首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
Segregation of the largely non‐homologous X and Y sex chromosomes during male meiosis is not a trivial task, because their pairing, synapsis, and crossover formation are restricted to a tiny region of homology, the pseudoautosomal region. In humans, meiotic X‐Y missegregation can lead to 47, XXY offspring, also known as Klinefelter syndrome, but to what extent genetic factors predispose to paternal sex chromosome aneuploidy has remained elusive. In this issue, Liu et al (2021) provide evidence that deleterious mutations in the USP26 gene constitute one such factor.Subject Categories: Cell Cycle, Development & Differentiation, Molecular Biology of Disease

Analyses of Klinefelter syndrome patients and Usp26‐deficient mice have revealed a genetic influence on age‐dependent sex chromosome missegregation during male meiosis.

Multilayered mechanisms have evolved to ensure successful X‐Y recombination, as a prerequisite for subsequent normal chromosome segregation. These include a distinct chromatin structure as well as specialized proteins on the pseudoautosomal region (Kauppi et al, 2011; Acquaviva et al, 2020). Even so, X‐Y recombination fails fairly often, especially in the face of even modest meiotic perturbations. It is perhaps not surprising then that X‐Y aneuploidy—but not autosomal aneuploidy—in sperm increases with age (Lowe et al, 2001; Arnedo et al, 2006), as does the risk of fathering sons with Klinefelter syndrome (De Souza & Morris, 2010).Klinefelter syndrome is one of the most common aneuploidies in liveborn individuals (Thomas & Hassold, 2003). While most human trisomies result from errors in maternal chromosome segregation, this is not the case for Klinefelter syndrome, where the extra X chromosome is equally likely to be of maternal or paternal origin (Thomas & Hassold, 2003; Arnedo et al, 2006). Little is known about genetic factors in humans that predispose to paternal XY aneuploidy, i.e., that increase the risk of fathering Klinefelter syndrome offspring. The general notion has been that paternally derived Klinefelter syndrome arises stochastically. However, fathers of Klinefelter syndrome patients have elevated rates of XY aneuploid sperm (Lowe et al, 2001; Arnedo et al, 2006), implying a persistent defect in spermatogenesis in these individuals rather than a one‐off meiotic error.To identify possible genetic factors contributing to Klinefelter syndrome risk, Liu et al (2021) performed whole‐exome sequencing in a discovery cohort of > 100 Klinefelter syndrome patients, followed by targeted sequencing in a much larger cohort of patients and controls, as well as Klinefelter syndrome family trios. The authors homed in on a mutational cluster (“mutated haplotype”) in ubiquitin‐specific protease 26 (USP26), a testis‐expressed gene located on the X chromosome. Effects of this gene’s loss of function (Usp26‐deficient mice) on spermatogenesis have recently been independently reported by several laboratories and ranged from no detectable fertility phenotype (Felipe‐Medina et al, 2019) to subfertility/sterility associated with both meiotic and spermiogenic defects (Sakai et al, 2019; Tian et al, 2019). With their Klinefelter syndrome cohort findings, Liu et al (2021) also turned to Usp26 null mice, paying particular attention to X‐Y chromosome behavior and—unlike earlier mouse studies—including older mice in their analyses. They found that Usp26‐deficient animals often failed to achieve stable pairing and synapsis of X‐Y chromosomes in spermatocytes, produced XY aneuploid sperm at an abnormally high frequency, and sometimes also sired XXY offspring. Importantly, these phenotypes only occurred at an advanced age: XY aneuploidy was seen in six‐month‐old, but not two‐month‐old Usp26‐deficient males. Moreover, levels of spindle assembly checkpoint (SAC) proteins also reduced in six‐month‐old males. Thus, in older Usp26 null mice, the combination of less efficient X‐Y pairing and less stringent SAC‐mediated surveillance of faithful chromosome segregation allows for sperm aneuploidy, providing another example of SAC leakiness in males (see Lane & Kauppi, 2019 for discussion).Liu et al’s analyses shed some light on what molecular mechanisms may be responsible for the reduced efficiency of X‐Y pairing and synapsis in Usp26‐deficient spermatocytes. USP26 codes for a deubiquitinating enzyme that has several substrates in the testis. Because USP26 prevents degradation of these substrates, their levels should be downregulated in Usp26 null testes. Liu et al (2021) show that USP26 interacts with TEX11, a protein required for stable pairing and normal segregation of the X and Y chromosomes in mouse meiosis (Adelman & Petrini, 2008). USP26 can de‐ubiquitinate TEX11 in vitro, and in Usp26 null testes, TEX11 was almost undetectable. It is worth noting that USP26 has several other known substrates, including the androgen receptor (AR), and therefore, USP26 disruption likely contributes to compromised spermatogenesis via multiple mechanisms. For example, AR signaling‐dependent hormone levels are misregulated in Usp26 null mice (Tian et al, 2019).The sex chromosome phenotypes observed in Usp26 null mice predict that men with USP26 mutations may be fertile, but producing XY aneuploid sperm at an abnormally high frequency, and that spermatogenic defects should increase with age (Fig 1). These predictions were testable, because the mutated USP26 haplotype, present in 13% of Klinefelter syndrome patients, was reasonably common also in fertile men (7–10%). Indeed, sperm XY aneuploidy was substantially higher in fertile men with the mutated USP26 haplotype than in those without USP26 mutations. Some mutation carriers produced > 4% aneuploid sperm. Moreover, age‐dependent oligospermia was also found associated with the mutated USP26 haplotype.Open in a separate windowFigure 1Mutated USP26 as genetic risk factor for age‐dependent X‐Y defects in spermatogenesisMouse genetics demonstrate that deleterious USP26 mutations lead to less‐efficient X‐Y pairing and recombination with advancing age. Concomitant decrease of spindle assembly checkpoint (SAC) protein levels leads to less‐efficient elimination of metaphase I spermatocytes that contain misaligned X and Y chromosomes. This allows for the formation of XY aneuploid sperm in older individuals and subsequently increased age‐dependent risk for fathering Klinefelter syndrome (KS) offspring, two correlates also observed in human USP26 mutation carriers. At the same time, oligospermia/subfertility also increases with advanced age in both Usp26‐deficient mice and USP26 mutation‐carrying men, tempering Klinefelter syndrome offspring risk but also decreasing fecundity.As indicated by its prevalence in the normal control population, the USP26 mutated haplotype is not selected against in the human population. With > 95% of sperm in USP26 mutation carriers having normal haploid chromosomal composition, the risk of producing (infertile) Klinefelter syndrome offspring remains modest, likely explaining why USP26 mutant alleles are not eliminated. Given that full Usp26 disruption barely affects fertility of male mice during their prime reproductive age (Felipe‐Medina et al, 2019; Tian et al, 2019; Liu et al, 2021), there is little reason to assume strong negative selection against USP26 variants in humans. USP26 as the first‐ever genetic risk factor predisposing to sperm X‐Y aneuploidy and paternal origin Klinefelter syndrome offspring in humans, as uncovered by Liu et al, may be just one of many. 90% of Liu et al’s Klinefelter syndrome cases were not associated with USP26 mutations. But even in the age of genomics, discovery of Klinefelter syndrome risk factors is not straightforward, since most sperm of risk mutation carriers will not be XY aneuploid and thus not give rise to Klinefelter syndrome offspring. In addition, as Usp26 null mice demonstrate, both genetic and non‐genetic modifiers impact on penetrance of the XY aneuploidy phenotype: Spermatogenesis in the absence of Usp26 was impaired in the DBA/2 but not the C57BL/6 mouse strain background (Sakai et al, 2019), and in older mice, there was substantial inter‐individual variation in the severity of the X‐Y defect (Liu et al, 2021). In human cohorts, genetic and non‐genetic modifiers are expected to blur the picture even more.Future identification of sex chromosome aneuploidy risk factors has human health implications beyond Klinefelter syndrome. Firstly, XXY incidence is not only relevant for Klinefelter syndrome livebirths—it also contributes to stillbirths and spontaneous abortions, at a 4‐fold higher rate than to livebirths (Thomas & Hassold, 2003). Secondly, persistent meiotic X‐Y defects can, over time, result in oligospermia and even infertility. Since the mean age of first‐time fathers is steadily rising and currently well over 30 years in many Western countries, age‐dependent spermatogenic defects will be of ever‐increasing clinical relevance.  相似文献   

3.
Biosafety is a major challenge for developing for synthetic organisms. An early focus on application and their context could assist with the design of appropriate genetic safeguards. Subject Categories: Synthetic Biology & Biotechnology, S&S: Economics & Business

