首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence in the brain of senile plaques which contain an amyloid core made of beta-amyloid peptide (Abeta). Abeta is produced by the cleavage of the amyloid precursor protein (APP). Since impairment of neuronal calcium signalling has been causally implicated in ageing and AD, we have investigated the influence of an influx of extracellular calcium on the metabolism of human APP in rat cortical neurones. We report that a high cytosolic calcium concentration, induced by neuronal depolarization, inhibits the alpha-secretase cleavage of APP and triggers the accumulation of intraneuronal C-terminal fragments produced by the beta-cleavage of the protein (CTFbeta). Increase in cytosolic calcium concentration specifically induces the production of large amounts of intraneuronal Abeta1-42, which is inhibited by nimodipine, a specific antagonist of l-type calcium channels. Moreover, calcium release from endoplasmic reticulum is not sufficient to induce the production of intraneuronal Abeta, which requires influx of extracellular calcium mediated by the capacitative calcium entry mechanism. Therefore, a sustained high concentration of cytosolic calcium is needed to induce the production of intraneuronal Abeta1-42 from human APP. Our results show that this accumulation of intraneuronal Abeta1-42 induces neuronal death, which is prevented by a functional gamma-secretase inhibitor.  相似文献   

2.
Folate deficiency induces neurotoxicity by multiple routes, including increasing cytosolic calcium and oxidative stress via increasing levels of the neurotoxin homocysteine (HC), and inducing mitochondrial and DNA damage. Because some of these neurotoxic effects overlap with those observed in motor neuron disease, we examined the impact of folate deprivation on dorsal root ganglion (DRG) neurons in culture. Folate deprivation for 2 h increased cytosolic calcium and reactive oxygen species (ROS) and impaired mitochondrial function. Treatment with nimodipine [an L voltage-sensitive calcium channel (LVSCC) antagonist], MK-801 (an NMDA channel antagonist) and thapsigarin (an inhibitor of efflux of calcium from internal stores) indicated that folate deprivation initially induced calcium influx via the LVSCC, with subsequent additional calcium derived from NMDA channels and internal stores. These compounds also reduced ROS and mitochondrial degeneration, indicating that calcium influx contributed to these phenomena. Calcium influx was prevented by co-treatment with 3-deaza-adenosine, which inhibits HC formation, indicating that HC mediated increased cytosolic calcium following folate deprivation. Nimodipine, MK-801 and thapsigargin had similar effects following direct treatment with HC as they did following folate deprivation. These findings support the idea that folate deprivation and HC treatment can compromise the health of DRG neurons by perturbing calcium homeostasis.  相似文献   

3.
Neuronal and glial calcium signaling in Alzheimer's disease   总被引:25,自引:0,他引:25  
Mattson MP  Chan SL 《Cell calcium》2003,34(4-5):385-397
Cognitive impairment and emotional disturbances in Alzheimer's disease (AD) result from the degeneration of synapses and death of neurons in the limbic system and associated regions of the cerebral cortex. An alteration in the proteolytic processing of the amyloid precursor protein (APP) results in increased production and accumulation of amyloid beta-peptide (Abeta) in the brain. Abeta has been shown to cause synaptic dysfunction and can render neurons vulnerable to excitotoxicity and apoptosis by a mechanism involving disruption of cellular calcium homeostasis. By inducing membrane lipid peroxidation and generation of the aldehyde 4-hydroxynonenal, Abeta impairs the function of membrane ion-motive ATPases and glucose and glutamate transporters, and can enhance calcium influx through voltage-dependent and ligand-gated calcium channels. Reduced levels of a secreted form of APP which normally regulates synaptic plasticity and cell survival may also promote disruption of synaptic calcium homeostasis in AD. Some cases of inherited AD are caused by mutations in presenilins 1 and 2 which perturb endoplasmic reticulum (ER) calcium homeostasis such that greater amounts of calcium are released upon stimulation, possibly as the result of alterations in IP(3) and ryanodine receptor channels, Ca(2+)-ATPases and the ER stress protein Herp. Abnormalities in calcium regulation in astrocytes, oligodendrocytes, and microglia have also been documented in studies of experimental models of AD, suggesting contributions of these alterations to neuronal dysfunction and cell death in AD. Collectively, the available data show that perturbed cellular calcium homeostasis plays a prominent role in the pathogenesis of AD, suggesting potential benefits of preventative and therapeutic strategies that stabilize cellular calcium homeostasis.  相似文献   

