首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Onion (Allium cepa) was grown in the field within temperature gradient tunnels (providing about ‐2.5°C to +2.5°C from outside temperatures) maintained at either 374 or 532 μmol mol?1 CO2. Plant leaf area was determined non‐destructively at 7 day intervals until the time of bulbing in 12 combinations of temperature and CO2 concentration. Gas exchange was measured in each plot at the time of bulbing, and the carbohydrate content of the leaf (source) and bulb (sink) was determined. Maximum rate of leaf area expansion increased with mean temperature. Leaf area duration and maximum rate of leaf area expansion were not significantly affected by CO2. The light‐saturated rates of leaf photosynthesis (Asat) were greater in plants grown at normal than at elevated CO2 concentrations at the same measurement CO2 concentration. Acclimation of photosynthesis decreased with an increase in growth temperature, and with an increase in leaf nitrogen content at elevated CO2. The ratio of intercellular to atmospheric CO2 (C1/C3 ratio) was 7.4% less for plants grown at elevated compared with normal CO2. Asat in plants grown at elevated CO2 was less than in plants grown at normal CO2 when compared at the same C1. Hence, acclimation of photosynthesis was due both to stomatal acclimation and to limitations to biochemical CO2 fixation. Carbohydrate content of the onion bulbs was greater at elevated than at normal CO2. In contrast, carbohydrate content was less at elevated compared with normal CO2 in the leaf sections in which CO2 exchange was measured at the same developmental stage. Therefore, acclimation of photosynthesis in fully expanded onion leaves was detected despite the absence of localised carbohydrate accumulation in these field‐grown crops.  相似文献   

2.
The effects of long‐term (4 year) CO2 enrichment (70 Pa versus 35 Pa) and nitrogen nutrition (8 mm versus 1 mm NO3) on biomass accumulation and the development of photosynthetic capacity in leaves of cork oak (Quercus suber L., a Mediterranean evergreen tree) were studied. The evolution of photosynthetic parameters with leaf development was estimated by fitting the biochemical model of Farquhar et al. (Planta 149, 78–90, 1980) with modifications by Sharkey (Botanical Review 78, 71–75, 1985) to ACi response curves. CO2 enrichment had a small reduction effect on the development of the maximum CO2 fixation capacity by Rubisco (VCmax), and no effect over maximum electron transport capacity (Jmax), day‐time respiration (Rd) and Triose‐P utilization (TPU). However, there was a statistically significant effect of N fertilization and the interaction CO2 × N over the evolution of VCmax, Jmax and TPU. Relative stomatal limitation (estimated from ACi curves) was higher (+20%) for plants grown under ambient CO2 than for plants grown under elevated CO2. There was a significant effect of CO2 and N fertilization over total biomass accumulation as well as leaf area. Plants grown at elevated CO2 had 27% more biomass than plants grown at ambient CO2 when given high N. However, for plants grown under low N there was no significant effect of CO2 enrichment on biomass accumulation. Plants grown under low N also had significantly higher root : shoot ratios whereas there were no differences between CO2 treatments. The larger biomass accumulation of Q. suber under elevated CO2 is attributable to a higher availability of CO2 coupled to a larger leaf area, with no significant decrease in photosynthetic capacity under CO2 enrichment and elevated N fertilization. For low N fertilization, the effects of CO2 enrichment over leaf area and biomass accumulation are lost, suggesting that in native ecosystems with low N availability, the effects of CO2 enrichment may be insignificant.  相似文献   

3.
Native scrub‐oak communities in Florida were exposed for three seasons in open top chambers to present atmospheric [CO2] (approx. 350 μmol mol?1) and to high [CO2] (increased by 350 μmol mol?1). Stomatal and photosynthetic acclimation to high [CO2] of the dominant species Quercus myrtifolia was examined by leaf gas exchange of excised shoots. Stomatal conductance (gs) was approximately 40% lower in the high‐ compared to low‐[CO2]‐grown plants when measured at their respective growth concentrations. Reciprocal measurements of gs in both high‐ and low‐[CO2]‐grown plants showed that there was negative acclimation in the high‐[CO2]‐grown plants (9–16% reduction in gs when measured at 700 μmol mol?1), but these were small compared to those for net CO2 assimilation rate (A, 21–36%). Stomatal acclimation was more clearly evident in the curve of stomatal response to intercellular [CO2] (ci) which showed a reduction in stomatal sensitivity at low ci in the high‐[CO2]‐grown plants. Stomatal density showed no change in response to growth in high growth [CO2]. Long‐term stomatal and photosynthetic acclimation to growth in high [CO2] did not markedly change the 2·5‐ to 3‐fold increase in gas‐exchange‐derived water use efficiency caused by high [CO2].  相似文献   

