首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We have examined the distribution of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) and the calcium binding proteins (CBPs), calbindin D-28k (CB), calretinin (CR) and parvalbumin (PV), in the trigeminal nucleus oralis (Sp5O). NADPH-d was detected by histochemistry while CBP was detected by immunohistochemistry. NADPH-d-positive neurons were distributed in the medial rostro-dorsomedial part (RDMsp5O) and dorsomedial part (DMsp5O) of Sp5O, and the rostrolateral part of the nucleus of the solitary tract (NTS). CB- and CR-positive neurons were mainly distributed in the dorsal part of Sp5O. In contrast, PV-positive neurons were mainly distributed in the ventral part of Sp5O. NADPH-d colocalized with CB (40%) and CR (20%) but not with PV in neurons of DMsp5O/NTS. The mean cell sizes of neurons in RDMsp5O were larger than those in DMsp5O/NTS. PV-positive neurons were larger than NADPH-d-positive neurons. NADPH-d-, CB- and CR-positive neurons were generally small in RDMsp5O and DMsp5O/NTS. Few neurons were retrogradely labeled in RDMsp5O and DMsp5O from the thalamus, when numerous labeled neurons were in the principal and interpolar nuclei. These data indicate that NADPH-d histochemistry and CB, CR and PV immunohistochemistry identify a discrete cell population in Sp5O. Those labeled neurons in RDMsp5O and DMsp5O/NTS were considered to be involved in sensorimotor reflexive function of the intra-oral structures.  相似文献   

2.
By means of NADPH-diaphorase (NADPH-d) histochemistry and nitric oxide synthase (NOS) immunohistochemistry, we demonstrate that considerable numbers of NADPH-d-positive neurons are distributed throughout the canine superior cervical ganglion (SCG). These neurons also show NOS immunoreactivity. This finding indicates that NADPH-d histochemistry, a simple and reliable technique, can be used as a reliable marker of NOS activity in the sympathetic innervation of canine head and neck. The present findings suggest that the participation of nitric oxide in the SCG differs greatly between species.  相似文献   

3.
Ni TS  Wu SX  Li YQ 《Neuro-Signals》2002,11(2):88-94
Protein kinase C gamma isoform (PKCgamma) is present at high levels in the spinal and medullary dorsal horns and is thought to play a role in the sensitization of dorsal horn neurons in certain pain states. Calbindin-D28k (CB), calretinin (CR) and parvalbumin (PV) are the most commonly expressed calcium-binding proteins and are located abundantly in the medullary dorsal horn (also called the caudal subnucleus of the spinal trigeminal nucleus). In the present study, immunofluorescence histochemical double staining for PKCgamma and CB, CR or PV was performed in the rat medullary dorsal horn. Most of the PKCgamma-, CB-, CR- and PV-immunoreactive neurons were observed in lamina II; some were also encountered in lamina I and lamina III of the medullary dorsal horn. Neurons co-expressing CB/PKCgamma, CR/PKCgamma and PV/PKCgamma were also mainly found in lamina II, while in lamina I and lamina III, only a few neurons co-expressing CB/PKCgamma, CR/PKCgamma and PV/PKCgamma were encountered. The percentages of neurons co-expressing CB/PKCgamma in the total numbers of CB- and PKCgamma-immunoreactive neurons were 6.7 and 5.9%, respectively. Of the total numbers of CR- and PKCgamma-immunoreactive neurons, 5.0 and 5.6%, respectively, showed both CR and PKCgamma immunoreactivities. The percentages of neurons co-expressing PV/PKCgamma in the total numbers of PV- and PKCgamma-immunoreactive neurons were 25.7 and 4.1%, respectively. Most of these neurons co-expressing CB/PKCgamma, CR/PKCgamma and PV/PKCgamma were small (/=36 microm) multipolar neurons were infrequently seen. The present results indicate that there are some neurons co-expressing CB/PKCgamma, CR/PKCgamma and PV/PKCgamma in the medullary dorsal horn. These neurons might play important roles in the nociceptive modulation from the oro-facial region.  相似文献   