One of the goals of synthetic biology is the development of robust chassis cells for their application in medicine, agriculture, and the food, chemical and environmental industries. These cells can be streamlined by removing undesirable features and can be augmented with desirable functionalities to design an optimized organism. In a direct analogy with a car chassis, they provide the frame for different modules or “plug‐in” regulatory networks, metabolic pathways, or safety elements. In an effort to ensure a safe microbial chassis upfront, safety measures are implemented as genetic safeguards to limit risks such as unwanted cellular proliferation or horizontal gene transfer. Examples of this technology include complex genetic circuits, sophisticated metabolic dependencies (auxotrophies), and altered genomes (Schmidt & de Lorenzo, 2016; Asin‐Garcia et al, 2020). Much like seat belts or airbags in cars, these built‐in measures increase the safety of the chassis and of any organisms derived from it. Indeed, when it comes to safety, synthetic biology can still learn from a century‐old technology such as cars about the significance of context for the development of biosafety technologies.Every car today has seat belts installed by default. Yet, seat belts were not always a standard component; in fact, they were not even designed for cars to begin with. The original 2‐point belts were first used in aviation and only slowly introduced for motorized vehicles. Only after some redesign, the now‐common 3‐point car seat belts would become the life‐saving equipment that they are today. A proper understanding of the context of their application was therefore one of the crucial factors for their success and wide adoption. Context matters: It provides meaning for and defines what a technological application is best suited for. What was true for seat belts may be also true for biosafety technologies such as genetic safeguards.
… when it comes to safety, synthetic biology can still learn from a century‐old technology such as cars about the significance of context for the development of biosafety technologies.
Society has a much higher awareness of technology’s risks compared to the early days of cars. Society today requires that technological risks are anticipated and assessed before an innovation or its applications are widely deployed. In addition, society increasingly demands that research and innovation take into account societal needs and values. This has led to, among others, the Responsible Research and Innovation (RRI; von Schomberg, 2013) concept that has become prominent in European science policy. In a nutshell, RRI requires that innovative products and processes align with societal needs, expectations, and values in consultation with stakeholders. RRI and similar frameworks suggest that synthetic biology must anticipate and respond not only to risks, but also to societal views that frame its evaluation and risk assessment.  相似文献   

4.
Debates about the source of antibodies and their use are confusing two different issues. A ban on life immunization would have no repercussions on the quality of antibodies. Subject Categories: S&S: Economics & Business, Methods & Resources, Chemical Biology

There is an ongoing debate on how antibodies are being generated, produced and used (Gray, 2020; Marx, 2020). Or rather, there are two debates, which are not necessarily related to each other. The first one concerns the quality of antibodies used in scientific research and the repercussions for the validity of results (Bradbury & Pluckthun, 2015). The second debate is about the use of animals to generate and produce antibodies. Although these are two different issues, we observe that the debates have become entangled with arguments for one topic incorrectly being used to motivate the other and vice versa. This is not helpful, and we should disentangle the knot.Polyclonal antibodies are being criticized because they suffer from cross‐reactivity, high background and batch‐to‐batch variation (Bradbury & Pluckthun, 2015). Monoclonal antibodies produced from hybridomas are criticized because they often lack specificity owing to genetic heterogeneity introduced during hybridoma generation that impairs the quality of the monoclonals (Bradbury et al, 2018). These are valid criticisms and producing antibodies in a recombinant manner will, indeed, help to improve quality and specificity. But a mediocre antibody will remain a mediocre antibody, no matter how it is produced. Recombinant methods will just produce a mediocre antibody more consistently.Getting a good antibody is not easy and much depends on the nature and complexity of the antigen. And low‐quality antibodies are often the result of poor screening, poor quality control, incomplete characterization and the lack of international standards. Nevertheless, the technologies to ensure good selection and to guarantee consistent quality are much more advanced than a decade ago, and scientists and antibody producers should implement these to deliver high‐quality antibodies. Whether antibodies are generated by animal immunization or from naïve or synthetic antibody libraries is less relevant; they can all be produced recombinantly, and screening and characterization are needed in all cases to determine quality, and if the antibody is fit for purpose.But criticisms on the quality of many antibodies and pleas for switching to recombinant production of antibodies cannot be mixed up with a call to ban animal immunization. The EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) recently published a recommendation to stop using animals for generating and producing antibodies for scientific, diagnostic and even therapeutic applications (EURL ECVAM, 2020). This recommendation is mainly supported by scientists who seem to be biased towards synthetic antibody technology for various reasons. Their main argument is that antibodies derived from naïve or synthetic libraries are a valid (and exclusive) alternative. But are they?One can certainly select antibodies from non‐immune libraries, and, depending on the antigen and the type of application, these antibodies can be fit for purpose. In fact, a few of such antibodies have made it to the market as therapeutics, Adalimumab (Humira®) being a well‐known example. But up to now, the vast majority of antibodies continues to come from animal immunization (Lu et al, 2020). And there is a good reason for that. It is generally possible to generate a few positive hits in a naïve/synthetic library; and the more diverse the library, the more hits one is likely to get. But many decades of experience with immunization of animals—especially when they are outbred—shows that they generate larger amounts of antibodies with superior properties. And the more complex your antigen is, the more the balance swings towards animal immunization if you want to have a guarantee for success.There are different factors at work here. First, the immune system of mammals has evolved over millions of years to efficiently produce excellent antibodies against a very diverse range of antigens. Second, presenting the antigen multiple times in its desired (native) conformation to the animal immune system exploits the natural maturation process to fine‐tune the immune response against particular qualities. Another factor is that in vivo maturation seems to select against negative properties such as self‐recognition and aggregation. It also helps to select for important properties that go beyond mere molecular recognition (Jain et al, 2017). In industrial parlance, antibodies from animal immunization are more “developable” and have favourable biophysical properties (Lonberg, 2005). Indeed, the failure rate for antibodies selected from naïve or synthetic libraries is significantly higher.Of course, the properties of synthetic antibodies selected from non‐immune libraries can be further matured in vitro, for example by light chain shuffling or targeted mutagenesis of the complementarity determining region (CDR). While this method has become more sophisticated over the years, it remains a very complex and iterative process without guarantee that it produces a high‐quality antibody.Antibodies are an ever more important tool in scientific research and a growing area in human and veterinary therapeutics. Major therapeutic breakthroughs in immunology and oncology in the past decades are based on antibodies (Lu et al, 2020). The vast majority of these therapeutic antibodies were derived from animals. An identical picture appears when you look at the antibodies in fast‐track development to combat the current COVID‐19 crisis: again, the vast majority are either derived from patients or from animal immunizations. The same holds true for antibodies that are used in diagnostics and epidemiologic studies for COVID‐19.It is for that reason that we need the tools and methods that guarantee antibodies of the highest quality and provide the best chance for success. The COVID‐19 pandemic is only one illustration of this need. If we block access to these tools, both scientific research and society at large will be negatively impacted. We therefore should not limit ourselves to naïve and synthetic libraries. Animal immunization remains an inevitable method that needs to stay. But we all agree that these immunizations must be performed under best practice to further reduce the harm to animals.  相似文献   

5.
Ethical challenges should be addressed before gene editing is made available to improve the immune response against emerging viruses. Subject Categories: S&S: Economics & Business, Genetics, Gene Therapy & Genetic Disease, Immunology

In 1881, Louis Pasteur proved the “germ theory of disease”, namely that microorganisms are responsible for causing a range of diseases. Following Pasteur’s and Robert Koch’s groundbreaking work on pathogens, further research during the 20th century elucidated how the immune system fends off disease‐causing microorganisms from a molecular perspective.The COVID‐19 pandemic has again focused scientific and public attention on immunology not the least owing to the race of employing vaccines to halt the spread of the virus. Although most countries have now started vaccination programs to immunize a large part of the world''s population, the process will take time, vaccines may not be available to everyone, and a number of unresolved issues remain including the potential contagiousness of vaccinated individuals and the duration of protection (Polack et al, 2020).It would therefore be extremely helpful from a public health perspective—and indeed lifesaving for those with elevated risk of developing severe course of the disease—if we could boost the human immune system by other means to better fight off SARS‐CoV‐2 and possibly other viruses. Recent studies showing that some individuals may be less susceptible to contract severe COVID‐19 depending on their genetic status support such visions (COVID‐19 Host Genetics Initiative, 2020). This could eventually inspire research projects on gene therapy with the aim of generally enhancing immunity against viral infections.
It would therefore be extremely helpful from a public health perspective […] if we could boost the human immune system by other means to better fight off SARS‐CoV‐2 …
The idea of genetically enhancing the human immune response is not new and spread from academic circles to policymakers and the general public even before the pandemic, when He Jiankui announced in November 2018 the birth of genetically edited twins who, he claimed, were resistant to HIV. The public outcry was massive, not only because He violated standards of methodological rigor and research ethics, but also because of fundamental doubts about the wisdom and legitimacy of human germline manipulation (Schleidgen et al, 2020).Somatic gene therapy has been met with a less categorical rejection, but it has also been confronted with skepticism when major setbacks or untoward events occurred, such as the death of Jesse Gelsinger during an early clinical trial for gene therapy in 1999. Nonetheless, given the drastic impact the current pandemic has on so many lives, there may be a motivation to put concerns aside. In fact, even if we managed to get rid of COVID‐19 owing to vaccines—or at least to keep its infectiousness and mortality low—another virus will appear sooner or later; an improved resistance to viral pathogens—including coronaviruses—would be an important asset.Interventions to boost the immune system could in fact make use of either germline gene editing, as has been the case of the Chinese twins, or through somatic gene editing. The first requires time and only the next generation would potentially benefit while the latter could be immediately applied and theoretically used to deal with the ongoing COVID‐19 pandemic.
Interventions to boost the immune system could in fact make use of either germline gene editing, as has been the case of the Chinese twins, or through somatic gene editing.
  相似文献   

6.
While there is growing evidence that perturbation of the gut microbiota can result in a variety of pathologies including gut tumorigenesis, the influence of commensal fungi remains less clear. In this issue, Zhu et al (2021) show that mycobiota dysbiosis stimulates energy metabolism changes in subepithelial macrophages promoting colon cancer via enhancing innate lymphoid cell activity. These findings provide insights into a role of the gut flora in intestinal carcinogenesis and suggest opportunities for adjunctive antifungal or immunotherapeutic strategies to prevent colorectal cancer.Subject Categories: Cancer, Immunology, Metabolism

Recent work reports a role for the commensal gut flora in driving aberrant host immunity and malignant cytokine signaling.