4.
The effects of CO2 enrichment on photosynthesis and ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) in current year and 1-year-old needles on the same branch were studied on Pinus radiata D. Don. trees growing for 4 years in large, open-top chambers at ambient (36 Pa) and elevated (65 Pa) CO2 partial pressures. At this age trees were 3·5–4 m tall. Measurements made late in the growing cycle (March) showed that photosynthetic rates at the growth CO2 concentration [(pCO2)a] were lower in 1-year-old needles of trees grown at elevated CO2 concentrations than in those of trees grown at ambient (pCO2)a. At elevated CO2 concentrations Vcmax (maximum carboxylation rate) was reduced by 13% and Jmax (RuBP regeneration capacity mediated by maximum electron transport rate) by 17%. This corresponded with photosynthetic rates at the growth (pCO2)a of 4·68 ± 0·41 μmol m–2 s–1 and 6·15 ± 0·46 μmol m–2 s–1 at 36 and 65 Pa, respectively (an enhancement of 31%). In current year needles photosynthetic rates at the growth (pCO2)a were 6·2 ± 0·72 μmol m–2 s–1 at 36 Pa and 10·15 ± 0·64 μmol m–2 s–1 at 65 Pa (an enhancement of 63%). The smaller enhancement of photosynthesis in 1-year-old needles at 65 Pa was accompanied by a reduction in Rubisco activity (39%) and content (40%) compared with that at 36 Pa. Starch and sugar concentrations in 1-year-old needles were not significantly different in the CO2 treatments. There was no evidence in biochemical parameters for down-regulation at elevated (pCO2)a in fully fexpanded needles of the current year cohort. These data show that enhancement of photosynthesis continues to occur in needles after 4 years’ exposure to elevated CO2 concentrations. Photosynthetic acclimation reduces the degree of this enhancement, but only in needles after 1 year of growth. Thus, responses to elevated CO2 concentration change during the lifetime of needles, and acclimation may not be apparent in current year needles. This transitory effect is most probably attributable to the effects of developmental stage and proximity to actively growing shoots on sink strength for carbohydrates. The implications of such age-dependent responses are that older trees, in which the contribution of older needles to the photosynthetic biomass is greater than in younger trees, may become progressively more acclimated to elevated CO2 concentration.  相似文献   

5.
A number of studies have shown that relatively long-term exposure to elevated levels of CO2 can lead to the downward acclimation of photosynthesis. Although the exact mechanisms are not clearly understood, it has been suggested that such a downward adjustment may be more common under limited N availability. Here we examined the effect of N supply on the photosynthetic acclimation response of Helianthus annuus L. cv. Teddy Bear plants to elevated CO2 at three growth stages – 18, 38 and 56 d after emergence corresponding to vegetative, pre-flowering and flowering stages. Plants were grown at CO2 partial pressures of 37 or 70 Pa, and supplied with 0.5, 2.5 or 5 mol·m–3 N. After 18 d of treatment, photosynthetic capacity of H. annuus as evaluated by parameters derived from the A-Ci data (Rubisco carboxylation capacity, Vc,max; electron transport capacity, Jmax; and capacity for triose phosphate utilization, TPU) showed no acclimation to elevated CO2. The leaf nitrogen concentration, [N], and total non-structural carbohydrates, [TNC], were also comparable between ambient- and elevated-CO2-grown plants. However, all these photosynthetic parameters as well as leaf [N], but not [TNC], significantly increased in response to N supply. Similarly, after 38 and 56 d of exposure to CO2 treatments, photosynthetic capacities, foliar [N] and [TNC] did not significantly differ between ambient- and elevated-CO2 plants. These results suggest that H. annuus plants maintained their photosynthetic capacity during long-term exposure to elevated CO2 because of their capacity to maintain leaf N-status. It is further suggested that plant capacity to maintain the balance between C and N acquisition rather than simply N-supply level, may determine whether photosynthetic acclimation in response to elevated CO2 occurs or not.  相似文献   

