首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eph-ephrin介导反向信号传递的研究进展   总被引:1,自引:0,他引:1  
双向信号传递是细胞间通讯领域中新近阐明的机制,酪氨酸激酶受体-配体(Eph-ephrin)介导的双向信号传递是此机制中的一个重要代表.Eph酪氨酸激酶家族受体及其配体ephrin家族成员是在神经发育、血管新生等方面起重要作用的分子,通过Eph向细胞内传递的信号称为正向信号,通过其配体ephrin的信号称为反向信号.Ephrin家族又可根据分子结构分为2个亚家族,其中ephrinB为跨膜蛋白,可通过酪氨酸磷酸化依赖和PDZ结合结构域介导2种方式向胞内传递反向信号,活化FAK、JNK、Wnt等信号通路,ephrinA为糖基磷脂酰肌醇锚定蛋白,也具有反向信号传递功能.  相似文献   

2.
钙/钙调蛋白依赖性丝氨酸蛋白激酶(calcium/calmodulin-dependent serine protein kinase, CASK)属于膜相关鸟苷酸激酶(membrane associated guanylate kinase, MAGUK)家族.CASK具有多个不同蛋白质结合结构域,在细胞膜的特定区域,与其他蛋白质形成多种蛋白质复合体,参与组成细胞骨架.它通过衔接细胞外信号蛋白和细胞内骨架蛋白,协助功能蛋白质的转运和定位,以及细胞内的信号传递.此外CASK还可以进入细胞核影响基因转录调控,以及作用在神经突触膜上参与神经递质的释放.  相似文献   

3.
钙/钙调蛋白依赖性丝氨酸蛋白激酶的结构和功能   总被引:2,自引:0,他引:2       下载免费PDF全文
钙/钙调蛋白依赖性丝氨酸蛋白激酶(calcium/calmodulin-dependent serine protein kinase, CASK)属于膜相关鸟苷酸激酶(membrane associated guanylate kinase, MAGUK)家族.CASK具有多个不同蛋白质结合结构域,在细胞膜的特定区域,与其他蛋白质形成多种蛋白质复合体,参与组成细胞骨架.它通过衔接细胞外信号蛋白和细胞内骨架蛋白,协助功能蛋白质的转运和定位,以及细胞内的信号传递.此外CASK还可以进入细胞核影响基因转录调控,以及作用在神经突触膜上参与神经递质的释放.  相似文献   

4.
肿瘤细胞的快速增殖依赖于细胞内的多胺水平,耗竭细胞内多胺可抑制肿瘤细胞增殖并诱导其凋亡。与此同时,细胞内多胺含量的改变可以影响肿瘤细胞内多种信号通路的活性,依据受影响信号分子功能的差异,这些信号通路活性的改变具有增强或抑制耗竭多胺产生的抗肿瘤效应的功能,从而对肿瘤细胞的生长、分化、迁移和侵袭产生不同的影响。综述多胺对肿瘤相关信号通路的影响及其分子机制。  相似文献   

5.
T细胞受体介导的T细胞活化在胸腺T细胞发育、T细胞亚群分化以及效应T细胞功能发挥过程中均起着至关重要的作用。TCR能特异性识别抗原提呈细胞表面MHC提呈的抗原肽(peptide),并将胞外识别转化成可向细胞内部传递的信号,通过诱导TCR邻近酪氨酸激酶活化,促进信号传递复合物组装,活化下游MAPK、PKC以及钙离子等信号途径,最终活化相应的转录因子,调控效应蛋白分子的表达,完成T细胞的活化。TCR信号传递过程受到不同类型调控分子的调控,这些具有调控功能的分子形成了一个复杂的调控网络来精细调控TCR信号的起始、强度及终止。  相似文献   

6.
植物细胞壁是地球上最丰富的可再生资源,也是植物细胞区别于动物细胞的特殊结构之一,它与细胞质膜及细胞骨架共同构成了植物细胞表面的细胞壁-质膜-细胞骨架连续体.细胞壁为植物细胞提供外部支撑结构,细胞骨架则在细胞内构成内部网络支架结构.近年来,有关植物细胞骨架调控细胞壁形成的研究有了很大进展,本文从细胞骨架参与细胞壁物质膜泡运输、细胞骨架调控纤维素微纤丝沉积、细胞骨架调控次生细胞壁加厚以及细胞骨架参与细胞壁形成信号的调控等方面进行了阐述和总结,并对今后的研究方向进行了展望.  相似文献   