4.
Immunofluorescence histochemical double-staining for preproenkephalin (PPE) and calbindin-D28k (CB), calretinin (CR) or parvalbumin (PV) were performed in the spinal trigeminal nucleus caudalis (Vc) of the rat. Neuronal cell bodies exhibiting PPE-like immunoreactivity were present in all laminae of the Vc, with a higher concentration in lamina II. Most of the CB-, CR- and PV-like immunoreactive neurons were located in lamina II, and some of them were also found in laminae I and III of the Vc. Some PPE-like immunoreactive neurons also showed CB-, CR-, or PV-like immunoreactivities. CB/PPE, CR/PPE and PV/PPE double-labelled neurons were mainly observed in lamina II. The percentages of CB/PPE double-labelled neurons in the total numbers of the CB- and PPE-like immunoreactive neurons were 3.5–1.5% and 3.3–15.7%, respectively. Of all CR- and PPE-like immunoreactive neurons, 4.7–13.5% and 3.7–14.2% showed both CR- and PPE-like immunoreactivities. The ratios of PV/PPE double-labelled neurons in all PV- and PPE-like immunoreactive neurons were 9.7–28.1% and 2.1–8.7%, respectively. The present results indicate that some enkephalinergic neurons in the Vc of the rat also contain calcium-binding proteins.  相似文献   

5.
通过研究大鼠中缝背核内远位触液神经元与一氧化氮合酶(NOS)阳性神经元的关系。以探讨一氧化氮(NO)是否是触液神经元在脑-脑脊液之间的信息传递有关,选用霍乱毒素亚单位B标记的辣根过氧化物酶(CB-HRP)逆行追踪与还原型尼可酰胺腺嘌呤二核苷磷酸(NADPH)黄递酶反应,CB-HRP标记的神经元密集分布于中缝背核,可见CB-HRP/NADPH-d双重标记的神经元,中缝背核内一部分远位触液神经元存在NOS,这些神经元在脑-脑脊液之间的信息传递中起着很重要的作用。  相似文献   

6.
Specific neuronal populations are known to express calcium binding proteins (CBP) such as calbindin (CB), parvalbumin (PV) and calretinin (CR). These CBP can act as calcium buffers that modify spatiotemporal characteristics of intracellular calcium transients and affect calcium homeostasis in neurons. It was recently shown that changes in neuronal CBP expression can have significant modulatory effect on synaptic transmission. Spinothalamic tract (STT) neurons form a major nociceptive pathway and they become sensitized after peripheral inflammation. In our experiments, expression of CBP in STT neurons was studied in a model of unilateral acute knee joint arthritis in rats. Altogether 377, 374 and 358 STT neurons in the segments L3-4 were evaluated for the presence of CB, PV and CR. On the contralateral (control) side 1%, 9% and 47% of the retrogradely labeled STT neurons expressed CB, PV and CR, respectively. On the ipsilateral (arthritic) side there was significantly more CB (23%) and PV (25%) expressing STT neurons, while the number of CR positive neurons (50%) did not differ. Our results show increased expression of fast (CB) and slow (PV) calcium binding proteins in STT neurons after induction of experimental arthritis. This suggests that change in CBP expression could have a significant effect on calcium homeostasis and possibly modulation of synaptic activity in STT neurons.  相似文献   

7.
Using immunohistochemistry and a tracer technique we investigated the distribution in the optic tectum of turtles (Emys orbicularis and Testudo horsfieldi) of the calcium-binding proteins (CaBPr) parvalbumin (PV), calbindin (CB) and calretinin (CR) before and after labeling of the nucleus rotundus (Rot) with horseradish peroxidase. The optic tectum activity of the cytochrome oxidase (CO) was studied in parallel. In the principal link of the tectofugal visual pathway (central gray layer, SGC) in both chelonian species, the sparse PV-ir as well as CB- and CR-ir neurons were found significantly varying both in number and the intensity of immunoreactivity of their bodies and dendrites. In contrast, the superficial (SGFS) and deeper periventricular (SGP) tectal layers comprised numerous cells immunoreactive to all three CaBPr in different proportions. Only few retrogradely labeled tectorotundal SGC neurons expressed PV, CB or CR. The very large PV-ir neurons in SGC and SAC were not retrogradely labeled; morphologically they matched the efferent neurons with descending projections. SGC neurons of two chelonian species differed in the level of CO activity. Intense immunoreactivity to all three CaBPr and high CO activity were detected in both species in SGFS neuropil with some differences in sublaminar distribution patterns. The peculiarities of the CaBPr and CO activity distribution patterns in different segments of SGC neurons are discussed as related to the laminar organization of the turtle tectum and its retinal innervation. It is suggested that in the projection tectorotundal SGC neurons the CaBPr are concentrated mainly in their distal dendrites that contact retinal afferents in the superficial retinorecipient tectal layer.  相似文献   