6.
Leaf 15N signature is a powerful tool that can provide an integrated assessment of the nitrogen (N) cycle and whether it is influenced by rising atmospheric CO2 concentration. We tested the hypothesis that elevated CO2 significantly changes foliage δ15N in a wide range of plant species and ecosystem types. This objective was achieved by determining the δ15N of foliage of 27 field‐grown plant species from six free‐air CO2 enrichment (FACE) experiments representing desert, temperate forest, Mediterranean‐type, grassland prairie, and agricultural ecosystems. We found that within species, the δ15N of foliage produced under elevated CO2 was significantly lower (P<0.038) compared with that of foliage grown under ambient conditions. Further analysis of foliage δ15N by life form and growth habit revealed that the CO2 effect was consistent across all functional groups tested. The examination of two chaparral shrubs grown for 6 years under a wide range of CO2 concentrations (25–75 Pa) also showed a significant and negative correlation between growth CO2 and leaf δ15N. In a select number of species, we measured bulk soil δ15N at a depth of 10 cm, and found that the observed depletion of foliage δ15N in response to elevated CO2 was unrelated to changes in the soil δ15N. While the data suggest a strong influence of elevated CO2 on the N cycle in diverse ecosystems, the exact site(s) at which elevated CO2 alters fractionating processes of the N cycle remains unclear. We cannot rule out the fact that the pattern of foliage δ15N responses to elevated CO2 reported here resulted from a general drop in δ15N of the source N, caused by soil‐driven processes. There is a stronger possibility, however, that the general depletion of foliage δ15N under high CO2 may have resulted from changes in the fractionating processes within the plant/mycorrhizal system.  相似文献   

7.
Soil C sequestration may mitigate rising levels of atmospheric CO2. However, it has yet to be determined whether net soil C sequestration occurs in N‐rich grasslands exposed to long‐term elevated CO2. This study examined whether N‐fertilized grasslands exposed to elevated CO2 sequestered additional C. For 10 years, Lolium perenne, Trifolium repens, and the mixture of L. perenne/T. repens grasslands were exposed to ambient and elevated CO2 concentrations (35 and 60 Pa pCO2). The applied CO2 was depleted in δ13C and the grasslands received low (140 kg ha?1) and high (560 kg ha?1) rates of 15N‐labeled fertilizer. Annually collected soil samples from the top 10 cm of the grassland soils allowed us to follow the sequestration of new C in the surface soil layer. For the first time, we were able to collect dual‐labeled soil samples to a depth of 75 cm after 10 years of elevated CO2 and determine the total amount of new soil C and N sequestered in the whole soil profile. Elevated CO2, N‐fertilization rate, and species had no significant effect on total soil C. On average 9.4 Mg new C ha?1 was sequestered, which corresponds to 26.5% of the total C. The mean residence time of the C present in the 0–10 cm soil depth was calculated at 4.6±1.5 and 3.1±1.1 years for L. perenne and T. repens soil, respectively. After 10 years, total soil N and C in the 0–75 cm soil depth was unaffected by CO2 concentration, N‐fertilization rate and plant species. The total amount of 15N‐fertilizer sequestered in the 0–75 cm soil depth was also unaffected by CO2 concentration, but significantly more 15N was sequestered in the L. perenne compared with the T. repens swards: 620 vs. 452 kg ha?1 at the high rate and 234 vs. 133 kg ha?1 at the low rate of N fertilization. Intermediate values of 15N recovery were found in the mixture. The fertilizer derived N amounted to 2.8% of total N for the low rate and increased to 8.6% for the high rate of N application. On average, 13.9% of the applied 15N‐fertilizer was recovered in the 0–75 cm soil depth in soil organic matter in the L. perenne sward, whereas 8.8% was recovered under the T. repens swards, indicating that the N2‐fixing T. repens system was less effective in sequestering applied N than the non‐N2‐fixing L. perenne system. Prolonged elevated CO2 did not lead to an increase in whole soil profile C and N in these fertilized pastures. The potential use of fertilized and regular cut pastures as a net soil C sink under long‐term elevated CO2 appears to be limited and will likely not significantly contribute to the mitigation of anthropogenic C emissions.  相似文献   