4.
Oxidative stress is observed in Alzheimer's disease (AD) brain, including protein oxidation and lipid peroxidation. One of the major pathological hallmarks of AD is the brain deposition of amyloid beta-peptide (Abeta). This 42-mer peptide is derived from the beta-amyloid precursor protein (APP) and is associated with oxidative stress in vitro and in vivo. Mutations in the PS-1 and APP genes, which increase production of the highly amyloidogenic amyloid beta-peptide (Abeta42), are the major causes of early onset familial AD. Several lines of evidence suggest that enhanced oxidative stress, inflammation, and apoptosis play important roles in the pathogenesis of AD. In the present study, primary neuronal cultures from knock-in mice expressing mutant human PS-1 and APP were compared with those from wild-type mice, in the presence or absence of various oxidizing agents, viz, Abeta(1-42), H2O2 and kainic acid (KA). APP/PS-1 double mutant neurons displayed a significant basal increase in oxidative stress as measured by protein oxidation, lipid peroxidation, and 3-nitrotyrosine when compared with the wild-type neurons (p < 0.0005). Elevated levels of human APP, PS-1 and Abeta(1-42) were found in APP/PS-1 cultures compared with wild-type neurons. APP/PS-1 double mutant neuron cultures exhibited increased vulnerability to oxidative stress, mitochondrial dysfunction and apoptosis induced by Abeta(1-42), H2O2 and KA compared with wild-type neuronal cultures. The results are consonant with the hypothesis that Abeta(1-42)-associated oxidative stress and increased vulnerability to oxidative stress may contribute significantly to neuronal apoptosis and death in familial early onset AD.  相似文献   

5.
Strong evidence indicates oxidative stress in the pathogenesis of Alzheimer's disease (AD). Amyloid beta (Abeta) has been implicated in both oxidative stress mechanisms and in neuronal apoptosis. Glutaredoxin-1 (GRX1) and thioredoxin-1 (TRX1) are antioxidants that can inhibit apoptosis signal-regulating kinase (ASK1). We examined levels of GRX1 and TRX1 in AD brain as well as their effects on Abeta neurotoxicity. We show an increase in GRX1 and a decrease in neuronal TRX1 in AD brains. Using SH-SY5Y cells, we demonstrate that Abeta causes an oxidation of both GRX1 and TRX1, and nuclear export of Daxx, a protein downstream of ASK1. Abeta toxicity was inhibited by insulin-like growth factor-I (IGF-I) and by overexpressing GRX1 or TRX1. Thus, Abeta neurotoxicity might be mediated by oxidation of GRX1 or TRX1 and subsequent activation of the ASK1 cascade. Deregulation of GRX1 and TRX1 antioxidant systems could be important events in AD pathogenesis.  相似文献   

6.
Haloperidol is a classical neuroleptic drug that is still in clinical use and can lead to abnormal motor activity following repeated administration. However, there is little knowledge of how it triggers neuronal impairment. In this study, we report that it induced calcium ion influx via L-type calcium channels and that the elevation of calcium ions induced by haloperidol appeared to render hippocampal cells more susceptible to oxidative stress. Indeed, the level of cytotoxic reactive oxygen species (ROS) and the expression of pro-apoptotic Bax increased in response to oxidative stress in haloperidol-treated cells, and these effects were inhibited by verapamil, a specific L-type calcium channel blocker, but not by the T-type calcium channel blocker, mibefradil. These findings indicate that haloperidol induces calcium ion influx via L-type calcium channels and that this calcium influx influences neuronal fate.  相似文献   

