathways.  相似文献   

15.
Through free radical-mediated peroxidation, cyclooxygenase (COX) can metabolize dihomo-γ-linolenic acid (DGLA) and arachidonic acid (AA) to form well-known bioactive metabolites, namely, the 1-series of prostaglandins (PGs1) and the 2-series of prostaglandins (PGs2), respectively. Unlike PGs2, which are generally viewed as proinflammatory and procarcinogenic PGs, PGs1 may possess anti-inflammatory and anti-cancer activity. Previous studies using ovine COX along with spin trapping and the LC/ESR/MS technique have shown that certain exclusive free radicals are generated from different free radical reactions in DGLA and AA peroxidation. However, it has been unclear whether the differences were associated with the contrasting bioactivity of DGLA vs AA. The aim of this study was to refine the LC/MS and spin trapping technique to make it possible for the association between free radicals and cancer cell growth to be directly tested. Using a colon cancer cell line, HCA-7 colony 29, and LC/MS along with a solid-phase extraction, we were able to characterize the reduced forms of radical adducts (hydroxylamines) as the free radicals generated from cellular COX-catalyzed peroxidation. For the first time, free radicals formed in the COX-catalyzed peroxidation of AA vs DGLA and their association with cancer cell growth were assessed (cell proliferation via MTS and cell cycle distribution via propidium iodide staining) in the same experimental setting. The exclusive free radicals formed from the COX-catalyzed peroxidation of AA and DGLA were shown to be correlated with the cell growth response. Our results indicate that free radicals generated from the distinct radical reactions in COX-catalyzed peroxidation may represent the novel metabolites of AA and DGLA that correspond to their contrasting bioactivity.  相似文献   

16.
Mast cells are one of the major producers of prostaglandins (PGs). The final metabolite of PGs 15-deoxy-delta-12,14-PGJ(2) (15-deoxy-delta PGJ(2)) is the endogenous ligand of the peroxisome proliferator-activated receptor (PPAR) γ. PPARγ modulates adipocyte differentiation; therefore, we attempted to investigate whether PGs derived from mast cells influenced on adipogenesis. We found the increase of mast cell numbers in fat tissue of obese mice fed with a high-fat diet allowed us to speculate contributions of mast cells to adipogenesis. Mast cell-mediated induction of adipogenesis was evaluated by using 3T3 L1 cells. Supernatants obtained from mast cells stimulated with calcium ionophore or the high-glucose condition contained 15-deoxy-delta PGJ(2) and induced adipogenesis of 3T3 L1 cells. Agonistic activity of PGJ(2) from the supernatants on PPARγ was confirmed by a reporter gene assay. Culture medium collected from calcium ionophore-stimulated bone marrow-derived cultured mast cells (BMCMC) activated PPAR-responsive element in NIH3T3 fibroblasts, and the specific inhibitor of PPARγ canceled the activation. Contribution of mast cells to obesity was evaluated by using mast cell-deficient mice fed with a Western diet. Weight gain of mast cell-deficient mice during high-fat feeding was impaired compared with their littermate wild-type mice; on the other hand, transplantation of bone marrow-derived cultured mast cells to mast cell-deficient mice restored the weight gain by intake of a high-fat diet. In this study, we clearly demonstrated that mast cells produced PGs in response to the high-glucose condition and induced adipocyte differentiation and possibly obesity. This is the first study that provides evidence for a novel role of mast cells in adipogenesis via PPARγ activation.  相似文献   

17.
Many neurodegenerative disorders, such as Parkinson disease, exhibit inclusion bodies containing ubiquitinated proteins. The mechanisms implicated in this aberrant protein deposition remain elusive. In these disorders signs of inflammation are also apparent in the affected central nervous system areas. We show that prostaglandin J2 (PGJ2), an endogenous product of inflammation, disrupts the cytoskeleton in neuronal cells. Furthermore, PGJ2 perturbed microtubule polymerization in vitro and decreased the number of free sulfhydryl groups on tubulin cysteines. A direct effect of PGJ2 on actin was not apparent, although actin filaments were altered in cells treated with PGJ2. This cyclopentenone prostaglandin triggered endoplasmic reticulum (ER) collapse and the redistribution of ER proteins, such as calnexin and catechol-O-methyltransferase, into a large centrosomal aggregate containing ubiquitinated proteins and alpha-synuclein. The PGJ2-dependent cytoskeletal rearrangement paralleled the development of the large centrosomal aggregate. Both of these events were replicated by treating cells with colchicine, which disrupts the microtubule/ER network, but not with brefeldin A, which impairs ER/Golgi transport. PGJ2 also perturbed 26 S proteasome assembly and activity, which preceded the accumulation of ubiquitinated proteins as detergent/salt-insoluble aggregates. Our data support a mechanism by which, upon PGJ2 treatment, cytoskeleton/ER collapse coincides with the relocation of ER proteins, other potentially neighboring proteins, and ubiquitinated proteins into centrosomal aggregates. Development of these large perinuclear aggregates is associated with disruption of the microtubule/ER network. This aberrant protein deposition, triggered by a product of inflammation, may be common to other compounds that disrupt microtubules and induce protein aggregation, such as MPP+ and rotenone, found to be associated with neurodegeneration.  相似文献   

18.
目的:观察环氧合酶-2(COX-2)抑制剂塞来昔布对直肠癌HCA-7细胞株的放射敏感性及探讨其机制。方法:采用MTT法检测塞来昔布作用不同时间对直肠癌HCA-7细胞株增殖的影响,计算出塞来昔布的半数抑制浓度IC50;HCA-7细胞克隆形成实验用于检测塞来昔布对HCA-7细胞的放射敏感性,并绘制存活曲线;流式细胞仪(FCM)测定塞来昔布对HCA-7的细胞周期的影响。结果:塞来昔布对HCA-7细胞株的抑制率随时间的延长而升高,48h的IC50是40.19μmol/L;照射组+药物组的SF2、D0、Dq、SER较单纯照射组均有所下降。塞来昔布使HCA-7细胞发生G2和M期阻滞,并抑制S期的比例。结论:塞来昔布能增加直肠癌HCA-7细胞的放射敏感性。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号