7.
丝裂原活化蛋白激酶(MAPK)信号通路介导多种重要的细胞生理反应.对下游蛋白激酶的磷酸化是MAPK家族成员发挥生理作用的重要方式.在MAPK的下游存在3个结构上相关的MAPK激活蛋白激酶(MAPKAPKorMK),即MK2,MK3和MK5.在被MAPK激活后,MK可将信号传递至细胞内不同靶标,从而在转录和翻译水平调节基因表达,调控细胞骨架和细胞周期,介导细胞迁移和胚胎发育.最近,在基因敲除研究的基础上,不同MK亚族成员之间的功能区分已经逐渐明晰,使我们对于MK的认识有了长足的进步.  相似文献   

8.
平滑肌细胞骨架结构及其信号调节途径   总被引:1,自引:0,他引:1  
平滑肌细胞骨架是一个复杂的动态性网络,是细胞生命活动不可缺少的细胞结构。Rho通过活化其下游靶分子促进应力纤维的形成,其中Rho—associated coiled—coil kinase(ROCK)和Dial在该过程中起关键作用;PKC通过在细胞内不同定位的亚型使细胞骨架蛋白磷酸化,发挥其调节细胞骨架重构的作用。两条信号转导途径通过Src途径相互联系,共同参与细胞骨架动力学的调节。  相似文献   

9.
生物要在不断变化的环境中保持内环境的稳定,需要细胞有感知这些变化并且做出反应的能力。细胞对外部信号接收和传输的任务是由蛋白质分子执行的。通过特异结合另一个分子,或者自身被修饰导致局部电荷改变,蛋白质分子可以改变形状,在"开"和"关"2种功能状态之间转换,相当于计算机中的0和1。改变了状态的蛋白质分子又可以使下游的分子改变状态,从而将信息传递下去,最后通过效应蛋白质分子功能的改变实现细胞对传入信号的反应。  相似文献   

10.
生物在不断变化的环境中保持内部状况的稳定,需要细胞具有感知这些变化且做出反应的能力。细胞接收和传输外部信号是由蛋白质分子执行的。通过特异结合另一个分子,或自身被修饰导致局部电荷改变,蛋白质分子可以改变形状,在"开"和"关"2种功能状态之间来回转换,相当于计算机中的0和1。改变了状态的蛋白质分子又可以使下游的分子改变状态,从而将信息传递下去,最后通过效应蛋白质分子功能的改变实现细胞对传入信号的反应。  相似文献   

11.
生物在不断变化的环境中保持内部状况的稳定,需要细胞具有感知这些变化且做出反应的能力。细胞接收和传输外部信号是由蛋白质分子执行的。通过特异结合另一个分子,或自身被修饰导致局部电荷改变,蛋白质分子可以改变形状,在"开"和"关"2种功能状态之间来回转换,相当于计算机中的0和1。改变了状态的蛋白质分子又可以使下游的分子改变状态,从而将信息传递下去,最后通过效应蛋白质分子功能的改变实现细胞对传入信号的反应。  相似文献   

12.
生物在不断变化的环境中保持内部状况的稳定,需要细胞具有感知这些变化且做出反应的能力。细胞接收和传输外部信号是由蛋白质分子执行的。通过特异结合另一个分子,或自身被修饰导致局部电荷改变,蛋白质分子可以改变形状,在"开"和"关"2种功能状态之间来回转换,相当于计算机中的0和1。改变了状态的蛋白质分子又可以使下游的分子改变状态,从而将信息传递下去,最后通过效应蛋白质分子功能的改变实现细胞对传入信号的反应。  相似文献   

13.
生物膜上蛋白质的运动不都是随机性的,经常受到细胞骨架等因素的限制。二维膜上的事件不断通过内吞、分泌等过程和整体细胞的功能联系起来。病毒感染细胞、细胞内囊泡和物质的定向运输等都和细胞内分子的识别、膜的融合和膜的分裂等过程紧密相关。  相似文献   

14.
鞘脂类与细胞信号传导的研究进展   总被引:1,自引:0,他引:1  
当前生命科学研究中的一个中心问题是关于细胞代谢、生长、发育、适应、防御和凋亡等的调节机制,以及调控异常与疾病,特别是与一些重大疾病,如肿瘤、心血管病、糖尿病以及老年性痴呆等的关联.这些问题与生物信号分子所携带的信息的细胞内的传递有关.我们已经知道,细胞中存在着遣传信息传递系统,即由DNA(基因)转录成mRNA再翻译成蛋白质过程所形成的信息流,控制着生物体生长发育和新陈代谢.此外,细胞中还存在一个调节细胞代谢、生长、增殖、凋亡和各种功能活动的信号转导系统,它们由能接收信号的特定的受体、受体后的信号转导途径及其作用的终端所组成.它们能够对各种胞外信号分子,如激素、神经递质、细胞因子以及药物等起反应,通过细胞内的信号转导过程,调节代谢酶、离子通道、转录因子等的活性,产生各种生物效应.不同的信号转导通路间具有相互的联系和作用,形成复杂的网络.了解信号转导系统的组成及信号转导的机制,对于深入认识生命过程和揭示生命的本质具有重要意义,同时由于信号转导的失控可导致多种疫病,因此有关信号转导过程的研究还有助于阐明疾病的发生和发展的机制,并为新药的设计和发展新的治疗方法提供思路,达到预防和治疗疾病的目的.  相似文献   