7.
The amyloid beta peptide abeta (25-35) induces apoptosis independent of p53   总被引:5,自引:0,他引:5  
Apoptosis of neuronal cells apparently plays a role in Alzheimer's disease (AD). The amyloid beta (Abeta) peptide derived from beta-amyloid precursor protein is found in AD brain in vivo and can induce apoptosis in vitro. While p53 accumulates in cells of AD brain, it is not known if p53 plays an active role in Abeta-induced apoptosis. We show here that inactivation of p53 in two experimental cell lines, either by expression of the papillomavirus E6 protein or by a shift to restrictive temperature, does not affect apoptosis induction by Abeta (25-35), indicating that Abeta induces apoptosis in a p53-independent manner.  相似文献   

8.
Oxidative stress is a major aspect of Alzheimer disease (AD) pathology. We have investigated the relationship between oxidative stress and neuronal binding of Abeta oligomers (also known as ADDLs). ADDLs are known to accumulate in brain tissue of AD patients and are considered centrally related to pathogenesis. Using hippocampal neuronal cultures, we found that ADDLs stimulated excessive formation of reactive oxygen species (ROS) through a mechanism requiring N-methyl-d-aspartate receptor (NMDA-R) activation. ADDL binding to neurons was reduced and ROS formation was completely blocked by an antibody to the extracellular domain of the NR1 subunit of NMDA-Rs. In harmony with a steric inhibition of ADDL binding by NR1 antibodies, ADDLs that were bound to detergent-extracted synaptosomal membranes co-immunoprecipitated with NMDA-R subunits. The NR1 antibody did not affect ROS formation induced by NMDA, showing that NMDA-Rs themselves remained functional. Memantine, an open channel NMDA-R antagonist prescribed as a memory-preserving drug for AD patients, completely protected against ADDL-induced ROS formation, as did other NMDA-R antagonists. Memantine and the anti-NR1 antibody also attenuated a rapid ADDL-induced increase in intraneuronal calcium, which was essential for stimulated ROS formation. These results show that ADDLs bind to or in close proximity to NMDA-Rs, triggering neuronal damage through NMDA-R-dependent calcium flux. This response provides a pathologically specific mechanism for the therapeutic action of memantine, indicates a role for ROS dysregulation in ADDL-induced cognitive impairment, and supports the unifying hypothesis that ADDLs play a central role in AD pathogenesis.  相似文献   

9.
Several lines of evidence support that beta-amyloid (Abeta)-induced neurotoxicity is mediated through the generation of reactive oxygen species (ROS) and elevation of intracellular calcium. Salvianolic acid B (Sal B), the major and most active anti-oxidant from Salvia miltiorrhiza, protects diverse kinds of cells from damage caused by a variety of toxic stimuli. In the present study, we investigated the effects of Sal B against beta-amyloid peptide 25-35 (Abeta(25-35))-induced neurotoxicity, focused mainly on the neurotoxic effects of Abeta(25-35) and the neuroprotective effects of Sal B on the expression of brain-pancreas relative protein (BPRP), which is a new protein and mainly expressed in brain and pancreas. Following exposure of PC12 cells to 20 microM Abeta(25-35), a marked reduction in the expression of BPRP was observed, accompanied with decreased cell viability and increased cell apoptosis, as well as increased ROS production and calcium influx. Treatment of the PC12 cells with Sal B significantly reversed the expression of BPRP and cell viability while it decreased ROS production and intracellular calcium. These data indicate that Abeta(25-35) decreases the expression of BPRP via enhanced formation of intracellular ROS and increased intracellular calcium, and that Sal B, as an anti-oxidant, protects against Abeta(25-35)-induced reduction in expression of BPRP through its effects on suppressing the production of ROS, calcium flux, and apoptosis. However, the role(s) of BPRP in AD and the definite mechanisms by which Sal B protects against Abeta(25-35)-induced reduction in the expression of BPRP require further study.  相似文献   