8.
Summary Accumulating evidence confirms that nitric oxide (NO), a versatile diffusible signaling molecule, contributes to controling of adult neurogenesis. We have previously shown the timing of NADPH-diaphorase (NADPH-d) positivity within the rat rostral migratory stream (RMS) during the first postnatal month. The present study was designed to describe further age-related changes of NO presence in this neurogenic region. The presence of NO synthesizing cells in the RMS was shown by NADPH-d histochemistry and neuronal nitric oxide synthase (nNOS) immunohistochemistry. The phenotypic identity of nitrergic cells was examined by double labeling with GFAP and NeuN. Systematic qualitative and quantitative analysis of NADPH-d-positive cells was performed in the neonatal (P14), adult(5 months) and aging (20 months) rat RMS. 1. Nitrergic cells with different distribution pattern and morphological characteristics were present in the RMS at all ages examined. In neonatal animals, small, moderately stained NADPH-d-positive cells were identified in the RMS vertical arm and in the RMS elbow. In adult and aging rats a few labeled cells could be also detected in the RMS horizontal arm. NADPH-d-positive cells in adult and aging rats were characterized by long varicose processes and displayed dark labeling in comparison to the neonatal group. 2. Double immunolabeling has revealed that nNOS-immunoreactivity co-localized with that of NeuN. This indicates that nitrergic cells within the RMS are neurons. 3. Quantitative analysis showed that the number of NADPH-d-positive cells increases with advancing age. The presence of NO producing cells in the RMS of neonatal adult and aging rats indicates, that this proliferating and migratory area is under the influence of NO throughout the entire life of the animals.  相似文献   

9.
The presence and localization of NADPH-diaphorase (NADPH-d) in the radial nerve cords of Patiria pectonifera was shown by electron histochemistry. NADPH-d-positive structures were found in ectoneural and hyponeural regions of the radial nerve cord. Ultrastructural localization of NADPH-d was detected in neurons, sensory cells, supporting cells, and in the nerve plexus. The highest enzymatic activity in ectoneural region of the radial nerve cord is due, presumably, to the involvement of NADPH in sensory signal processing.  相似文献   

10.
Calcium binding proteins (CBPs) regulate intracellular levels of calcium (Ca2+) ions. CBPs are particularly interesting from a morphological standpoint, because they are differentially expressed in certain sub-populations of cells in the nervous system of various species of vertebrate animals. However, knowledge on the cellular regulation governing such cell-specific CBP expression is still incomplete. In this work on the L7 segment of the cat spinal cord, we analyzed the localization and morphology of neurons expressing the CBPs calbindin-28 KD (CB), parvalbumin (PV), and calretinin (CR), and co-expressing CB and PV, CB and CR, and PV and CR. Single CBP-positive (+) neurons showed specific distributions: (1) CB was present in small neurons localized in laminae I, II, III and X, in small to medium size neurons in laminae III–VI, and in medium to large neurons in laminae VI–VIII; (2) PV was present in small size neurons in laminae III and IV and in medial portions of laminae V and VI, medium neurons and in lamina X at the border with lamina VII, in medium to large neurons in laminae VII and VIII; (3) CR labeling was detected in small size neurons in laminae I, II, III and VIII, in medium to large size neurons in laminae I and III–VII, and in small to medium size neurons in lamina X. Double labeled neurons were a small minority of the CBP+ cells. Co-expression of CB and PV was seen in 1 to 2% of the CBP+ cells, and they were detected in the ventral and intermediate portions of lamina VII and in lamina X. Co-localization of CB and CR was present in 0.3% of the cells and these cells were localized in lamina II. Double labeling for PV and CR occurred in 6% of the cells, and the cells were localized in ventral part of lamina VII and in lamina VIII. Overall, these results revealed distinct and reproducible patterns of localization of the neurons expressing single CBPs and co-expressing two of them. Distinct differences of CBP expression between cat and other species are discussed. Possible relations between the cat L7 neurons expressing different CBPs with the neurons previously analyzed in cat and other animals are suggested.  相似文献   