There is growing evidence for an important role for the microbiota in influencing tumorigenesis (Helmink et al, 2019). It is now well documented that gut microbiota represents a highly diverse polymicrobial population of bacteria, fungi, viruses, and protozoa. Recent evidence highlights involvement of the bacterial component of the gut microbiota in protection or enhancement of colorectal tumorigenesis. In contrast, the importance of the mycobiota is less well understood although recently suggested to promote pancreatic oncogenesis and colitis‐associated colon cancer (CAC) (Wang et al, 2018; Aykut et al, 2019). Therefore, gut fungi may play a role in the development of other gastro‐intestinal cancer types, such as CRC. Notably, there is emerging evidence suggesting that mycobiota imbalance modulates immune cells and can trigger inflammatory bowel disease (IBD) (Richard & Sokol, 2019).Here, Zhu et al (2021) provide new insight into the association between mycobiota dysbiosis, immunomodulation, and tumorigenesis in the mouse gut (Fig 1).Open in a separate windowFigure 1Dectin‐3 deficiency induces fungal dysbiosis and tumorigenesis in mice by orchestrating immune cell metabolism and cytokine signalingIn the gut of wild‐type mice, the natural population of the commensal yeast Candida albicans is detected by the Dectin‐3 receptor located on the subepithelial macrophage cell surface. This recognition allows macrophages to maintain gut homeostasis by exerting an antifungal activity. In Dectin‐3‐deficient mice, the mycobiota becomes disrupted and aberrantly increased populations of C. albicans emerge. Elevated C. albicans load triggers increased glycolysis in macrophages and interleukin‐7 (IL‐7) secretion. Macrophage‐derived IL‐7 finally induces IL‐22 secretion by group‐3 innate lymphoid cells that in turn promote tumor cell proliferation in the gut epithelium.The current study (Zhu et al, 2021) is based on previous observations suggesting that human pathogenic fungi are recognized by the C‐type lectin receptor Dectin‐3. This led Zhu et al (2021) to test whether the mycobiota influenced gut tumor formation and is linked to immune recognition mediated by Dectin‐3. First, the authors demonstrated that mice lacking the Dectin‐3 receptor had increased colonic tumorigenesis in response to the azoxymethane (AOM) and dextran sodium sulfate (DSS). This was evident histologically in marked differences in tumor number, size, and burden in Dectin‐3‐deficient mice. Of note, immunohistochemical staining revealed that the lack of Dectin‐3 induced gut tumor formation by triggering epithelial cell proliferation rather than preventing cell apoptosis. In fact, first insight into the impact of microbes in CAC was suggested by the observation that co‐housed WT and Dectin‐3‐deficient mice displayed no difference in tumorigenesis. The pivotal role of the microbiota was then underlined in fecal transplantation experiments. Chemically induced germ‐free mice that received feces from Dectin‐3 tumor‐bearing mice displayed exacerbated tumor development compared to wild‐type controls. In addition, the fungal burden was specifically increased in tumor‐bearing Dectin‐3‐deficient animals. Deep profiling of the mycobiota alterations demonstrated an increase in a single yeast species, i.e., Candida albicans, that normally behaves as commensal in the gut (Papon et al, 2013; Wilson, 2019). Preliminary experiments suggested that the increased burden of C. albicans in Dectin‐3‐deficient tumor‐bearing mice is due to impaired antifungal killing by macrophages. Consistently, elevated C. albicans populations triggered glycolysis and inflammatory IL‐7 secretion from lamina propria macrophages, suggesting that Dectin‐3 deficiency‐induced fungal dysbiosis resulted in modulation of gut macrophage metabolism, promoting tumorigenesis. Exploring the molecular and cellular mechanisms that linked macrophage‐derived IL‐7 secretion and CRC development, Zhu et al (2021) showed in vitro that IL‐7 produced by subepithelial macrophages induced IL‐22 secretion by group‐3 innate lymphoid cells (ILC3s). In turn, up‐regulation of IL‐22 in Dectin‐3‐deficient mice contributed to the oncogenesis seen in these animals. Finally, a detailed analysis of tumor tissues collected from 172 patients with CRC showed correlation and poorer clinical outcome in patients with decreased expression of Dectin‐3, but increased expression of IL‐22 and mycobiota burden, although they did not directly link this to the presence of C. albicans in these patients.Overall, Zhu et al (2021) define a new cell paradigm linking mycobiota dysbiosis, macrophage energy metabolism, and innate lymphoid cell function to tumor development in the mouse gut. In this context, this study also sheds additional light on a new role of ILC3s, a recently described type of lymphoid effectors (Serafini et al, 2015). Indeed, ILC3s have been shown in the present article to act as cornerstone cells orchestrating cytokine‐regulated tumorigenesis in the gut. Beyond these pathophysiological considerations, the study opens up new opportunities for developing adjunctive antifungal or immunotherapeutic strategies for the prevention of high morbidity in CRC. Importantly, this enlightening article provides firm evidence that colonic C. albicans populations promote metabolic reprogramming in lamina propria macrophages and tumor cell formation. Metabolic reprogramming has been observed with other fungi, such as Aspergillus fumigatus, which induces metabolic rewiring of alveolar macrophages in the lung epithelium (Gonçalves et al, 2020). In line, the report by Zhu et al (2021) adds to previous work suggesting that mycobiota promotes pancreatic oncogenesis via activation of mannose‐binding lectins (Aykut et al, 2019). Mycobiota dysbiosis therefore stands out as an important new field of investigation in cancer research that is ripe for future exploration.  相似文献   

7.
The rumen microbiome ‐ a remarkable example of obligatory symbiosis with high ecological and social relevance Subject Categories: Digestive System, Ecology, Microbiology, Virology & Host Pathogen Interaction

Ruminants are intimately linked to mankind since their domestication some 8,000 years ago, and their close relationship may have well been one of the main drivers of human civilization (Diamond, 1997). Ruminants—cattle, sheep, goats, deer, gazelles, and so on—also embody the close link between solar energy transformed via photosynthesis and digestion into consumable products, such as meat, milk, leather, or wool, that have sustained humanity for millennia. Throughout this shared history, constant improvements through breeding, husbandry, and industrial livestock farming have greatly increased the production of milk, meat, and other animal‐based products.Ruminants, more so than any other mammalian group also represent the epitome of mammalian‐microbe symbiosis, as they rely completely on microbial fermentation to sustain their lives. In the rumen, the fermentative organ situated in the upper gastrointestinal tract resides a vast microbial community from all domains of life—bacteria, archaea, and eukarya—that turn indigestible plant feed into food for the animal. The rumen microbiome produces up to 70% of the energy the animal needs for growth and maintenance, and, from mankind''s perspective, for the production of food and other consumables.
Ruminants, more so than any other mammalian group, also represent the epitome of mammalian‐microbe symbiosis, as they rely completely on microbial fermentation to sustain their lives.
With growing understanding that these microorganisms are responsible for degrading plant material and supplying nutrients for the animals, a new research discipline emerged along with aspirations to improve the yield of livestock farming. While most research had understandably focused on production efficiency, it also showed that the rumen microbiome is intricately linked to many other phenotypes of the animal. This understanding comes at a time when we increasingly realize that mankind''s actions have a detrimental effect on the environment. The microbial fermentation in the rumen produces large amounts of methane, a potent greenhouse gas that has been demonstrated to contribute to global climate change. We therefore need to consider both our increased demand for meat and milk products and aim to mitigate the negative environmental impact of intensive livestock farming. Modulating the microbial community to sustain or further increase productivity while decreasing methane emissions has indeed become a major goal for microbial ecologists studying the rumen microbiome and its interactions with the host animal. In this article, we discuss the driving forces that affect the establishment and composition of the rumen microbiome and its plasticity, and potential avenues for harnessing these forces for a more sustainable production of animal products.  相似文献   

8.
9.

Recent cryo‐EM‐based models reveal how the ER membrane protein complex may accomplish insertion of protein transmembrane domains with limited hydrophobicity.