8.
Reduced soil N availability under elevated CO2 may limit the plant's capacity to increase photosynthesis and thus the potential for increased soil C input. Plant productivity and soil C input should be less constrained by available soil N in an N2‐fixing system. We studied the effects of Trifolium repens (an N2‐fixing legume) and Lolium perenne on soil N and C sequestration in response to 9 years of elevated CO2 under FACE conditions. 15N‐labeled fertilizer was applied at a rate of 140 and 560 kg N ha?1 yr?1 and the CO2 concentration was increased to 60 Pa pCO2 using 13C‐depleted CO2. The total soil C content was unaffected by elevated CO2, species and rate of 15N fertilization. However, under elevated CO2, the total amount of newly sequestered soil C was significantly higher under T. repens than under L. perenne. The fraction of fertilizer‐N (fN) of the total soil N pool was significantly lower under T. repens than under L. perenne. The rate of N fertilization, but not elevated CO2, had a significant effect on fN values of the total soil N pool. The fractions of newly sequestered C (fC) differed strongly among intra‐aggregate soil organic matter fractions, but were unaffected by plant species and the rate of N fertilization. Under elevated CO2, the ratio of fertilizer‐N per unit of new C decreased under T. repens compared with L. perenne. The L. perenne system sequestered more 15N fertilizer than T. repens: 179 vs. 101 kg N ha?1 for the low rate of N fertilization and 393 vs. 319 kg N ha?1 for the high N‐fertilization rate. As the loss of fertilizer‐15N contributed to the 15N‐isotope dilution under T. repens, the input of fixed N into the soil could not be estimated. Although N2 fixation was an important source of N in the T. repens system, there was no significant increase in total soil C compared with a non‐N2‐fixing L. perenne system. This suggests that N2 fixation and the availability of N are not the main factors controlling soil C sequestration in a T. repens system.  相似文献   

9.
Understanding the impacts of atmospheric [CO2] and drought on leaf respiration (R) and its response to changes in temperature is critical to improve predictions of plant carbon‐exchange with the atmosphere, especially at higher temperatures. We quantified the effects of [CO2]‐enrichment (+240 ppm) on seasonal shifts in the diel temperature response of R during a moderate summer drought in Eucalyptus saligna growing in whole‐tree chambers in SE Australia. Seasonal temperature acclimation of R was marked, as illustrated by: (1) a downward shift in daily temperature response curves of R in summer (relative to spring); (2)≈60% lower R measured at 20oC (R20) in summer compared with spring; and (3) homeostasis over 12 months of R measured at prevailing nighttime temperatures. R20, measured during the day, was on average 30–40% higher under elevated [CO2] compared with ambient [CO2] across both watered and droughted trees. Drought reduced R20 by≈30% in both [CO2] treatments resulting in additive treatment effects. Although [CO2] had no effect on seasonal acclimation, summer drought exacerbated the seasonal downward shift in temperature response curves of R. Overall, these results highlight the importance of seasonal acclimation of leaf R in trees grown under ambient‐ and elevated [CO2] as well as under moderate drought. Hence, respiration rates may be overestimated if seasonal changes in temperature and drought are not considered when predicting future rates of forest net CO2 exchange.  相似文献   

10.
Growth in elevated pCO2 generally leads to a stimulation of net CO2 uptake rate. However, with long‐term growth the magnitude of this stimulation is often reduced. This phenomenon, termed acclimation, has been largely attributed to a loss of Rubisco (ribulose 1,5 bisphosphate carboxylase). The mechanism by which Rubisco content declines with long‐term growth is not certain. There is evidence for a sugar‐mediated, selective down‐regulation of Rubisco protein and also for a non‐selective loss of total leaf nitrogen, which impacts Rubisco levels indirectly. Over a season, and including needles at different developmental stages, we investigated these two potential mechanisms in well‐developed Pinus taeda grown for approximately 2·5 years in elevated (56 Pa) pCO2 using free air CO2 enrichment technology. Photosynthetic acclimation, as manifested by a decrease in the activity of Rubisco measured both in vivo (? 25%, via gas exchange) and in vitro (? 35%, via enzyme assays), was observed with growth in elevated pCO2. This acclimation was observed in one‐year‐old needles but not in current‐year needles. Needles exhibiting acclimation had reduced levels of Lsu Rubisco (? 25%) and an increased foliar carbohydrate content (+ 30%) but showed no evidence of a decrease in needle nitrogen or total protein content. These data support the concept that photosynthetic acclimation in elevated pCO2 is caused by a selective down‐regulation of Rubisco.  相似文献   