11.
Ma WL  Zhang WB  Zhang YF 《生理学报》2003,55(1):65-70
应用荧光金(FG)逆行束路追踪结合Fos和calbindin D-28k(CB)免疫荧光组织化学三重标记法,观察了大鼠三叉神经脊束间质核(INV)接受口面部皮肤和上消化道伤害性信息的CB神经元向臂旁核(PB)的投射。结果显示,口周刺激组FG逆标细胞和Fos免疫反应阳性细胞主要分布于注射和刺激同侧INV的背侧边缘旁核(PaMd)和三叉旁核(PaV);大量的CB免疫阳性细胞分布于双侧INV。同侧INV内FG逆标细胞中有77.3%呈CB免疫反应阳性,40.7%呈Fos免疫反应阳性。在FG和CB双标记的神经元中,又有一部分(约38.5%)为FG/CB/Fos三标细胞。上消化道刺激组的FG逆标细胞、CB免疫阳性细胞和FG/CB双标细胞的数量和分布与口周刺激组相似,但Fos免疫阳性细胞分布于双侧的INV。在同侧INV,FG/Fos双标细胞占FG逆标细胞总数的41.9%,FG/CB/Fos三标细胞占FG/CB双标细胞的52.0%。以上结果提示,INV直接投射到PB的CB神经元接受口面部皮肤和上消化道的伤害性信息,CB神经元可能参与经INV中继的外周伤害性信息向PB的传递。  相似文献   

12.
Using a histochemical technique, we examined distribution of the neurons containing a marker of nitric oxide synthase (NOS), NADPH-diaphorase (NADPH-d), on frontal slices of the medulla and upper cervical spinal segments of 4-day-old rats. It was demonstrated that NADPH-d-positive cells are present within the dorsal and ventral medullary respiratory groups. The highest density of the labeled middle-size multipolar neurons (27.9±2.6 cells per 0.1 mm2 of the slice) was observed in the rostral part of the ventral respiratory group, within the reticular lateral paragigantocellular nucleus. Similar NADPH-d-positive neurons were also observed in other reticular formation structures: rostroventrolateral reticular, gigantocellular, and ventral medullary nuclei, and in the ventral part of the paramedial nucleus. There were no labeled neurons in the lateral reticular nucleus. Single small and medium-size labeled neurons were found at all rostro-caudal levels of thenucl. ambiguous (nuclei retrofacialis, ambiguous, andretroam-biguous). Groups of NADPH-d-positive neurons were also revealed within the dorsal respiratory group, along the whole length of thenucl. tractus solitarii (mostly in its ventrolateral parts). Single labeled neurons were also observed in thenucl. n. hypoglossi, and their groups were observed in the dorsal motor part of thenucl. n. vagus. Involvement of the structures containing NADPH-d-positive neurons in the processes related to generation of the respiratory activity is discussed. Our neuroanatomical experiments prove that in early postnatal mammals NO is actively involved in generation and regulation of the medullary respiratory rhythm. Neirofiziologiya/Neurophysiology, Vol. 32, No. 2, pp. 128–136, March–April, 2000.  相似文献   