Insertion of strongly hydrophobic TMDs into the ER membrane is mediated by the Sec61 complex for co‐translational insertion and the GET complex for post‐translational insertion of tail‐anchors (Volkmar & Christianson, 2020). By contrast, the EMC inserts TMDs of limited hydrophobicity, frequently located at the N‐ or C‐termini of proteins, and is involved in biogenesis of multi‐spanning membrane proteins (Volkmar & Christianson, 2020).The EMC is highly conserved (Wideman, 2015). In vertebrates, ten subunits have been identified (EMC1‐10), two of which, EMC8 and EMC9, are homologous and the result of a vertebrate‐specific gene duplication (Wideman, 2015). In Saccharomyces cerevisiae, EMC8 has been lost (Wideman, 2015). Only EMC3 displays clear homology to other membrane protein insertases, the Oxa1 family (Wideman, 2015; Volkmar & Christianson, 2020). This family includes YidC, which inserts TMDs into the bacterial cytoplasmic membrane, usually in cooperation with the Sec61‐homologous SecYEG channel (Volkmar & Christianson, 2020). Their association, along with the SecDF ancillary complex, forms a holo‐translocon capable of protein secretion and TMD insertion, with striking similarities to the EMC complex (Martin et al, 2019).Recent work by Pleiner et al (2020) presented a 3.4 Å cryo‐EM structure of the human EMC purified via a GFP‐tag on EMC2 and incorporated into a phospholipid nanodisc. The complex is formed by nine proteins (EMC1‐8, EMC10) (Pleiner et al, 2020). EMC8 and EMC9 are structurally similar, and their association with EMC2 is mutually exclusive (O''Donnell et al, 2020). Of the 12 TMDs, nine constitute the pseudosymmetric central ordered core, with a basket‐shaped cytosolic vestibule formed primarily by alpha‐helices of the EMC3 and EMC6 TMDs and cytosolic EMC2 (Fig 1A; Pleiner et al, 2020). The L‐shaped lumenal domain of the EMC consists mostly of beta‐sheets (Fig 1A; Pleiner et al, 2020), flanked by a conspicuous and conserved amphipathic alpha‐helix of EMC1 sealing the vestibule at the interface between the membrane and the ER lumen, together with another smaller amphipathic helix contributed by EMC3 (Fig 1A; Pleiner et al, 2020). In the ER lumen, the two 8‐bladed propellers of EMC1 contact six of the eight other subunits and stabilize the entire complex (Fig 1A; Pleiner et al, 2020). Beta‐sandwiches of EMC7 and EMC10 are anchored to the EMC1 lumenal domain (Fig 1A; Pleiner et al, 2020). In the cytosol, the tetratricopeptide repeat (TPR) spiral of EMC2 forms a cup underneath the partially hydrophilic vestibule in the membrane between the TMDs of EMC3 and EMC6, bridging the cytosolic ends of TMDs of EMC1, 3 and 5 (Fig 1A; Pleiner et al, 2020). Cytosolic EMC8 is bound to the opposite face of EMC2 (Fig 1A).Open in a separate windowFigure 1Comparison of the structures of human and yeast EMC(A) Cryo‐EM 3D map of the human (emdb‐21929) and yeast (emdb‐21587) EMC, showing front and back views with individual subunits coloured. Membrane position, obtained from the OPM database, is shown by grey discs. (B) Close‐up view of the EMC cavity formed by EMC3 and EMC6. Left, shown in a hydrophobicity surface pattern. Right, surface representation overlapped with the TMDs of EMC3 and EMC6. EMC4, flexible and with a gate function at the substrate‐binding place, is shown in pink in the yeast representation. EMC4 is not visible at the atomic EMC human structure, although is observed as a weak density at the human model, accompanied by TMs of EMC7 and EMC10 (Pleiner et al, 2020). (C) The yeast EMC following > 5 µs of CG‐MD simulation. The protein is shown as surface and coloured as per Pleiner et al (2020). The computed densities of waters and phospholipid tails and phosphates are shown as blue, yellow and lime green densities, sliced to bisect the cavity for clarity. Right, inset of the EMC cavity. Methods: CG‐MD simulations were built using PDB 6WB9 in a solvated symmetric POPC/POPE/cholesterol membrane and run in the Martini forcefield as described in Martin et al (2019). 3 µs unrestrained simulations were run, followed by 2.5 µs backbone restrained simulation for density calculation, done using VolMap in VMD (Humphrey et al, 1996).The 3.0 Å cryo‐EM structure of the yeast EMC presented by Bai and colleagues shows a very similar overall organization (Bai et al, 2020). Here, purification was via a 3xFLAG‐tag on EMC5, and the structure of the 8‐subunit complex (without EMC8/9) was visualized in detergent solution (Bai et al, 2020). The yeast complex has twelve TMDs like the human EMC, but unlike the human structure, EMC4 in yeast has three TMDs that are clearly visible (Bai et al, 2020). They are angled in the membrane pointing away from the complex at the cytosolic end (Fig 1A), and Bai et al (2020) propose that TMDs of EMC4, EMC3 and EMC6 form a substrate‐binding pocket similar to that of YidC. As in the human EMC, there are two amphipathic helices (EMC1 and EMC3) at the membrane/lumen interface (Fig 1A; Bai et al, 2020). In the ER lumen, yeast EMC1 only has one 8‐bladed beta‐propeller, to which the beta‐sandwiches of EMC7 and EMC10 are anchored (Fig 1A; Bai et al, 2020). In the cytosol, EMC2 bridges EMC3, 4 and 5, and its TPR repeats form a cup underneath the vestibule similar to human EMC2 (Fig 1A; Bai et al, 2020).The authors propose that insertion of a partially hydrophilic TMD by the yeast EMC is mechanistically similar to insertion by bacterial YidC (Bai et al, 2020). Yeast EMC is proposed to bind substrate between TMD2 of EMC3 and TMD2 of EMC4 in a pocket with polar and positively charged amino acids at either end and hydrophobic amino acids in the centre (Fig 1B; Bai et al, 2020). Much has been made of a conserved positive region within the EMC complex here, present in an equivalent position also in YidC (Kumazaki et al, 2014): It is claimed to be important for the incorporation of more‐hydrophilic TMDs and perhaps responsible for the “positive‐inside” orientation rule (von Heijne, 1992). Yeast and human EMC3 contain a specific R31 and R26 residue, respectively, conserved also in YidC and important for function of the EMC, as well as for YidC in Gram‐positive, but interestingly not Gram‐negative, bacteria (Chen et al, 2014; Pleiner et al, 2020; Bai et al, 2020). Another interesting feature, also conserved with YidC, is the flexibility of the TMDs flanking the substrate‐binding pocket, critical for EMC entry of substrates (Bai et al, 2020).In the human EMC, methionine residues in a cytosolic loop of EMC3 act as a substrate bait (Pleiner et al, 2020). Polar and charged residues within the substrate‐binding groove guide the lumenal domain across the membrane, facilitated by local membrane thinning (Pleiner et al, 2020; Fig 1B). The positive charges within the substrate‐binding site exclude signal peptides and enforce the “positive‐inside rule” (von Heijne, 1992; Pleiner et al, 2020). Flexible TMDs of EMC4, EMC7 and EMC10 forming a “lateral gate” of the substrate‐binding groove allow sampling of the bilayer by the substrate TMD (Pleiner et al, 2020). As the shortened TMDs of EMC3 and EMC6 cannot stably bind the substrate TMD, they favour its release into the bilayer (Pleiner et al, 2020). The EMC1 beta‐propeller(s) may recruit additional protein maturation factors in the ER lumen (Pleiner et al, 2020; Bai et al, 2020) or bind the Sec61 channel to allow cooperation between the two insertases (Bai et al, 2020).Arguably, the most interesting feature of the EMC complex is the location of a large interior cavity with distinctive hydrophilic character, which likely aids TMD insertion (Fig 1B). We ran a coarse‐grained molecular dynamics (CG‐MD) simulation of the yeast EMC structure, which highlights a profound perturbation of the phospholipid bilayer in the EMC interior cavity (Fig 1C). Here, a deep gorge forms in the cytoplasmic leaflet of the bilayer, allowing the cavity to become flooded with water (Fig 1C). Note the location of the lipid head groups here (lime green), which presumably define the site of amphipathic TMD insertion. The incursion of phospholipids into the centre of the EMC complex is a feature shared by the bacterial holo‐translocon (Martin et al, 2019) and perhaps by all membrane protein insertases. The shape and character of the EMC cavity presumably dictate its predisposition for less hydrophobic TMDs; it would be interesting to see whether the cavities of different insertases are similarly tailored to suit their substrates.  相似文献   

10.
USP7 inhibitors are gaining momentum as a therapeutic strategy to stabilize p53 through their ability to induce MDM2 degradation. However, these inhibitors come with an unexpected p53‐independent toxicity, via an unknown mechanism. In this issue of The EMBO Journal, Galarreta et al report how inhibition of USP7 leads to re‐distribution of PP2A from cytoplasm to nucleus and an increase of deleterious CDK1‐dependent phosphorylation throughout the cell cycle, revealing a new regulatory mechanism for the progression of S‐phase cells toward mitosis to maintain genomic integrity.Subject Categories: Cell Cycle, Post-translational Modifications, Proteolysis & Proteomics

Recent work reveals untimely activation of mitotic cyclin‐dependent kinase as a molecular basis for p53‐independent cell toxicity of USP7 deubiquitinase inhibitors.