11.
We carried out a factorial experiment to explore the effect of doubled CO2 concentration and a 3 °C temperature increase on the development of a complete generation of the beetles Octotoma championi Baly and O. scabripennis Guérin‐Méneville (Coleoptera: Chrysomelidae). These species are biological control agents of Lantana camara L. (Verbenaceae), with a leaf‐mining larval phase and free‐living, leaf‐chewing adults. Plants grown at elevated CO2 had enhanced above‐ground biomass, thicker leaves, reduced nitrogen concentration, and increased C:N ratios. Under the high temperature treatment, plants grown at ambient CO2 suffered wilting and premature leaf loss, despite daily watering; this effect was ameliorated at elevated CO2. The wilting of plants in the ambient CO2/high temperature treatment reduced the emergence success of the beetles, particularly O. championi. Development time was accelerated by approximately 10–13 days at the higher temperature, but was not affected by CO2. Neither CO2 nor temperature affected adult beetle weight. Consumption rates of free‐living beetles were not affected by either CO2 or temperature. By contrast, in the short‐term trials using excised foliage, beetles given no choice between ambient and elevated CO2‐grown foliage, consumed more from ambient plants. When beetles were offered a choice between foliage grown at the two CO2 levels, O. championi did not display a significant preference but O. scabripennis consumed more ambient CO2‐grown foliage when feeding at the lower temperature. This study indicates that under future conditions of higher temperatures, amelioration of water stress in host plants growing in elevated CO2 may benefit some endophagous insects by reducing premature leaf loss. Under some circumstances, this benefit may outweigh the deleterious effects of lower leaf nitrogen. Our results also indicate that foliage consumption under elevated CO2 by mobile, adult insects on whole plants may not be significantly increased, as was previously indicated by short‐term experiments using excised foliage.  相似文献   

12.
Physiological processes that modulate photosynthetic acclimation to rising atmospheric CO2 concentration are subjects of intense discussion recently. Apparently, the down-regulation of photosynthesis under elevated CO2 is not understood clearly. In the present study, the response of soybean (Glycine max L.) to CO2 enrichment was examined in terms of nitrogen partitioning and water relation. The plants grown under potted conditions without combined N application were exposed to either ambient air (38 Pa CO2) or CO2 enrichment (100 Pa CO2) for short (6 days) and long (27 days). Plant biomass, apparent photosynthetic rate, transpiration rate and 15N uptake and partitioning were measured consecutively after elevated CO2 treatment. Long-term exposure reduced photosynthetic rate, stomatal conductance and transpiration rate. In contrast, short-term exposure increased biomass production of soybean due to increase in dry weight of leaves. Leaf N concentration tended to decrease with CO2 enrichment, however such difference was not true for stem and roots.A close correlation was observed between transpiration rate and 15N partitioned into leaves, suggesting that transpiration plays an important role on nitrogen partitioning to leaves. In conclusion existence of a feed back mechanism for photosynthetic acclimation has been proposed. Down-regulation of photosynthetic activity under CO2 enrichment is caused by decreasing leaf N concentration, and reduced rate of transpiration owing to decreased stomatal conductance is partially responsible for poor N translocation.  相似文献   

13.
The aim of the present study was to analyse whether offspring of mature Quercus ilex trees grown under life‐long elevated pCO2 show alterations in the physiological response to elevated pCO2 in comparison with those originating from mature trees grown at current ambient pCO2. To investigate changes in C‐ (for changes in photosynthesis, biomass and lignin see Polle, McKee & Blaschke Plant, Cell and Environment 24, 1075–1083, 2001), N‐, and S‐metabolism soluble sugar, soluble non‐proteinogenic nitrogen compounds (TSNN), nitrate reductase (NR), thiols, adenosine 5′‐phosphosulphate (APS) reductase, and anions were analysed. For this purpose Q. ilex seedlings were grown from acorns of mother tree stands at a natural spring site (elevated pCO2) and a control site (ambient pCO2) of the Laiatico spring, Central Italy. Short‐term elevated pCO2 exposure of the offspring of control oaks lead to higher sugar contents in stem tissues, to a reduced TSNN content in leaves, and basipetal stem tissues, to diminished thiol contents in all tissues analysed, and to reduced APS reductase activity in both, leaves and roots. Most of the components of C‐, N‐ and S‐metabolism including APS reductase activity which were reduced due to short‐term elevated pCO2 exposure were recovered by life‐long growth under elevated pCO2 in the offspring of spring oaks. Still TSNN contents in phloem exudates increased, nitrate contents in lateral roots and glutathione in leaves and phloem exudates remained reduced in these plants. The present results demonstrated that metabolic adaptations of Q. ilex mother trees to elevated pCO2 can be passed to the next generation. Short‐ and long‐term effects on source‐to‐sink relation and physiological and genetic acclimation to elevated pCO2 are discussed.  相似文献   

