首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type material of several polychaete species described by Enrique Rioja from Mexican coasts are lost, and the current status of some species is doubtful. Nereis oligohalina (Rioja, 1946) was described from the Gulf of Mexico, but it has been considered a junior synonym of Nereis occidentalis Hartman, 1945, or regarded as a distinct species with an amphiamerican distribution. On the other hand, Nereis garwoodi González-Escalante & Salazar-Vallejo, 2003, described from Chetumal Bay, Caribbean coasts, could be confused with Nereis oligohalina. In order to clarify these uncertainties, Nereis oligohalina is redescribed based on specimens from the Mexican Gulf of Mexico, including a proposed neotype; further, Nereis garwoodi is redescribed including the selection of lectotype and paralectotypes, and Nereis confusa sp. n. is described with material from the Gulf of California. A key for the identification of similar species and some comments about speciation in nereidid polychaetes are also included.  相似文献   

2.
Protosilvius gurupi sp. n. (Tabanidae, Pangoniinae) is described and illustrated based on seven female and 53 male specimens collected in the Amazonian region at Reserva Biológica Gurupi, Centro Novo do Maranhão municipality, northwest Maranhão, Brazil. This is the first record of Protosilvius in northern Brazil and in the Amazon Basin. An illustrated key to all Protosilvius species is also presented.  相似文献   

3.
4.
The genera Odontacolus Kieffer and Cyphacolus Priesner are among the most distinctive platygastroid wasps because of their laterally compressed metasomal horn; however, their generic status has remained unclear. We present a morphological phylogenetic analysis comprising all 38 Old World and four Neotropical Odontacolus species and 13 Cyphacolus species, which demonstrates that the latter is monophyletic but nested within a somewhat poorly resolved Odontacolus. Based on these results Cyphacolus syn. n. is placed as a junior synonym of Odontacolus which is here redefined. The taxonomy of Old World Odontacolus s.str. is revised; the previously known species Odontacolus longiceps Kieffer (Seychelles), Odontacolus markadicus Veenakumari (India), Odontacolus spinosus (Dodd) (Australia) and Odontacolus hackeri (Dodd) (Australia) are re-described, and 32 new species are described: Odontacolus africanus Valerio & Austin sp. n. (Congo, Guinea, Kenya, Madagascar, Mozambique, South Africa, Uganda, Zimbabwe), Odontacolus aldrovandii Valerio & Austin sp. n. (Nepal), Odontacolus anningae Valerio & Austin sp. n. (Cameroon), Odontacolus australiensis Valerio & Austin sp. n. (Australia), Odontacolus baeri Valerio & Austin sp. n. (Australia), Odontacolus berryae Valerio & Austin sp. n. (Australia, New Zealand, Norfolk Island), Odontacolus bosei Valerio & Austin sp. n. (India, Malaysia, Sri Lanka), Odontacolus cardaleae Valerio & Austin sp. n. (Australia), Odontacolus darwini Valerio & Austin sp. n. (Thailand), Odontacolus dayi Valerio & Austin sp. n. (Indonesia), Odontacolus gallowayi Valerio & Austin