13.
Summary Nitric oxide (NO) is a ubiquitous gaseous neurotransmitter that has been ascribed to a large number of physiological roles in sensory neurons. It is produced by the enzyme nitric oxide synthase (NOS). To identify the NOS-containing structures of rat trigeminal primary afferent neurons, located in the trigeminal ganglion (TrG) and mesencephalic trigeminal nucleus (MTN), histochemistry to its selective marker nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) was applied in this study. In the TrG approximately half of the neuronal population was NADPH-d reactive. Strongly positive were neurons mainly of small-to-medium size. Neuronal profiles of large diameter were less intensely stained. In addition, NADPH-d-positive nerve fibers were dispersed throughout the ganglion. Nitrergic neurons were located in the caudal part and mesencephalic-pontine junction of the MTN. Most of them were large-sized pseudounipolar cells. In a more rostral aspect, the reactive psedounipolar MTN profiles gradually decreased in number and intensity of staining. There, only a fine meshwork of stained thin fibers and perisomatic terminal arborizations, and also some isolated perikarya of NADPH-d stained multipolar MTN neurons, were observed. The predominant NADPH-d localization in smaller in size TrG neurons, which are considered nociceptive, suggests that NO may play a role in the pain transmission in the rat trigeminal afferent pathways. In addition, the wide distribution of NADPH-d activity in large pseudounipolar and certain multipolar MTN neurons provides substantial evidence that NO may also participate in mediating proprioceptive information from the orofacial region. The differential expression patterns of nitrergic fibers in the TrG and MTN suggest that trigeminal sensory information processing is controlled by nitrergic input through different mechanisms.  相似文献   

14.
The distribution of neurons containing NADPH-diaphorase (NADPH-d) activity and nitric oxide synthase-like immunoreactivity (NOS-LI) in the canine pyloric and ileocolonic sphincters was studied. Cells within the myenteric and submucosal ganglia were positive for NADPH-d. These cells generally had the morphology of Dogiel type-I enteric neurons, however, there was some diversity in the morphology of NADPH-d-positive neurons in the myenteric plexus of the pylorus. Intramuscular ganglia were observed in both sphincters, and NADPH-d was found in a sub-population of neurons within these ganglia. Dual staining with an antiserum raised against nitric oxide synthase (NOS) demonstrated that almost all cells with NOS-LI were also NADPH-d positive. Varicose fibers within ganglia and within the circular and longitudinal muscle layers also possed NOS-LI and NADPH-d activity. Dual staining with anti-VIP antibodies showed that some of the NADPH-d-positive cells in the myenteric and submucosal ganglia also contained VIP-LI, but all VIP-LI-positive cells did not express NADPH-d activity. These data are consistent with recent physiological studies suggesting that nitric oxide serves as an inhibitory neurotransmitter in the pyloric and ileocolonic sphincters. The data also suggest that VIP is expressed in a sub-population of NADPH-d-positive neurons and may therefore act as a co-transmitter in enteric inhibitory neurotransmission to these specialized muscular regions.  相似文献   

15.
Distribution of three calcium-binding proteins (CaBPr) calbindin (CB), calretinin (CR) and parvalbumin (PV) in parallel with metabolic activity (cytochrome oxidase, CO) was studied in telencephalic projection zones of the tecto- and thalamofugal visual pathways in experiments on the Horsfield's terrapin Testudo horsfieldi and the pond turtle Emys orbicularis. It was shown that the nucleus rotundus (Rot) and dorsal lateral geniculate nucleus (GLd) terminal fields in both zones (dorsolateral region of the anterior ventricular ridge, Advrdl and dorsolateral cortex, Cxdl, respectively) were CB-immunoreactive (-ir) in the both studied turtle species. The highest density of CB-ir terminals and the focus of rotundal projections in the Advrdl core coincided precisely. The GLd terminal field in Cxdl also was CR-ir. The PV contribution to innervation of both projectional zones was much lower, especially to innervation of Cxdl from GLd. In spite of similar CB-ir innervation, the projectional field of the tectofugal pathway of Advrdl had the much higher CO activity than of that of the thalamofugal pathway in Cxdl. The neurons immunoreactive to all three CaBPr types were distributed in Cxdl in different ratios in each of layers. In the visual Advrdl area the overwhelming majority were PV-ir neurons, whereas CB-ir neurons were absent. The conclusion is made that in spite of the CB- or CB/CR-immunoreactivity predominates over the PV-immunoreactivity in both thalamotelencephalic pathways of the visual system, the tectofugal (rotundo-Advrdl) pathway having the higher metabolic activity.  相似文献   