14.
The capacity for photosynthesis is often affected when plants are grown in air with elevated CO2 partial pressure. We grew Phaseolus vulgaris L. in 35 and 65 Pa CO2 and measured photosynthetic parameters. When assayed at the growth CO2 level, photosynthesis was equal in the two CO2 treatments. The maximum rate of ribulose-1,5-bisphosphate (RuBP) consumption was lower in plants grown at 65 Pa, but the CO2 partial pressure at which the maximum occurred was higher in the high-CO2-grown plants, indicating acclimation to high CO2. The acclimation of RuBP consumption to CO2 involved a reduction of the activity of RuBP carboxylase which resulted from reduced carbamylation, not a loss of protein. The rate of RuBP consumption declined with CO2 when the CO2 partial pressure was above 50Pa in plants grown under both CO2 levels. This was caused by feedback inhibition as judged by a lack of response to removing O2 from the air stream. The rate of photosynthesis at high CO2 was lower in the high-CO2-grown plants and this was correlated with reduced activity of sucrose-phosphate synthase. This is only the second report of O2-insensitive photosynthesis under growth conditions for plants grown in high CO2.  相似文献   

15.
16.
The effects of global change on the emission rates of isoprene from plants are not clear. A factor that can influence the response of isoprene emission to elevated CO2 concentrations is the availability of nutrients. Isoprene emission rate under standard conditions (leaf temperature: 30°C, photosynthetically active radiation (PAR): 1000 μmol photons m?2 s?1), photosynthesis, photosynthetic capacity, and leaf nitrogen (N) content were measured in Quercus robur grown in well‐ventilated greenhouses at ambient and elevated CO2 (ambient plus 300 ppm) and two different soil fertilities. The results show that elevated CO2 enhanced photosynthesis but leaf respiration rates were not affected by either the CO2 or nutrient treatments. Isoprene emission rates and photosynthetic capacity were found to decrease with elevated CO2, but an increase in nutrient availability had the converse effect. Leaf N content was significantly greater with increased nutrient availability, but unaffected by CO2. Isoprene emission rates measured under these conditions were strongly correlated with photosynthetic capacity across the range of different treatments. This suggests that the effects of CO2 and nutrient levels on allocation of carbon to isoprene production and emission under near‐saturating light largely depend on the effects on photosynthetic electron transport capacity.  相似文献   

17.
Few studies have investigated the effects of elevated CO2 on the physiology of symbiotic N2-fixing trees. Tree species grown in low N soils at elevated CO2 generally show a decline in photosynthetic capacity over time relative to ambient CO2 controls. This negative adjustment may be due to a reallocation of leaf N away from the photosynthetic apparatus, allowing for more efficient use of limiting N. We investigated the effect of twice ambient CO2 on net CO2 assimilation (A), photosynthetic capacity, leaf dark respiration, and leaf N content of N2-fixing Alnus glutinosa (black alder) grown in field open top chambers in a low N soil for 160 d. At growth CO2, A was always greater in elevated compared to ambient CO2 plants. Late season A vs. internal leaf p(CO2) response curves indicated no negative adjustment of photosynthesis in elevated CO2 plants. Rather, elevated CO2 plants had 16% greater maximum rate of CO2 fixation by Rubisco. Leaf dark respiration was greater at elevated CO2 on an area basis, but unaffected by CO2 on a mass or N basis. In elevated CO2 plants, leaf N content (μg N cm?2) increased 50% between Julian Date 208 and 264. Leaf N content showed little seasonal change in ambient CO2 plants. A single point acetylene reduction assay of detached, nodulated root segments indicated a 46% increase in specific nitrogenase activity in elevated compared to ambient CO2 plants. Our results suggest that N2-fixing trees will be able to maintain high A with minimal negative adjustment of photosynthetic capacity following prolonged exposure to elevated CO2 on N-poor soils.  相似文献   