10.
Zheng L  Marcusson J  Terman A 《Autophagy》2006,2(2):143-145
Intraneuronal accumulation of amyloid beta-protein (Abeta) is believed to be responsible for degeneration and apoptosis of neurons and consequent senile plaque formation in Alzheimer disease (AD), the main cause of senile dementia. Oxidative stress, an early determinant of AD, has been recently found to induce intralysosomal Abeta accumulation in cultured differentiated neuroblastoma cells through activation of macroautophagy. Because Abeta is known to destabilize lysosomal membranes, potentially resulting in apoptotic cell death, this finding suggests the involvement of oxidative stress-induced macroautophagy in the pathogenesis of AD.  相似文献   

11.
Amyloid beta (Abeta) is a main component of senile plaques in Alzheimer's disease and induces neuronal cell death. Reactive oxygen species (ROS), nitric oxide and endoplasmic reticulum (ER) stress have been implicated in Abeta-induced neurotoxicity. We have reported that apoptosis signal-regulating kinase 1 (ASK1) is required for ROS- and ER stress-induced JNK activation and apoptosis. Here we show the involvement of ASK1 in Abeta-induced neuronal cell death. Abeta activated ASK1 mainly through production of ROS but not through ER stress in cultured neuronal cells. Importantly, ASK1-/- neurons were defective in Abeta-induced JNK activation and cell death. These results indicate that ROS-mediated ASK1 activation is a key mechanism for Abeta-induced neurotoxicity, which plays a central role in Alzheimer's disease.  相似文献   

12.
Nadal RC  Rigby SE  Viles JH 《Biochemistry》2008,47(44):11653-11664
Oxidative stress plays a key role in Alzheimer's disease (AD). In addition, the abnormally high Cu(2+) ion concentrations present in senile plaques has provoked a substantial interest in the relationship between the amyloid beta peptide (Abeta) found within plaques and redox-active copper ions. There have been a number of studies monitoring reactive oxygen species (ROS) generation by copper and ascorbate that suggest that Abeta acts as a prooxidant producing H2O2. However, others have indicated Abeta acts as an antioxidant, but to date most cell-free studies directly monitoring ROS have not supported this hypothesis. We therefore chose to look again at ROS generation by both monomeric and fibrillar forms of Abeta under aerobic conditions in the presence of Cu(2+) with/without the biological reductant ascorbate in a cell-free system. We used a variety of fluorescence and absorption based assays to monitor the production of ROS, as well as Cu(2+) reduction. In contrast to previous studies, we show here that Abeta does not generate any more ROS than controls of Cu(2+) and ascorbate. Abeta does not silence the redox activity of Cu(2+/+) via chelation, but rather hydroxyl radicals produced as a result of Fenton-Haber Weiss reactions of ascorbate and Cu(2+) rapidly react with Abeta; thus the potentially harmful radicals are quenched. In support of this, chemical modification of the Abeta peptide was examined using (1)H NMR, and specific oxidation sites within the peptide were identified at the histidine and methionine residues. Our studies add significant weight to a modified amyloid cascade hypothesis in which sporadic AD is the result of Abeta being upregulated as a response to oxidative stress. However, our results do not preclude the possibility that Abeta in an oligomeric form may concentrate the redox-active copper at neuronal membranes and so cause lipid peroxidation.  相似文献   