The G2‐M transition in the eukaryotic cell cycle is a critical point to ensure that cells with damaged DNA are unable to enter the mitotic phase. This checkpoint is highly regulated by a number of kinases, including ATR, ATM and WEE1, and ends upon activation of the CDK1–cyclin B1 kinase complex (Visconti et al, 2016). Since premature activation of CDK1–cyclin B1 causes replication fork collapse, DNA damage, apoptosis, and mitotic catastrophe (Szmyd et al, 2019 and references therein), restricting CDK1–cyclin B1 activity prior to mitosis is key to maintaining genomic integrity.A body of recent work has suggested that the deubiquitinase USP7 is a master regulator of genomic integrity; it is required for DNA replication in numerous ways, including indirect regulation of cyclin A2 during the S‐phase, origin firing, and replication fork progression. USP7 also regulates mitotic entry by stabilizing PLK1, another kinase which is highly active in the M phase and ensures proper alignment of chromatids prior to segregation. Notably, USP7 inhibitors have become an attractive cancer therapeutic strategy based on their ability to trigger degradation of MDM2, and thereby stabilize p53 (Valles et al, 2020). However, there is growing evidence of USP7 inhibitor‐related toxicity that is not mediated through p53 (Lecona et al, 2016; Agathanggelou et al, 2017), indicating that USP7 inhibitors impact other cellular processes. Therefore, Galarreta et al (2021) investigated the potential functional relationship between USP7 and CDK1, given the role of both factors in regulating the cell cycle.Through a series of in vitro experiments, the authors confirmed that five USP7 inhibitors induce premature mitotic kinase activity, including increased MPM2 signal (indicative of mitosis‐specific phosphorylation events) and phosphorylation of histone H3 Ser10 (H3S10P) in all cells, regardless of where they are in the cell cycle. To determine whether USP7 affects CDK1 during the cell cycle, Galarreta et al (2021) demonstrate that cell lines treated with USP7 inhibitors exhibit reduced levels of inhibitory Tyr‐15 phosphorylation on CDK1 and increased cyclin B1 presence in the nucleus, suggesting activation of the CDK1–cyclin B1 complex. Furthermore, treatment with the CDK1 inhibitor RO3306 rescues the USP7 inhibitor‐dependent increase of mitotic activity.These observations suggest that CDK1 has the potential to catalyze mitosis‐specific phosphorylation irrespective of cell cycle phase and that cells rely on USP7‐specific deubiquitination to suppress or reverse premature CDK1 activity. Surprisingly, despite the nuclear localization of cyclin B and decrease in inhibitory CDK1 Tyr‐15 phosphorylation, USP7 inhibitors failed to drive cells into mitosis. How might this be? Nuclear localization of cyclin B normally occurs just minutes before the onset of mitosis and nuclear envelope breakdown (Santos et al, 2012), yet the nucleus remains intact following USP7 inhibition. Moreover, the decrease in Tyr‐15 phosphorylation suggests the ATR‐ and WEE1‐dependent G2/M checkpoint is inactivated by USP7 inhibition. Do these data hint at the presence of an additional, unknown regulatory mechanism controlling mitotic entry independent of the G2/M checkpoint and nuclear localization of the CDK1–cyclin B complex?To determine whether CDK1 is the driver of USP7 inhibitor toxicity, Galarreta et al exposed cells to CDK1 inhibitors and observed a reduction in apoptosis. Furthermore, CDK1 inhibitors promote cell survival in cells treated with three structurally unrelated USP7 inhibitors. Finally, CDC25A‐deficient mouse embryonic stem cells, which constitutively express low levels of CDK1, resist USP7 inhibition. Together, these data suggest that the USP7 inhibitor‐dependent toxicity is the result of CDK1‐mediated cell death. The authors note that the phosphatase PP2A is an antagonist for CDK1 in addition to being a candidate USP7 substrate (Lecona et al, 2016; Wlodarchak & Xing, 2016), and thus, they turned their attention to elucidating the connection between USP7 and PP2A. Combining biochemical and immunofluorescence studies, Galarreta et al (2021) demonstrate that USP7 interacts with two subunits of PP2A, and this interaction increases in response to USP7 inhibition. Inhibiting USP7 furthermore triggers PP2A re‐localization from the cytoplasm to the nucleus and increases the phosphorylation levels of PP2A substrates, such as AKT and PRC1. DT‐061, a chemical activator of PP2A, reduces CDK1 phosphorylation events, suggesting that PP2A deregulation is a key mediator of USP7 inhibitor‐related toxicity. Using phosphoproteomics to analyze cells treated with a USP7 inhibitor or PP2A‐inhibiting okadaic acid, the authors reveal that both treatments share a significant number of altered phosphorylated targets—especially those related to mitosis, the cell cycle, and epitopes with a CDK‐dependent motif. Thus, the effects of USP7 inhibitors on CDK1 appear to be mediated through PP2A localization to the nucleus.These unexpected findings raise several questions that potentially impact the current view of cell cycle regulation. For example, how does USP7 regulate PP2A localization and is this important for reversing CDK1‐dependent phosphorylation of mitotic substrates prior to mitosis? Does PP2A accumulation in the nucleus explain the failure of USP7‐inhibited cells to enter mitosis despite cyclin B1 nuclear localization? A role for ubiquitin signaling as a regulator of CDK1 in interphase cells has not been reported, and accordingly, new investigations will be needed to unravel the mechanisms by which USP7 controls PP2A localization.Another important question that arises is whether or not CDK1 has sufficient basal activity to phosphorylate numerous mitotic proteins independent of cell cycle phase. The observation that USP7 and PP2A act to prevent the improper accumulation of CDK1‐dependent phosphorylation even in G1 phase cells suggests this to be the case. Alternatively, USP7 activity may be required to prevent abnormal pairing of CDK1 with a cyclin that is ubiquitously expressed across the cell cycle. If so, more research will be needed to uncover how ubiquitin signaling ensures CDK1 only pairs with cyclin A and cyclin B once they accumulate later in the cell cycle.Interestingly, USP7 inhibition also causes a rapid loss in DNA synthesis of S‐phase cells, prompting the authors to perform a time course experiment to decipher the order of events following treatment (i.e., does CDK1 activation precede or follow termination of DNA replication?). High‐throughput microscopy and flow cytometry analysis reveal an immediate reduction of DNA replication, an increase of CDK1 activity, and elevated DNA damage before a detectable increase in H3S10P. Long‐term exposure of USP7 inhibitors leads to DNA damage restricted only to cells with corresponding high levels of H3S10P and MPM2. Overall, these results illustrate how inhibition of USP7 activates CDK1, disrupting DNA replication and inducing DNA damage (Fig 1).Open in a separate windowFigure 1USP7 regulates CDK1In untreated cells, CDK1 is suppressed by USP7 and PP2A, and CDK1‐cyclin B is only active during the G2/M transition. In response to treatment, USP7 facilitates PP2A localization to the nucleus. This allows CDK1 to initiate premature mitotic activity throughout the cell cycle, resulting in increased DNA damage and cellular toxicity.The finding that USP7 inhibitors caused a rapid shutdown of DNA replication brings to mind the recent findings by several groups, that CDK1 activation occurs concomitantly with the S/G2 transition and that premature CDK1 activation in S‐phase terminates replication (Akopyan et al, 2014; Lemmens et al, 2018; Saldivar et al, 2018; Deng et al, 2019; Branigan et al, 2021). According to these studies, coupling of CDK1 activation to the S/G2 transition is regulated by ATR‐CHK1 signaling, a pathway activated by DNA replication to restrain CDK1 through Tyr‐15 phosphorylation. Galarreta et al''s observation that USP7 inhibition overrides ATR‐CHK1 (i.e., Tyr‐15 phosphorylation) highlights the fundamental importance of ubiquitin signaling, and potentially PP2A localization, for ensuring proper S‐to‐M progression and genome maintenance. Ultimately, the mechanistic details of Galarreta et al''s observations remain to be elucidated, and undoubtedly, their findings will inspire future investigations. Moreover, their discovery may lead to a new strategy targeting CDK1 to mitigate unwanted toxicities in the clinic.  相似文献   

11.
12.
Tertiary treatments capable of removing chemical and biological contaminants of emerging concern have been successfully developed and implemented at full scale, opening the possibility of using wastewater treatment plants as recycling units, capable of producing wastewater that can be reused in various activities, such as agriculture irrigation; However, tertiary treatments remove only part of the wastewater microbiota, leaving the opportunity for regrowth and/or reactivation of potentially hazardous microorganisms, facilitated by the poor competition among the surviving microorganisms; Under the motto ‘added by technology, lead by nature’, the treatment and storage of treated wastewater must find the balance to develop a protection shield against the impoverishment the microbial quality and the development of potentially hazardous bacteria.