18.
Elevated atmospheric CO2 may alter decomposition rates through changes in plant material quality and through its impact on soil microbial activity. This study examines whether plant material produced under elevated CO2 decomposes differently from plant material produced under ambient CO2. Moreover, a long‐term experiment offered a unique opportunity to evaluate assumptions about C cycling under elevated CO2 made in coupled climate–soil organic matter (SOM) models. Trifolium repens and Lolium perenne plant materials, produced under elevated (60 Pa) and ambient CO2 at two levels of N fertilizer (140 vs. 560 kg ha?1 yr?1), were incubated in soil for 90 days. Soils and plant materials used for the incubation had been exposed to ambient and elevated CO2 under free air carbon dioxide enrichment conditions and had received the N fertilizer for 9 years. The rate of decomposition of L. perenne and T. repens plant materials was unaffected by elevated atmospheric CO2 and rate of N fertilization. Increases in L. perenne plant material C : N ratio under elevated CO2 did not affect decomposition rates of the plant material. If under prolonged elevated CO2 changes in soil microbial dynamics had occurred, they were not reflected in the rate of decomposition of the plant material. Only soil respiration under L. perenne, with or without incorporation of plant material, from the low‐N fertilization treatment was enhanced after exposure to elevated CO2. This increase in soil respiration was not reflected in an increase in the microbial biomass of the L. perenne soil. The contribution of old and newly sequestered C to soil respiration, as revealed by the 13C‐CO2 signature, reflected the turnover times of SOM–C pools as described by multipool SOM models. The results do not confirm the assumption of a negative feedback induced in the C cycle following an increase in CO2, as used in coupled climate–SOM models. Moreover, this study showed no evidence for a positive feedback in the C cycle following additional N fertilization.  相似文献   

19.
 Seeds of Gliricidia sepium, a fast-growing woody legume native to seasonal tropical forests of Central America, were inoculated with N2-fixing Rhizobium bacteria and grown in environmentally controlled glasshouses for 67–71 days under ambient CO2 (35 Pa) and elevated CO2 (70 Pa) conditions. Seedlings were watered with an N-free, but otherwise complete, nutrient solution such that bacterial N2 fixation was the only source of N available to the plant. The primary objective of our study was to quantify the effect of CO2 enrichment on the kinetics of photosynthate transport to nodules and determine its subsequent effect on N2 fixation. Photosynthetic rates and carbon storage in leaves were higher in elevated CO2 plants indicating that more carbon was available for transport to nodules. A 14CO2 pulse-chase experiment demonstrated that photosynthetically fixed carbon was supplied by leaves to nodules at a faster rate when plants were grown in elevated CO2. Greater rates of carbon supply to nodules did not affect nodule mass per plant, but did increase specific nitrogenase activity (SNA) and total nitrogenase activity (TNA) resulting in greater N2 fixation. In fact, a 23% increase in the rate of carbon supplied to nodules coincided with a 23% increase in SNA for plants grown in elevated CO2, suggesting a direct correlation between carbon supply and nitrogenase activity. The improvement in plant N status produced much larger plants when grown in elevated CO2. These results suggest that Gliricidia, and possibly other N2-fixing trees, may show an early and positive growth response to elevated CO2, even in severely N-deficient soils, due to increased nitrogenase activity. Received: 27 February 1996 / Accepted: 19 June 1996  相似文献   

20.
The short‐term and long‐term effects of elevated CO2 on photosynthesis and respiration were examined in cultures of the marine brown macroalga Hizikia fusiformis (Harv.) Okamura grown under ambient (375 μL · L?1) and elevated (700 μL · L?1) CO2 concentrations and at low and high N availability. Short‐term exposure to CO2 enrichment stimulated photosynthesis, and this stimulation was maintained with prolonged growth at elevated CO2, regardless of the N levels in culture, indicating no down‐regulation of photosynthesis with prolonged growth at elevated CO2. However, the photosynthetic rate of low‐N‐grown H. fusiformis was more responsive to CO2 enrichment than that of high‐N‐grown algae. Elevation of CO2 concentration increased the value of K1/2(Ci) (the half‐saturation constant) for photosynthesis, whereas high N supply lowered it. Neither short‐term nor long‐term CO2 enrichment had inhibitory effects on respiration rate, irrespective of the N supply, under which the algae were grown. Under high‐N growth, the Q10 value of respiration was higher in the elevated‐CO2‐grown algae than the ambient‐CO2‐grown algae. Either short‐ or long‐term exposure to CO2 enrichment decreased respiration as a proportion of gross photosynthesis (Pg) in low‐N‐grown H. fusiformis. It was proposed that in a future world of higher atmospheric CO2 concentration and simultaneous coastal eutrophication, the respiratory carbon flux would be more sensitive to changing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号