16.
Ma WL  Zhang WB  Guo F 《生理学报》2004,56(5):585-590
三叉神经脊束间质核(interstitial nucleus of the spinal trigeminal tract,INV)为位于三叉神经脊束内的一些灰质团块,经三叉神经和舌咽及迷走神经接受口面部的三叉神经躯体传入与上消化道的内脏伤害性传入。INV内含有大量含calbinding D-28k(CB)神经元,但尚不清楚支配口面部的三叉神经躯体传入与支配上消化道的内脏伤害性传入是否汇聚于INV内含CB的神经元。本文应用跨节追踪法并结合CB和Fos免疫组织化学的激光共聚焦显微镜和电镜技术,研究了下牙槽神经(interior alveolarnerve.IAN)的初级传入和上消化道伤害性信息向INV内含CB神经元的汇聚。结果如下:(1)将生物素化的葡聚糖胺(biotinylated dextran amine,BDA)和甲醛分别注入IAN和上消化道后,BDA跨节标记的浓密初级传入纤维和末梢分布于同侧INV内,在其膨大部较为集中;大量的CB和Fos免疫反应阳性神经元分布于双侧INV内,并与BDA注射侧的BDA标记末梢区相重叠:共聚焦显微镜观察显示,约半数CB免疫反应阳性的神经元同时呈Fos阳性的双标记神经元(74/153),其中部分双标神经元与IAN末梢形成紧密接触状。(2)辣根过氧化物酶(horseradish peroxidase,HRP)注射到IAN后,HRP跨节标记的纤维和末梢的分布与BDA标记的分布相似;电镜下观察到,INV内有大量CB免疫反应阳性神经元的树突和少量胞体,以及HRP标记的传入末梢,其中一些HRP标记的轴突终末分别与CB免疫反应阳性树突和胞体形成非对称型轴-树或轴-体突触。结果提示口面部躯体初级传入信息和内脏伤害性信息汇聚于INV内含CB的神经元上,可能在躯体传入信息对内脏伤害性信息的调制和内脏心血管活动中发挥重要作用。  相似文献   

17.
This study characterizes for the first time the distribution and coexistence patterns of calbindin (CB), calretinin (CR), and parvalbumin (PV) in the female and male guinea pig preoptic area (POA) during brain development, using immunohistochemistry and quantitative real‐time PCR techniques. The results show that the prenatal development of the guinea pig POA takes place in elevated levels of CB and CR immunoreactivity with the peak at embryonic day 50 (E50) and generally in newborns both these proteins reach an adult‐like pattern of immunoreactivity, contrary to PV which appears later, peaks at postnatal day (PND) 10 (P10), and stabilizes at P20. CB and CR have also overlapping distributions which differed from that of PV, and much higher expressions at mRNA and protein levels. However, CB‐positive (+), CR+ and PV+ neurons create in the guinea pig POA separate populations as CB and CR coexisted only in a small number of neurons and CB+ cells never coexpressed PV. Moreover, the density of CB+ neurons, contrary to CR+ and PV+ cells, is sexually dimorphic favoring males at all the examined stages. In conclusion, elevated levels of CR and CB at the time of intense cell migration, differentiation, myelination, and synaptogenesis in the guinea pig brain suggest that these proteins may be engaged in similar processes in the POA, while late onset of PV may be rather linked with POA maturation. As the population of CB+ cells in the POA is very large, its dimorphic development may have huge impact on the sexual differentiation of this brain region.  相似文献   

18.
We studied here neuron ultrastructure, synaptic plasticity and subcellular localization of NADPH-diaphorase (NADPH-d), a cytochemical marker for nitric oxide syntase, in the pedal ganglia of the Gray mussel Crenomytilus grayanus sampled from the polluted and reference sites in Amursky Bay (Sea of Japan) at lower and higher water temperature (in the beginning and the end of August, respectively). At lower temperature, neuroplastic changes in mussel ganglia prevailed: a sharp increase in the number of cytosomes in NADPH-d-positive neurons and a sharp decrease in the number of mitochondria in both NADPH-d-positive and NADPH-d-negative neurons. At higher temperature, neurodegenerative changes prevailed: disruption of a part of NADPH-d-negative axons and interneuronal contacts, formation of concentric lamellar structures in the neuropils, and accumulation of autophagosomes in NADPH-d negative neurons. The results suggest that the stress-induced production of nitric oxide in cytosomes of mussel neurons and plasticity of gap junctions have a neuroprotective effect.  相似文献   