No man ever steps in the same river twice, for it''s not the same river and he''s not the same man. Heraclitus
Access to wholesome drinking water is not only a major ambition but also a basic human right that since antiquity has called scientists, engineers and politicians for action. The recognition that human excreta compromise the quality of the sources of drinking water triggered the development of sewage drainage systems as far as 3500–2500 BC, in cities such as Ur and Babylon (Lofrano and Brown, 2010). Among these ancient cities, Rome, where the largest known ancient sewer (Cloaca Maxima) and the first roman aqueduct (Aqua Appia) were built (600–312 BC), stands up (Lofrano and Brown, 2010). Despite the unexpected regression observed during the Middle Ages, the rising of urban and industrial agglomerations, matched by a growing production of wastewater, has been triggering the development of wastewater treatment technologies since the industrial revolution (Lofrano and Brown, 2010).Unlike other industrial activities, whose high added value products enable high‐profit margins, wastewater treatment may be not prioritized, at least in world regions with limited income and capacity to invest in both infrastructure and operation systems. Consequently, most of the urban wastewater treatment plants (UWWTP) operating worldwide rely upon biological‐based low‐cost technologies. The conventional activated sludge (CAS) technology is one of the most commonly applied worldwide (Orhon, 2014). With a long development history itself, this aerobic biologic process, in full‐scale operation since 1914, is regarded as the conventional norm for wastewater treatment (Alleman and Prakasam, 1983; Orhon, 2014).A century ago the major challenge of environmental engineers was to develop a treatment system able to reduce the load of readily degradable organic matter and pathogens from sewage. CAS‐based treatment systems fully achieve these goals (Tchobanoglous et al., 2003). But more than one century of industrial innovation and development changed dramatically our lifestyle, and consequently, the type of pollutants discharged in wastewater. Nowadays, UWWTPs are also expected to remove excess of inorganic nitrogen (N) and phosphorus (P) nutrients, responsible for the eutrophication of the receptor water bodies, and a myriad of (potentially) hazardous chemical micropollutants, which may pose risk to the aquatic ecosystems and human health given their acute and chronic toxicity. These chemical micropollutants of emerging concern, which are found at very low concentrations (up to μg l−1), include both natural and xenobiotic compounds such as pharmaceuticals, personal care products, steroid hormones, drugs of abuse, and pesticides, among others (European Commission, 2013; Ribeiro et al., 2015). In addition to the chemical micropollutants, UWWTPs are now also challenged to impede the release of high loads of biological contaminants of emerging concern, such as some pathogenic virus, protozoa, or bacteria in particular antibiotic‐resistant (ARB) harbouring antibiotic resistance genes (ARG), into the receptor water bodies (Dulio et al., 2018; European Commission, 2020).Effective wastewater treatment systems are indeed the primary and major barrier between human activities and the environment, with a pivotal role on the prevention of contamination of surface‐ and groundwater. Inevitably, water bodies such as rivers, lakes and aquifers bridge sectors of activity and geographies, for instance when used as sources of agriculture irrigation water, drinking water production or habitat and fountain for wildlife or food‐producing animals. Pressures to implement technologies able to efficiently remove both chemical and biological contaminants within the urban water cycle are exacerbated under the climate change scenario. Massive withdrawal and consumption coupled with unpredictable weather conditions, such as drought and flood events, has been leading not only to freshwater scarcity but also to the deterioration of water quality (WWAP, 2019; European Commission, 2020).Freshwater scarcity brought the new concept of UWWTPs as recycling units, capable of producing final effluents that can be safely and sustainably reused for different purposes, namely in agriculture, the sector with the largest consumption of freshwater (WWAP, 2019). But to be reused, treated wastewater must be safe. This means that the concentration of eventual chemical and/or biological pollutants in treated wastewater must not put at risk the environmental and human health. Hence, the degree of contamination of the treated wastewater determines its end use or site of discharge (European Commission, 1991, 2020; Becerra‐Castro et al., 2015).Upgrading technologies capable of removal of N and P nutrients from wastewater have been successfully developed and implemented. Nowadays, full‐scale UWWTP with trains favouring the recirculation of the mixed liquor between aerobic and anoxic tanks, where ammonification of organic‐N, nitrification and denitrification occur according to the oxygen availability in each compartment are commonly found; and an increasing number of UWWTP where, in addition to the trains referred to above, recirculation includes anaerobic reactors favouring P granules accumulation are also operating worldwide (Tchobanoglous et al., 2003). More recently, the simultaneous C, N, and P removal is assured through the aerobic granular sludge technology, given the spatial distribution of the microorganisms of the different metabolic groups in the different micro‐environments of the granules (Nancharaiah and Reddy, 2018).In contrast with the C, N and P removal, the biological removal of chemical micropollutants seems to be less efficient. Despite the ability of a vast number of microorganisms to degrade a wide diversity of micropollutants, the low concentration of these compounds in wastewater may contribute for their low bioavailability in the biological reactors. Consequently, the secondary final effluents of CAS‐based UWWTPs still contain numerous micropollutants at environmental worrisome concentrations (McEachran et al., 2018).Advanced Oxidation Technologies (AOTs) have been recommended among the best solutions for the removal of chemical micropollutants from the secondary effluents of CAS‐based UWWTPs. A vast number of scientific studies has been conducted in this area, in order to develop and optimize tertiary processes capable of the efficient removal of these contaminants from the effluents before discharge into the receptor water bodies (Ribeiro et al., 2015). Among these technologies, ozonation has high visibility, being implemented in full‐scale UWWTPs, for instance in Switzerland, a country that recently implemented legislation recommending advanced treatment of wastewater aiming at protecting the environment (Rizzo et al., 2019).One of the advantages of AOTs is their capacity to disinfect water (Rizzo et al., 2020). Hence, besides degrading undesirable chemical micropollutants, numerous scientific bench studies demonstrated that the mechanisms for microbial inactivation used by AOTs, such as the oxidative stress as it is generated by ozonation, are also capable of reducing the microbial load of wastewater, including ARB&ARGs (e.g. Rizzo et al., 2020). Such promising results opened the possibility of upgrading CAS‐based UWWTPs with a final AOT polishing step and using the facilities as recycling units of urban wastewater. Additional treatment may be required in a reuse scenario, and in that cases, the final treated wastewater may need to undergo an adsorption post‐AOT treatment step to eventually remove toxic degradation products (Rizzo et al., 2019) and to be stored for periods that may vary between few hours to some days, depending on the needs. Hence, some bench and full‐scale studies have been conducted to assess the microbiological quality of the wastewater after the final AOT treatment.Consistently, studies focused on the effect of AOTs conclude that the microbiota, including ARB&ARGs, surviving AOT treatment is capable of re‐regrowth during the storage period, sometimes to values reaching or surpassing those measured in the untreated secondary effluent (Zimmermann et al., 2011; Becerra‐Castro et al., 2016; Czekalski et al., 2016; Sousa et al., 2017; Moreira et al., 2018; Biancullo et al., 2019; Iakovides et al., 2019). Moreover, re‐regrowth is accompanied by the disturbance of the microbial community, with possible implications on the decrease of diversity, and the overgrowth of Proteobacteria (Becerra‐Castro et al., 2016; Moreira et al., 2018). Among these, bacterial groups described as potential vectors of antibiotic resistance, such as Pseudomonas, have been detected at high relative abundance (Alexander et al., 2016; Jäger et al., 2018; Moreira et al., 2018).The same phenomena occur when other technologies are applied in the wastewater treatment. Comparatively milder processes such as UV254 nm irradiation or even coagulation lead to similar disturbances (Becerra‐Castro et al., 2016; Grehs et al., 2019). When comparing different technologies, a positive correlation between disinfection efficacy and the predominance of ubiquitous, potentially hazardous, bacteria in the treated stored wastewater seems to occur (Becerra‐Castro et al., 2016). Interestingly, clean built environments, where asepsis and frequent disinfection are the rule, are characterized by the predominance of Proteobacteria (Mahnert et al., 2019). Moreover, cleaning with aggressive agents seems to favour microbiomes encoding functions related with virulence, multi‐drug efflux, oxidative stress, as well as membrane transport and secretion, which empower cells to acquire nutrients in highly competitive nutrient‐poor environments (Mahnert et al., 2019).Such results are not unexpected. Any process reducing the diversity and abundance of microorganisms in a given ecosystem, through physical removal of the cells or physical and/or chemical inactivation of macromolecules or cellular processes, is expected to generate a habitat where intercellular competition for space and nutrients is reduced, offering the opportunity for those that randomly survived the process and that are most versatile and fast to grow, to proliferate. Therefore, among the survivors, those with high capacity to grow under the conditions prevailing in the disinfected or cleaned system will thrive. Conversely, the microorganisms with specific requirements (e.g. nutritional) or with slower grow rates will be outcompeted. Proteobacteria are well known for their genomic plasticity. Some proteobacterial species, such as Pseudomonas aeruginosa, colonize a wide diversity of environmental compartments, including mineral water, chlorinated drinking water, surface water and soils, and even human bodies (Grobe et al., 2001; Naze et al., 2010; Palleroni, 2015). Part of the success of this ubiquitous opportunistic pathogenic species rely upon its capacity to exchange genetic information through horizontal gene transfer (Kung et al., 2010). Hence, Pseudomonas aeruginosa harbour genetic information which allows cell development in a wide diversity of environmental conditions, including in the presence of a vast array of antimicrobial compounds. Therefore, besides carrying intrinsic antimicrobial resistance, P. aeruginosa strains are excellent vectors of ARG dissemination (Manaia, 2017). The predominance of microorganisms with these type of features in treated wastewater is thus not desirable, mainly if its further use in agriculture irrigation is envisaged, given the possibility of contamination of the food chain.In this context, it may be argued that the upgrading UWWTPs with a final disinfection step is not enough to transform these facilities into wastewater recycling units, and more studies should be carried out to design and implement storage systems capable of attenuating the imbalance of the bacterial community before reuse of the stored treated wastewater.Measures to restore the microbial richness and diversity of the disinfected wastewater would prevent the overgrowth of hazardous bacteria fitted to couple with very clean oligotrophic environments, such as P. aeruginosa, through competition. Such measures might include the inoculation of the disinfected wastewater with balanced natural microbial communities, with a rich and diverse phylogenetic and functional assembly of microorganisms (van Bruggen et al., 2019). In these communities, organisms belonging to a wide variety of species interact through complex relationships (mutualism, commensalism, competition, predation, parasitism) assuring metabolic redundancy and the integrity of nutrient cycles and energy flows (van Bruggen et al., 2019). Such communities are stable and resilient, that is, show little disturbance and restore rapidly upon alteration of the environmental conditions or invasion (van Bruggen et al., 2019). Hence, procedures such as diluting disinfected wastewater with non‐polluted surface water, mixing with pristine sediments or soils or discharge in wetlands would introduce a healthy microbiome in the treated wastewater. Under this circumstance, the exogenous microbiome would act as a protection shield for the proliferation of the hazardous microorganism surviving the disinfection process, in a similar way of the natural human microbiota, our first line of defence against the invasion of pathogens.Definitely, microbes must have a say on removing waste from wastewater. The next research steps should be oriented towards a better understanding of the biotic relationships occurring in the treated wastewater and technological implementation of systems that are able to nurture these important artisan communities.  相似文献   