13.
Acetyl-l-carnitine (ALCAR), normally produced in mitochondria, is a precursor of acetyl-CoA in the tricarboxylic (TCA) cycle. Since mitochondrial compromise and ATP depletion have been considered to play a role in neuronal degeneration in Alzheimer's disease (AD), we examined whether ALCAR attenuated oxidative stress and/or ATP depletion after exposure of cells to beta-amyloid (Abeta), a neurotoxic peptide that accumulates in AD brain. Differentiated SH-SY-5Y human neuroblastoma cells were exposed for 2–24 h to 20 M Abeta in the presence and absence of 50 M ALCAR. ALCAR attenuated oxidative stress and cell death induced by Abeta neurotoxicity. Abeta depleted ATP levels, suggesting Abeta may induce neurotoxicity in part by compromising neuronal energy. ALCAR prevented ATP depletion; therefore, ALCAR may mediate its protective effect by buffering oxidative stress and maintaining ATP levels.  相似文献   

14.
Beta-amyloid peptides (Abeta) are major constituents of senile plaques in Alzheimer's disease (AD) brain and contribute to neurodegeneration, operating through activation of apoptotic pathways. It has been proposed that Abeta induces death by oxidative stress, possibly through the generation of peroxynitrite from superoxide and nitric oxide. Estrogen is thought to play a protective role against neurodegeneration through a variety of mechanisms including scavenging of reactive oxygen species (ROS). In this study, we have challenged with Abeta, either in the presence or in the absence of 17beta-estradiol, differentiated human neuroblastoma SH-SY5Y cells (named line SH) and the same line overexpressing anti-oxidant enzyme superoxide dismutase 1 (SOD1; named line WT). We have observed that: (1) WT cells are less susceptible than SH cells to Abeta insult; (2) caspase-3, but not caspase-1, is involved in Abeta-induced apoptosis in this system; (3) estrogen protects both lines, without significantly affecting SOD activity; and (4) copper chelators prevent Abeta-induced toxicity. Our results further support the notion that anti-oxidant therapy might be beneficial in the treatment of AD by preventing activation of selected apoptotic pathways.  相似文献   

15.
Extracellular amyloid beta peptides (Abetas) have long been thought to be a primary cause of Alzheimer's disease (AD). Now, detection of intracellular neuronal Abeta1--42 accumulation before extracellular Abeta deposits questions the relevance of intracellular peptides in AD. In the present study, we directly address whether intracellular Abeta is toxic to human neurons. Microinjections of Abeta1--42 peptide or a cDNA-expressing cytosolic Abeta1--42 rapidly induces cell death of primary human neurons. In contrast, Abeta1--40, Abeta40--1, or Abeta42--1 peptides, and cDNAs expressing cytosolic Abeta1--40 or secreted Abeta1--42 and Abeta1--40, are not toxic. As little as a 1-pM concentration or 1500 molecules/cell of Abeta1--42 peptides is neurotoxic. The nonfibrillized and fibrillized Abeta1--42 peptides are equally toxic. In contrast, Abeta1--42 peptides are not toxic to human primary astrocytes, neuronal, and nonneuronal cell lines. Inhibition of de novo protein synthesis protects against Abeta1--42 toxicity, indicating that programmed cell death is involved. Bcl-2, Bax-neutralizing antibodies, cDNA expression of a p53R273H dominant negative mutant, and caspase inhibitors prevent Abeta1--42-mediated human neuronal cell death. Taken together, our data directly demonstrate that intracellular Abeta1--42 is selectively cytotoxic to human neurons through the p53--Bax cell death pathway.  相似文献   