19.
Some clinical features of rabies and experimental evidence from cell culture and laboratory animals suggest impairment of gabaergic neurotransmission. Several types of gabaergic neurons occur in the cerebral cortex. They can be identified by three neuronal markers: the calcium binding proteins (CaBPs) parvalbumin (PV), calbindin (CB) and calretinin (CR). Rabies virus spreads throughout the cerebral cortex; however, rabies cytopathic effects on gabaergic neurons are unknown. The expression of calcium-binding proteins (CaBPs) parvalbumin (PV), calbindin (CB) and calretinin (CR) was studied in the frontal cortex of mice. The effect of gabaergic neurons was evaluated immunohistochemically. The distribution patterns of CaBPs in normal mice and in mice infected with 'fixed' or 'street' rabies virus were compared. PV was found in multipolar neurons located in all cortical layers except layer I, and in pericellular clusters of terminal knobs surrounding the soma of pyramidal neurons. CB-immunoreactivity was distributed in two cortical bands. One was composed of round neurons enclosed by a heavily labeled neuropil; this band corresponds to supragranular layers II and III. The other was a weakly stained band of neuropil which contained scattered multipolar CB-ir neurons; this corresponds to infragranular layers V and VI. The CR-ir neurons were bipolar fusiform cells located in all layers of cortex, but concentrated in layers II and III. A feature common to samples infected with both types of viruses was a more intense immunoreactivity to PV in contrast to normal samples. The infection with 'street' virus did not cause additional changes in the expression of CaBPs. However, the infection with 'fixed' virus produced a remarkable reduction of CB-immunoreactivity demonstrated by the loss of CB-ir neurons and low neuropil stain in the frontal cortex. In addition, the size of CR-ir neurons in the cingulate cortex was decreased.  相似文献   

20.
Gamma-aminobutyric acid (GABA) neurotransmission in the lateral septum (LS) is implicated in modulating various behavioral processes, including emotional reactivity and maternal behavior. However, identifying the phenotype of GABAergic neurons in the CNS has been hampered by the longstanding inability to reliably detect somal immunoreactivity for GABA or glutamic acid decarboxylase (GAD), the enzyme that produces GABA. In this study, we designed unique probes for both GAD65 (GAD2) and GAD67 (GAD1), and used fluorescence in Situ hybridization (FISH) with tyramide signal amplification (TSA) to achieve unequivocal detection of cell bodies of GABAergic neurons by GAD mRNAs. We quantitatively characterized the expression and chemical phenotype of GABAergic neurons across each subdivision of LS and in cingulate cortex (Cg) and medial preoptic area (MPOA) in female mice. Across LS, almost all GAD65 mRNA-expressing neurons were found to contain GAD67 mRNA (approximately 95-98%), while a small proportion of GAD67 mRNA-containing neurons did not express GAD65 mRNA (5-14%). Using the neuronal marker NeuN, almost every neuron in LS (> 90%) was also found to be GABA-positive. Interneuron markers using calcium-binding proteins showed that LS GABAergic neurons displayed immunoreactivity for calbindin (CB) or calretinin (CR), but not parvalbumin (PV); almost all CB- or CR-immunoreactive neurons (98-100%) were GABAergic. The proportion of GABAergic neurons immunoreactive for CB or CR varied depending on the subdivisions examined, with the highest percentage of colocalization in the caudal intermediate LS (LSI) (approximately 58% for CB and 35% for CR). These findings suggest that the vast majority of GABAergic neurons within the LS have the potential for synthesizing GABA via the dual enzyme systems GAD65 and GAD67, and each subtype of GABAergic neurons identified by distinct calcium-binding proteins may exert unique roles in the physiological function and neuronal circuitry of the LS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号