13.
The response by the author. Subject Categories: S&S: Economics & Business, S&S: Ethics

I thank Michael Bronstein and Sophia Vinogradov for their interest and comments. I would like to respond to a few of their points.First, I agree with the authors that empirical studies should be conducted to validate any approaches to prevent the spread of misinformation before their implementation. Nonetheless, I think that the ideas I have proposed may be worth further discussion and inspire empirical studies to test their effectiveness.Second, the authors warn that informing about the imperfections of scientific research may undermine trust in science and scientists, which could result in higher vulnerability to online health misinformation (Roozenbeek et al, 2020; Bronstein & Vinogradov, 2021). I believe that transparency about limitations and problems in research does not necessarily have to diminish trust in science and scientists. On the contrary, as Veit et al put it, “such honesty… is a prerequisite for maintaining a trusting relationship between medical institutions (and practitioners) and the public” (Veit et al, 2021). Importantly, to give an honest picture of scientific research, information about its limitations should be put in adequate context. In particular, the public also should be aware that “good science” is being done by many researchers; we do have solid evidence of effectiveness of many medical interventions; and efforts are being taken to address the problems related to quality of research.Third, Bronstein and Vinogradov suggest that false and dangerous information should be censored. I agree with the authors that “[c]ensorship can prevent individuals from being exposed to false and potentially dangerous ideas” (Bronstein & Vinogradov, 2021). I also recognize that some information is false beyond any doubt and its spread may be harmful. What I am concerned about are, among others, the challenges related to defining what is dangerous and false information and limiting censorship only to this kind of information. For example, on what sources should decisions to censor be based and who should make such decisions? Anyone, whether an individual or an organization, with a responsibility to censor information will likely not only be prone to mistakes, but also to abuses of power to foster their interests. Do the benefits we want to achieve by censorship outweigh the potential risks?Fourth, we need rigorous empirical studies examining the actual impact of medical misinformation. What exactly are the harms we try to protect against and what is their scale? This information is necessary to choose proportionte and effective measures to reduce the harms. Bronstein and Vinogradov give an example of a harm which may be caused by misinformation—an increase in methanol poisoning in Iran. Yet, as noticed by the authors, misinformation is not the sole factor in this case; there are also cultural and other contexts (Arasteh et al, 2020; Bronstein & Vinogradov, 2021). Importantly, the methods of studies exploring the effects of misinformation should be carefully elaborated, especially when study participants are asked to self‐report. A recent study suggests that some claims about the prevalence of dangerous behaviors, such as drinking bleach, which may have been caused by misinformation are largely exaggerated due to the presence of problematic respondents in surveys (preprint: Litman et al, 2021).Last but not least, I would like to call attention to the importance of how veracity of information is determined in empirical studies on misinformation. For example, in a study of Roozenbeek et al, cited by Bronstein and Vinogradov, the World Health Organization (WHO) was used as reliable source of information, which raises questions. For instance, Roozenbeek et al (2020) used a statement “the coronavirus was bioengineered in a military lab in Wuhan” as an example of false information, relying on the judgment of the WHO found on its “mythbusters” website (Roozenbeek et al, 2020). Yet, is there a solid evidence to claim that this statement is false? At present, at least some scientists declare that we cannot rule out that the virus was genetically manipulated in a laboratory (Relman, 2020; Segreto & Deigin, 2020). Interestingly, the WHO also no longer excludes such a possibility and has launched an investigation on this issue (https://www.who.int/health‐topics/coronavirus/origins‐of‐the‐virus, https://www.who.int/emergencies/diseases/novel‐coronavirus‐2019/media‐resources/science‐in‐5/episode‐21‐‐‐covid‐19‐‐‐origins‐of‐the‐sars‐cov‐2‐virus); the information about the laboratory origin of the virus being false is no longer present on the WHO “mythbusters” website (https://www.who.int/emergencies/diseases/novel‐coronavirus‐2019/advice‐for‐public/myth‐busters). Against this backdrop, some results of the study by Roozenbeek et al (2020) seem misleading. In particular, the perception of the reliability of the statement about bioengineered virus by study participants in Roozenbeek et al (2020) does not reflect the susceptibility to misinformation, as intended by the researchers, but rather how the respondents perceive reliability of uncertain information.I hope that discussion and research on these and related issues will continue.  相似文献   

14.
15.
16.
Increasing diversity in academia is not just a matter of fairness but also improves science. It is up to individual scientists and research organisations to support underrepresented minorities. Subject Categories: S&S: Economics & Business, S&S: Ethics

There has been a large body of research on diversity in the workplace—in both academic and non‐academic settings—that highlights the benefits of an inclusive workplace. This is perhaps most clearly visible in industry where the rewards are immediate: A study by McKinsey showed that companies with a more diverse workforce perform better financially and by substantial margins, compared to their respective national industry medians (https://www.mckinsey.com/business-functions/organization/our-insights/why-diversity-matters#).It is easy to measure success in financial terms, but since there is no similar binary metric for research performance (https://sfdora.org), it is harder to quantify the rewards of workplace diversity in academic research. However, research shows that diversity actually provides research groups with a competitive edge in other quantifiable terms, such as citation counts (Powell, 2018), and the scientific process obviously benefits from diversity in perspectives. Bringing together individuals with different ways of thinking will allow us to solve more challenging scientific problems and lead to better decision‐making and leadership. Conversely, there is a direct cost to bias in recruitment, tenure, and promotion processes. When such processes are affected by bias—whether explicit or implicit—the whole organization is losing by not tapping into the wider range of skills and assets that could otherwise have been brought to the workplace. Promoting diversity in academia is therefore not simply an issue of equity, which in itself is a sufficient reason, but also a very practical question: how do we create a better work environment for our organization, both in terms of collegiality and in terms of performance?Notwithstanding the fact that there is now substantial awareness of the importance of diversity and that significant work is being invested into addressing the issue, the statistics do not look good. Despite a substantial improvement at the undergraduate and graduate student levels in the EU, women remain significantly underrepresented in research at the more senior levels (Directorate‐General for Research and Innovation European Commission, 2019). In addition, the lion’s share of diversity efforts, at least in Sweden where I work, is frequently focused on gender. Gender is clearly important, but other diversity axes with problematic biases deserve the same attention. As one example, while statistics on ethnic diversity is readily available for US Universities (Davis & Fry, 2019), this information is much harder to find in Europe. While there is an increased awareness of diversity at the student level, this does not necessarily translate into initiatives to support faculty diversity (Aragon & Hoskins, 2017). There are examples of progress and concrete actions on these fronts, including the Athena Swan Charter (https://www.ecu.ac.uk/equality-charters/athena-swan/), the more recent Race Equality Charter (https://www.advance-he.ac.uk/charters/race-equality-charter), and the EMBO journals that regularly analyze their decisions for gender bias. However, progress remains frustratingly slow. In 2019, the World Economic Forum suggested that, at the current rate of progress, the global gender gap will take 108 years to close (https://www.weforum.org/reports/the-global-gender-gap-report-2018). I worry that it may take even longer for other diversity axes since these receive far less attention.It is clear that there is a problem, but what can we do to address it? Perhaps one of the single most important contributions we can make as faculty is to address the implicit (subconscious) biases we all carry. Implicit bias will manifest itself in many ways: gender, ethnicity, socioeconomic status, or disability, just to mention a few. These are the easily identifiable ones, but implicit bias also extends to, for example, professional titles (seniority level), institutional affiliation and even nationality. These partialities affect our decision‐making—for example, in recruitment, tenure, promotion, and evaluation committees—and how we interact with each other.The “Matilda effect” (Rossiter, 1993), which refers to the diminishment of the value of contributions made by female researchers, is now well recognized, and it is not unique to gender (Ross, 2014). When we diminish the contributions of our colleagues, it affects how we evaluate them in competitive scenarios, and whether we put them forward for grants, prizes, recruitment, tenure, and so on. In the hypercompetitive environment that is academia today, even small and subtle injuries can tremendously amplify their negative impact on success, given the current reward system that appears to favor “fighters” over “collaborators”. Consciously working to correct for this, stepping back to rethink our first assessment, is imperative.Women and other minorities also frequently suffer from imposter syndrome, which can impact self‐confidence and make members of these groups less likely to self‐promote in the pursuit of prestigious funding, awards, and competitive career opportunities. This effect is further amplified by a globally mobile academic workforce who, when moving to new cultural contexts (whether locally or internationally), can be unaware of the unwritten rules that guide a department’s work environment and decision‐making processes. Here, mentoring can play a tremendous role in reducing barriers to success; however, for such mentorship to be productive, mentors need to be aware of the specific challenges faced by minorities in academia, as well as their own implicit biases (Hinton et al, 2020).Other areas where we, as individual academics, can contribute to a more diverse work environment include meeting cultures and decision‐making. Making sure that the members of decision‐making bodies have diverse composition so that a variety of views are represented is an important first step. One complication to bear in mind though is that implicit biases are not limited to individuals outside the group: A new UN report shows that almost 90% of people—both men and women—carry biases against women, which in turn is what contributes to the glass‐ceiling effect (United Nations Development Program, 2020). However, equally important is inclusiveness in the meeting culture. Studies from the business world show that even high‐powered women often struggle to speak up and be heard at meetings, and the onus for solving this is often passed back onto themselves. The same holds true for other minority groups, and in an academic setting, it extends to seminars and conferences. The next time you plan a meeting, think about the setting and layout. Who gets to talk? Why? Is the distribution of time given to participants representative of the composition of the meeting participants? If not, why not?As a final example of personal action, we can take: language matters (Ås, 1978). Even without malicious intent, there can be a big gap between what we say and mean, and how it comes across to the recipient. Some examples of this are given by Harrison and Tanner (Harrison & Tanner, 2018), who discuss microagressions in an academic setting and the underlying message one might be unintentionally sending. Microaggressions, when built up over a long period of time, and coming from different people, can significantly impact someone’s confidence and sense of self‐worth. Taking a step back and thinking about why we choose the language, we do is a vital part of creating an inclusive work environment.Addressing diversity challenges in academia is a highly complex multi‐faceted topic that is impossible to do justice in a short opinion piece. This is, therefore, just a small set of examples: By paying attention to our own biases and thinking carefully about how we interact with those around us, both in terms of the language we use and the working environments we create, we can personally contribute to improving both recruitment and retention of a diverse academic workforce. In addition, it is crucial to break the culture of silence and to speak up when we see others committing micro‐ or not so microaggressions or otherwise contributing to a hostile environment. There is a substantial amount of work that needs to be done, at both the individual and organization levels, before we have a truly inclusive academic environment. However, this is not a reason to not do it, and if each of us contributes, we can accelerate this change to a better and more equitable future, while all winning from the benefits of diversity.  相似文献   