15.
肿瘤转移是一个多阶段、多途径、涉及多基因及其信号通路变化的一系列复杂过程。了解肿瘤转移相关基因的信号传导通路以及对肿瘤转移的作用机制,为寻找抑制肿瘤转移的关键靶点具有重要的意义。Ezrin高表达与肿瘤转移密切相关,它可通过改变肿瘤细胞极性及细胞运动、调节肿瘤细胞间黏附及细胞与细胞外基质黏附、参与肿瘤细胞内信号转导而影响恶性肿瘤转移。Ezrin过度表达可以破坏正常细胞内信号传递网络的平衡,其中主要涉及的为细胞信号转导相关分子(Rho)及受体酪氨酸蛋白激酶等信号传导途径。Ezrin借助于细胞内错综复杂的信号转导网络调控细胞的形态构成、黏附、吞噬、运动、血管形成等一系列的生物学过程,最终实现肿瘤细胞的侵袭和转移。本文就Ezrin蛋白的信号转导通路及其对肿瘤转移作用的研究进展做一综述。  相似文献   

16.
α辅肌动蛋白的结构和功能   总被引:5,自引:0,他引:5  
α辅肌动蛋白是近年来在细胞骨架与细胞运动研究中的热点蛋白 .目前发现有α辅肌动蛋白 1、2、3和 4四种类型 ,呈细胞或组织特异性分布 .这四种蛋白的共同结构特征是在细胞内均为反向平行的二聚体 ,并具有N末端肌动蛋白结合结构域 (ABD)、血影蛋白样中央重复结构域和C末端“EF手”结构域 .作为细胞骨架中一种重要的肌动蛋白交联蛋白 ,α辅肌动蛋白通过与其相关蛋白包括整合素 (integrins)、钙粘素 (cadherin)以及细胞信号传导通路中的信号分子等的协同作用 ,在稳定细胞粘附、调节细胞形状及细胞运动中发挥着重要作用 .因此 ,肿瘤的发生、发展和恶化与α辅肌动蛋白的结构、功能密切相关 .本文结合本实验室的研究工作 ,综述了α辅肌动蛋白家族成员的结构、功能及其与肿瘤发生的相关性 .  相似文献   

17.
中间纤维家族由约70个中间纤维蛋白组成,在真核细胞内组成横跨核膜和胞质的网状骨架.中间纤维最初仅仅被当做是细胞骨架的一种,主要起机械支撑作用.这个观点正发生快速的改变,因为越来越多的研究发现中间纤维蛋白参与各种主要的细胞信号通路,如细胞应激、细胞凋亡和14-3-3信号通路等.  相似文献   

18.
焦点粘着激酶的研究进展   总被引:2,自引:0,他引:2  
焦点粘着激酶是依赖于整合素的细胞信号转导通路的基础性信号传递分子.通过磷酸化酪氨酸位点和富脯氨酸序列,活化的焦点粘着激酶与细胞骨架蛋白、Src族激酶、磷酸肌醇-3激酶、Graf以及多种衔接子蛋白相互作用,调节细胞的粘附、迁移、增殖和分化.  相似文献   

19.
Rho蛋白作为细胞信号转导的分子开关之一,在细胞骨架动态变化中发挥着极其重要的作用。Rho蛋白对细胞骨架动态变化的调节是一个复杂的信号传递过程,涉及到Rho蛋白介导的信号通路中不同效应物间和Rho蛋白介导的多条信号通路间的相互作用。在Rho蛋白介导的信号通路中,上游调控因子、Rho蛋白、效应物在细胞中的正确定位对信号传递有着决定性的作用。  相似文献   

20.
胞外基质是由细胞合成和分泌的胶原蛋白、非胶原糖蛋白、蛋白聚糖等生物大分子在细胞表面或细胞之间构成的复杂网络结构。胞外基质蛋白的结构与功能受到糖基化、共价交联等翻译后修饰的调控。胞外基质不仅起到结构支撑的作用,而且可作为信号分子结合整合素等细胞表面受体传递信号。胞外基质网络同时结合并调控细胞因子与生长因子信号。胞外基质网络在细胞黏附、细胞迁移、细胞周期、细胞命运决定过程起到重要调控作用,进而调控组织发育与机体稳态的建立与维持。胞外基质网络结构与功能的紊乱将导致癌症、组织纤维化、结缔组织异常等多种疾病的发生。该文将简要介绍胞外基质的基本结构和功能、胞外基质与细胞骨架的交互调控机制及其生理与病理功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号