首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A dispersed middle repetitive DNA sequence isolated originally from human chromosome 12 did not show homology with rodent DNA under standard conditions of Southern DNA blot analysis. The evolutionary relationship of this human repetitive DNA to that of other primates was investigated using three hybridization methods: DNA dot blot, Southern DNA blot analysis, and chromosome in situ hybridization. Homology with the human repetitive DNA was found throughout the suborder Anthropoidea, in fourteen ape and New and Old World monkey species. In addition, the human pattern of hybridization to noncentromeric regions of all chromosomes was seen. No hybridization by any of the three techniques was found in five species of the suborder Prosimii. The phenomenon of marked differences in sequence homology and copy number of dispersed repetitive DNA from closely related species has been observed in protozoans (Plasmodia), Drosophila, sea urchins, mice and the great apes (Hominoidea). We report here a similar phenomenon that may have occurred at an early stage in primate evolution.  相似文献   

2.
DNAs from 122 individuals representing 5 ethnic groups (Black, Chinese, Japanese, Caucasian and Melanesian) were analyzed for restriction fragment length polymorphisms (RFLPs) with a hypervariable repeated sequence located uniquely on chromosome 1 (hMF No.1; is a component of the D1Z2 locus). When human genomic DNA is digested with a variety of enzymes (TaqI, EcoRI, SinI, PstI, HaeIII) the hMF No.1 probe reveals multiple RFLPs. Ethnic group differences were found in the frequencies of specific EcoRI bands. The most striking ethnic group variation was the presence of a unique fragment amongst the Japanese.  相似文献   

3.
A preliminary genetic map of the dioecious species Asparagus officinalis L. (2n = 20) has been constructed on the basis of restriction fragment length polymorphism (RFLP) and isozyme marker data. With DNA samples digested with either EcoRI or HindIII 61 out of 148 probes (41%) identified RFLPs in six families of doubled haploid lines obtained through anther culture. A higher level of polymorphism (65%) was observed when a single family was screened for RFLPs using six distinct restriction enzymes. Segregation analysis of the BC progenies (40–80 individuals) resulted in a 418-cM extended map comprising 43 markers: 39 RFLPs, three isozymes and one morphological (sex). These markers are clustered in 12 linkage groups and four of them exhibited significant deviations from the expected 11 ratio. One isozyme and three RFLP markers were assigned to the sex chromosome.  相似文献   

4.
The genomes of Old-World, New-World, and prosimian primates contain members of a large class of highly repetitive DNAs that are related to one another and to component DNA of the African green monkey by their sequence homologies and restriction site periodicities. The members, of this class of highly repetitive DNAs are termed the alphoid DNAs, after the prototypical member, component of the African green monkey which was the first such DNA to be identified (Maio, 1971) and sequenced (Rosenberg et al., 1978). The alphoid DNAs appear to be uniquely primate sequences. — From the restriction enzyme cleavage patterns and Southern blot hybridizations under different stringency conditions, the alphoid DNAs comprise multiple sequence families exhibiting varying degrees of homology to component DNA. They also share common elements in their restriction site periodicities (172 · n base-pairs), in the long-range organization of their repeating units, and in their banding behavior in CsCl and Cs2SO4 buoyant density gradients, in which they band within the bulk DNA as cryptic repetitive components. — In the three species from the Family Cercopithecidae examined, the alphoid DNAs represent the most abundant, tandemly repetitive sequence components, comprising about 24% of the African green monkey genome and 8 to 10% of the Rhesus monkey and baboon genomes. In restriction digests, the bulk of the alphoid DNAs among the Cercopithecidae appeared quantitatively reduced to a simple series of arithmetic segments based on a 172 base-pair (bp) repeat. In contrast with these simple restriction patterns, complex patterns were observed when human alphoid DNAs were cleaved with restriction enzymes. Detailed analysis revealed that the human genome contains multiple alphoid sequence families which differ from one another both in their repeat sequence organization and in their degree of homology to the African green monkey component DNA. — The finding of alphoid sequences in other Old-World primate families, in a New-World monkey, and in a prosimian primate attests to the antiquity of these sequences in primate evolution and to the sequence conservatism of a large class of mammalian highly repetitive DNA. In addition, the relative conservatism exhibited by these sequences may distinguish the alphoid DNAs from more recently evolved highly repetitive components and satellite DNAs which have a more restricted taxonomical distribution.  相似文献   

5.
Summary A systematic search for restriction fragment length polymorphisms (RFLPs) on the human Y chromosome was performed. DNA samples from 16–34 individuals were screened with five restriction enzymes and 12 Y-chromosomal probes, 3 of which detect lowly repetitive sequences and 9 of which are apparently single copy in genomic DNA. None of the single-copy probes revealed any variation. The repetitive sequence probe p21A1 (DYZ?) revealed a TaqI RFLP with q = 0.05. The frequency of fixed point mutations in Y-chromosomal DNA outside the pseudoautosomal region is probably less than 1 in 18000 bp.  相似文献   