17.
Application of degradable plastics is the most critical solution to plastic pollution. As the precursor of biodegradable plastic PLA (polylactic acid), efficient production of l‐lactic acid is vital for the commercial replacement of traditional plastics. Bacillus coagulans H‐2, a robust strain, was investigated for effective production of l‐lactic acid using long‐term repeated fed‐batch (LtRFb) fermentation. Kinetic characteristics of l‐lactic acid fermentation were analyzed by two models, showing that cell‐growth coupled production gradually replaces cell‐maintenance coupled production during fermentation. With the LtRFb strategy, l‐lactic acid was produced at a high final concentration of 192.7 g/L, on average, and a yield of up to 93.0% during 20 batches of repeated fermentation within 487.5 h. Thus, strain H‐2 can be used in the industrial production of l‐lactic acid with optimization based on kinetic modeling.  相似文献   

18.
Many scientists, confined to home office by COVID‐19, have been gathering in online communities, which could become viable alternatives to physical meetings and conferences. Subject Categories: S&S: Careers & Training, Methods & Resources, S&S: Ethics

As COVID‐19 has brought work and travel to a grinding halt, scientists explored new ways to connect with each other. For the gene regulation community, this started with a Tweet that quickly expanded into the “Fragile Nucleosome” online forum, a popular seminar series, and many intimate discussions connecting scientists all over the world. More than 2,500 people from over 45 countries have attended our seminars so far and our forum currently has ~ 1,000 members who have kick‐started discussion groups and mentorship opportunities. Here we discuss our experience with setting up the Fragile Nucleosome seminars and online discussion forum, and present the tools to enable others to do the same.Too often, we forget the importance of social interactions in science. Indeed, many creative ideas originated from impromptu and fortuitous encounters with peers, in passing, over lunch, or during a conference coffee break. Now, the ongoing COVID‐19 crisis means prolonged isolation, odd working hours, and less social interactions for most scientists confined to home. This motivated us to create the “Fragile Nucleosome” virtual community for our colleagues in the chromatin and gene regulation field.
… the ongoing COVID‐19 crisis means prolonged isolation, odd working hours and less social interactions for most scientists confined to home.
While the need to address the void created by the COVID‐19 pandemic triggered our actions, a large part of the international community already has had limited access to research networks in our field. Our initiative offered new opportunities though, in particular for those who have not benefited from extensive networks, showing how virtual communities can address disparities in accessibility. This should not be a stop‐gap measure during the pandemic: Once we come out from our isolation, we still need to address the drawbacks of in‐person scientific conferences/seminars, such as economic disparities, travel inaccessibility, and overlapping family responsibilities (Sarabipour, 2020). Our virtual community offers some solutions to the standing challenges (Levine & Rathmell, 2020), and we hope our commentary can help start conversations about the advantages of virtual communities in a post‐pandemic world.
… once we come out from our isolation we still need to address the drawbacks of in‐person scientific conferences/seminars, such as economic disparities, travel inaccessibility and overlapping family responsibilities…
  相似文献   

19.
Fermentation technology has become a modern method for food production the last decades as a process for enhancing product stability, safety and sensory standards. The main reason for this development is the increasing consumers’ demand for safe and high quality food products. The above has led the scientific community to the thorough study for the appropriate selection of specific microorganisms with desirable properties such as bacteriocin production, and probiotic properties. The main food products produced through fermentation activity are bread, wine, beer cheese and other dairy products. The microorganisms conducting the above processes are mainly yeasts and lactic acid bacteria. The end products of carbohydrate catabolism by these microorganisms contribute not only to preservation as it was believed years ago, but also to the flavour, aroma and texture and to the increase of the nutritional quality by thereby helping determine unique product characteristics. Thus, controlling the function of specific microorganisms or the succession of microorganisms that dominate the microflora is therefore advantageous, because it can increase product quality, functionality and value. Throughout the process of the discovery of microbiological diversity in various fermented food systems, the development of starter culture technology has gained more scientific attention, and it could be used for the control of the manufacturing operation, and management of product quality. In the frame of this review the presentation of the quality enhancement of most consumed fermented food products around the world is attempted and the new trends in production of fermented food products, such as bread is discussed. The review is focused in kefir grains application in bread production.  相似文献   

20.
Synthetic biology could harness the ability of microorganisms to use highly toxic cyanide compounds for growth applied to bioremediation of cyanide‐contaminated mining wastes and areas. Subject Categories: Biotechnology & Synthetic Biology, Evolution & Ecology, Metabolism

Cyanide is a highly toxic chemical produced in large amounts by the mining and jewellery industries, steel manufacturing, coal coking, food processing and chemical synthesis (Luque‐Almagro et al, 2011). The mining industry uses so‐called cyanide leaching to extract gold and other precious metals from ores, which leaves large amounts of cyanide‐containing liquid wastes with arsenic, mercury, lead, copper, zinc and sulphuric acid as cocontaminants.Although these techniques are very efficient, they still produce about one million tonnes of toxic wastewaters each year, which are usually stored in artificial ponds that are prone to leaching or dam breaks and pose a major threat to the environment and human health (Luque‐Almagro et al, 2016). In 2000, a dam burst in Baia Mare, Romania, caused one of the worst environmental disasters in Europe. Liquid waste from a gold mining operation containing about 100 tonnes of cyanide spilled into the Somes River and eventually reached the Danube, killing up to 80% of wildlife in the affected areas. A more recent spill was caused by a blast furnace at Burns Harbor, IN, USA, which released 2,400 kg of ammonia and 260 kg of cyanide at concentrations more than 1,000 times over the legal limit into Calumet River and Lake Michigan, severely affecting wildlife. Notwithstanding the enormous damage such major spills cause, industrial activities that continuously release small amounts of waste are similarly dangerous for human and environmental health.The European Parliament, as part of its General Union Environment Action Programme, has called for a ban on cyanide in mining activities to protect water resources and ecosystems against pollution. Although several EU member states have joined this initiative, there is still no binding legislation. Similarly, there are no general laws in the USA to prevent cyanide spills, and former administration even authorized the use of cyanide for control predators in agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号