sp. n. (Australia), Odontacolus gentingensis Valerio & Austin sp. n. (Malaysia), Odontacolus guineensis Valerio & Austin sp. n. (Guinea), Odontacolus harveyi Valerio & Austin sp. n. (Australia), Odontacolus heratyi Valerio & Austin sp. n. (Fiji), Odontacolus heydoni Valerio & Austin sp. n. (Malaysia, Thailand), Odontacolus irwini Valerio & Austin sp. n. (Fiji), Odontacolus jacksonae Valerio & Austin sp. n. (Cameroon, Guinea, Madagascar), Odontacolus kiau Valerio & Austin sp. n. (Papua New Guinea), Odontacolus lamarcki Valerio & Austin sp. n. (Thailand), Odontacolus madagascarensis Valerio & Austin sp. n. (Madagascar), Odontacolus mayri Valerio & Austin sp. n. (Indonesia, Thailand), Odontacolus mot Valerio & Austin sp. n. (India), Odontacolus noyesi Valerio & Austin sp. n. (India, Indonesia), Odontacolus pintoi Valerio & Austin sp. n. (Australia, New Zealand, Norfolk Island), Odontacolus schlingeri Valerio & Austin sp. n. (Fiji), Odontacolus sharkeyi Valerio & Austin sp. n. (Thailand), Odontacolus veroae Valerio & Austin sp. n. (Fiji), Odontacolus wallacei Valerio & Austin sp. n. (Australia, Indonesia, Malawi, Papua New Guinea), Odontacolus whitfieldi Valerio & Austin sp. n. (China, India, Indonesia, Sulawesi, Malaysia, Thailand, Vietnam), Odontacolus zborowskii Valerio & Austin sp. n. (Australia), and Odontacolus zimi Valerio & Austin sp. n. (Madagascar). In addition, all species of Cyphacolus are here transferred to Odontacolus: Odontacolus asheri (Valerio, Masner & Austin) comb. n. (Sri Lanka), Odontacolus axfordi (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus bhowaliensis (Mani & Mukerjee) comb. n. (India), Odontacolus bouceki (Austin & Iqbal) comb. n. (Australia), Odontacolus copelandi (Valerio, Masner & Austin) comb. n. (Kenya, Nigeria, Zimbabwe, Thailand), Odontacolus diazae (Valerio, Masner & Austin) comb. n. (Kenya), Odontacolus harteni (Valerio, Masner & Austin) comb. n. (Yemen, Ivory Coast, Paskistan), Odontacolus jenningsi (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus leblanci (Valerio, Masner & Austin) comb. n. (Guinea), Odontacolus lucianae (Valerio, Masner & Austin) comb. n. (Ivory Coast, Madagascar, South Africa, Swaziland, Zimbabwe), Odontacolus normani (Valerio, Masner & Austin) comb. n. (India, United Arab Emirates), Odontacolus sallyae (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus tessae (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus tullyae (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus veniprivus (Priesner) comb. n. (Egypt), and Odontacolus watshami (Valerio, Masner & Austin) comb. n. (Africa, Madagascar). Two species of Odontacolus are transferred to the genus Idris Förster: Idris longispinosus (Girault) comb. n. and Idris amoenus (Kononova) comb. n., and Odontacolus doddi Austin syn. n. is placed as a junior synonym of Odontacolus spinosus (Dodd). Odontacolus markadicus, previously only known from India, is here recorded from Brunei, Malaysia, Sri Lanka, Thailand and Vietnam. The relationships, distribution and biology of Odontacolus are discussed, and a key is provided to identify all species.  相似文献   