16.
Quercetin, a flavonoid found in various foodstuffs, has antioxidant properties and increases glutathione (GSH) levels and antioxidant enzyme function. Considerable attention has been focused on increasing the intracellular GSH levels in many diseases, including Alzheimer's disease (AD). Amyloid beta-peptide [Abeta(1-42)], elevated in AD brain, is associated with oxidative stress and neurotoxicity. We aimed to investigate the protective effects of quercetin on Abeta(1-42)-induced oxidative cell toxicity in cultured neurons in the present study. Decreased cell survival in neuronal cultures treated with Abeta(1-42) correlated with increased free radical production measured by dichlorofluorescein fluorescence and an increase in protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (protein-bound 4-hydroxy-2-nonenal). Pretreatment of primary hippocampal cultures with quercetin significantly attenuated Abeta(1-42)-induced cytotoxicity, protein oxidation, lipid peroxidation and apoptosis. A dose-response study suggested that quercetin showed protective effects against Abeta(1-42) toxicity by modulating oxidative stress at lower doses, but higher doses were not only non-neuroprotective but also toxic. These findings provide motivation to test the hypothesis that quercetin may provide a promising approach for the treatment of AD and other oxidative-stress-related neurodegenerative diseases.  相似文献   

17.
Behl C  Moosmann B 《Biological chemistry》2002,383(3-4):521-536
Many neurodegenerative disorders and syndromes are associated with an excessive generation of reactive oxygen species (ROS) and oxidative stress. The pathways to nerve cell death induced by diverse potential neurotoxins such as peptides, excitatory amino acids, cytokines or synthetic drugs commonly share oxidative downstream processes, which can cause either an acute oxidative destruction or activate secondary events leading to apoptosis. The pathophysiological role of ROS has been intensively studied in in vitro and in vivo models of chronic neurodegenerative diseases such as Alzheimer's disease (AD) and of syndromes associated with rapid nerve cell loss as occuring in stroke. In AD, oxidative neuronal cell dysfunction and cell death caused by protofibrils and aggregates of the AD-associated amyloid beta protein (Abeta) may causally contribute to pathogenesis and progression. ROS and reactive nitrogen species also take part in the complex cascade of events and the detrimental effects occuring during ischemia and reperfusion in stroke. Direct antioxidants such as chain-breaking free radical scavengers can prevent oxidative nerve cell death. Although there is ample experimental evidence demonstrating neuroprotective activities of direct antioxidants in vitro, the clinical evidence for antioxidant compounds to act as protective drugs is relatively scarce. Here, the neuroprotective potential of antioxidant phenolic structures including alpha-tocopherol (vitamin E) and 17beta-estradiol (estrogen) in vitro is summarized. In addition, the antioxidant and cytoprotective activities of lipophilic tyrosine- and tryptophan-containing structures are discussed. Finally, an outlook is given on the neuroprotective potential of aromatic amines and imines, which may comprise novel lead structures for antioxidant drug design.  相似文献   

18.
19.
Amyloid beta-peptide (Abeta) is heavily deposited in the brains of Alzheimer's disease (AD) patients. Free-radical oxidative stress, particularly of neuronal lipids, proteins and DNA, is extensive in those AD brain areas in which Abeta is abundant. Recent research suggests that these observations might be linked, and it is postulated that Abeta-induced oxidative stress leads to neurodegeneration in AD brain. Consonant with this postulate, Abeta leads to neuronal lipid peroxidation, protein oxidation and DNA oxidation by means that are inhibited by free-radical antioxidants. Here, we summarize current research on phospholipid peroxidation, as well as protein and DNA oxidation, in AD brain, and discuss the potential role of Abeta in this oxidative stress.  相似文献   

20.
A growing body of evidence suggests a relationship between oxidative stress and beta-amyloid (Abeta) peptide accumulation, a hallmark in the pathogenesis of Alzheimer's disease (AD). However, a direct causal relationship between oxidative stress and Abeta pathology has not been established in vivo. Therefore, we crossed mice with a knockout of one allele of manganese superoxide dismutase (MnSOD), a critical antioxidant enzyme, with Tg19959 mice, which overexpress a doubly mutated human beta-amyloid precursor protein (APP). Partial deficiency of MnSOD, which is well established to cause elevated oxidative stress, significantly increased brain Abeta levels and Abeta plaque burden in Tg19959 mice. These results indicate that oxidative stress can promote the pathogenesis of AD and further support the feasibility of antioxidant approaches for AD therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号