5.
Chromolaena barranquillensis (Asteraceae) is an endemic plant of northern Colombia that has garnered economic and medicinal interest, because species from the genus Chromolaena have shown diverse biological activities. This study describes, for the first time, the karyotype, germination and mitotic indices of C. barranquillensis (Hieron.) R.M. King & H. Rob. The germination index was between 34% and 56% with an average germination rate of 1.2 ± 0.4 seeds/day. The mitotic index analysis allowed to determine the cell cycle time (4 h, 10 min) and the mitotic hours (3:00–8:00 h and 17:00 h). The mitosis time was 49 min, equivalent to ~ 20% of the cell cycle. Karyotype analysis showed that C. barranquillensis is a hexaploid species with a chromosomal formula 2n = 6x = 60 = 48 m + 12 sm, and the average chromosomal lengths were 1.7 ± 0.1 μm to 0.9 ± 0.3 μm. The Stebbins asymmetry index was 2B, and the total form percentage was ~ 41%. These results uncover differences between C. barranquillensis and Chromolaena odorata, one of the most abundant species found in the world and the most closely related species to C. barranquillensis.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.

Species of Broussonetia have been essential in the development of papermaking technology. In Japan and Korea, a hybrid between B. monoica and B. papyrifera (= B. × kazinoki) known as kōzo and daknamu is still the major source of raw materials for making traditional paper washi and hanji, respectively. Despite their cultural and practical significance, however, the origin and taxonomy of kōzo and daknamu remain controversial. Additionally, the long-held generic concept of Broussonetia s.l., which included Sect. Allaeanthus and Sect. Broussonetia, was challenged as phylogenetic analyses showed Malaisia is sister to the latter section. To re-examine the taxonomic proposition that recognizes Allaeanthus, Broussonetia, and Malaisia (i.e., Broussonetia alliance), plastome and nuclear ribosomal DNA (nrDNA) sequences of six species of the alliance were assembled. Characterized by the canonical quadripartite structure, genome alignments and contents of the six plastomes (160,121–162,594 bp) are highly conserved, except for the pseudogenization and/or loss of the rpl22 gene. Relationships of the Broussonetia alliance are identical between plastome and nrDNA trees, supporting the maintenance of Malaisia and the resurrection of Allaeanthus. The phylogenomic relationships also indicate that the monoecy in B. monoica is a derived state, possibly resulting from hybridization between the dioecious B. kaempferi (♀) and B. papyrifera (♂). Based on the hypervariable ndhF-rpl32 intergenic spacer selected by sliding window analysis, phylogeographic analysis indicates that B. monoica is the sole maternal parent of B. × kazinoki and that daknamu carries multiple haplotypes, while only one haplotype was detected in kōzo. Because hybridizations between B. monoica and B. papyrifera are unidirectional and have occurred rarely in nature, our data suggest that daknamu might have originated via deliberate hybrid breeding selected for making hanji in Korea. On the contrary, kōzo appears to have a single origin and the possibility of a Korean origin cannot be ruled out.

  相似文献   

15.
An entomological survey was conducted from July-December 2009 and September-December 2010, as part of the epidemiological monitoring of American cutaneous leishmaniasis (ACL) in the municipality of Lábrea, state of Amazonas (AM), Brazil. Sandflies were collected using CDC light traps installed in intra and peridomiciliary locations, as well as the border of forested areas around houses where autochthonous cases of ACL were recorded. A total of 510 sandflies belonging to 26 species were collected. The most abundant species was Nyssomyia antunesi (44.5%) followed by Evandromyia walkeri (10.6%) and Micropygomyia rorotaensis (9.8%). Here we also describe Evandromyia (Aldamyia) apurinan sp. nov. and report new records for Trichophoromyia flochi and Evandromyia sipani in AM and Brazil, respectively. Our results describe the composition of the sandfly fauna in the south of AM and suggest Ny. antunesi as the putative vector in the transmission of Leishmania in this area of the Amazon Region.  相似文献   

16.
Esenbeckia (Esenbeckia) rafaeli, sp.nov. is described and figured from nine specimens collected in Carolina, state of Maranh?o, Brazil. The new species is compared with the species Esenbeckia (Esenbeckia) laticlava Wilkerson & Fairchild, 1983; Esenbeckia (Esenbeckia) bitriangulata Lutz & Castro, 1935 e Esenbeckia (Esenbeckia) enderleini Kr?ber, 1931.  相似文献   

17.
18.
19.
20.
An ionically unbound and thermostable polyphenol oxidase (PPO) was extracted from the leaf of Musa paradisiaca. The enzyme was purified 2.54-fold with a total yield of 9.5% by ammonium sulfate precipitation followed by Sephadex G-100 gel filtration chromatography. The purified enzyme exhibited a clear single band on native polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS) PAGE. It was found to be monomeric protein with molecular mass of about 40 kD. The zymographic study using crude extract as enzyme source showed a very clear band around 40 kD and a faint band at around 15 kD, which might be isozymes. The enzyme was optimally active at pH 7.0 and 50°C temperature. The enzyme was active in wide range of pH (4.0–9.0) and temperature (30–90°C). From the thermal inactivation studies in the range 60–75°C, the half-life (t1/2) values of the enzyme ranged from 17 to 77 min. The inactivation energy (Ea) value of PPO was estimated to be 91.3 kJ mol?1. It showed higher specificity with catechol (Km = 8 mM) as compared to 4-methylcatechol (Km = 10 mM). Among metal ions and reagents tested, Cu2+, Fe2+, Hg2+, Mn2+, Ni2+, protocatechuic acid, and ferrulic acid enhanced the enzyme activity, while K+, Na+, Co2+, kojic acid, ascorbic acid, ethylenediamine tetraacetic acid (EDTA), sodium azide, β-mercaptoethanol, and L-cysteine inhibited the activity of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号