6.
Summary Phylogenetic relationships ofOsmunda cinnamomea, O. claytoniana, andO. regalis were explored by means of DNA sequence comparisons. Hydroxyapatite thermal elution profiles of self-reassociated repetitive DNA fragments were very similar, indicating the absence of gross differences in the amount of recent amplification or addition of repetitive DNA in any of these three genomes. Interspecific DNA sequence comparisons showed, in contrast to our earlier interpretation, that repeated DNA sequences ofO. claytoniana are nearly equally diverged from those ofO. cinnamomea andO. regalis. Differences between repetitive sequences of the three species can be interpreted as reflecting amplification events which occurred subsequent to speciation. The data obtained suggest that the threeOsmunda species most likely arose more or less simultaneously from a common ancestor. These findings were verified in experiments with tracer DNA preparations enriched for single copy sequences. On the basis of the hybridization data presented here and of the fossil record, the rate of single copy sequence divergence in the ferns is comparable to that in the primates, although slower than that observed in other animal taxa. From this first evaluation of rates of DNA evolution in plants it would seem that the rates for plants and animals are roughly comparable. The evidence suggests that species divergence is accompanied by further reiteration of preexisting repeat sequences. The rate of addition of repetitive sequences probably is slower in ferns than in angiosperms. This difference might be attributable to the much larger effective generation time in ferns.  相似文献   

7.
Genome structure and divergence of nucleotide sequences in echinodermata   总被引:1,自引:0,他引:1  
The arrangement of repetitive and single-copy DNA sequences has been studied in DNA of some species of Echinodermata — sea urchin, starfishes and sea-cucumber. Comparison of the reassociation kinetics of short and long DNA fragments indicates that the pattern of DNA sequence organization of all these species is similar to the so called Xenopus pattern characteristic of the genomes of most animals and plants. However, substantional variations have been found in the amount of repetitive nucleotide sequences in DNA of different species and in the length of DNA regions containing adjacent single-copy and repetitive sequences. Measurements of the size of S1-nuclease resistant reassociated repetitive DNA sequences show a variability of ratios between long and short repetitive DNA sequences of different species. — The degree of divergence of short and long repetitive DNA sequences and single-copy DNA was studied by molecular hybridization of the sea urchin Strongylocentrotus intermedius 3H-DNA with the DNA of other species and by determination of the thermostability of the hybridized molecules so obtained. All three fractions of S. intermedius DNA contain sequences homologous to DNA of the other echinoderm species studied. The results obtained suggest that short repetitive DNA sequences are those which have been most highly conserved throughout the evolution of Echinodermata. A new hypothesis is proposed to explain the nature of the evolutionary changes in DNA sequence interspersion patterns.  相似文献   

8.
DNA finger printing by oligonucleotide probes specific for simple repeats   总被引:22,自引:0,他引:22  
Summary Interspersed simple repetitive DNA is a convenient genetic marker for analysis of restriction fragment length polymorphisms (RFLPs) because of the numbers and the frequencies of its alleles. Oligonucleotide probes specific for variations of the GA C T A simple repeats have been designed and hybridized to a panel of human DNAs digested with various restriction enzymes. Numerous RFLPs were demonstrated in AluI and MboI digested DNA with pure GATA oligonucleotides as probes. The optimal length of the probe for RFLP analysis was 20 bases taking into account fragment lengths (1.5-7 kilobases = kb), signal to background ratio, and number of clearly evaluable RFLPs. By using different restriction enzymes individual-specific hybridization patterns (DNA fingerprints) can be established. Hypervariable simple repeat fragments are stably inherited in a Mendelian fashion. Advantages of this method are discussed.  相似文献   

9.
Summary Dialect-1, species-specific repetitive DNA sequence of barley Hordeum vulgare, was cloned and analysed by Southern blot and in situ hybridization. Dialect-1 is dispersed through all barley chromosomes with copy number 5,000 per genome. Two DNA fragments related to Dialect-1 were revealed in phage library, subcloned and mapped. All three clones are structurally heterogenous and it is suggested that the full-length genomic repeat encompassing Dialect-1 is large in size. The Dialect-1 DNA repeat is represented in the genomes of H. vulgare and ssp. agriocrithon and spontaneum in similar form and copy number; it is present in rearranged form with reduced copy number in the genomes of H. bulbosum and H. murinum, and it is absent from genomes of several wild barley species as well as from genomes of wheat, rye, oats and maize. Dialect-1 repeat may be used as a molecular marker in taxonomic studies and for identification of barley chromosomes in interspecies hybrids.  相似文献   

10.
The CMT1A-REP repeat consists of two copies of a 24-kb sequence on human chromosome 17p11.2-12 that flank a 1.5-Mb region containing a dosage-sensitive gene, peripheral nerve protein-22 (PMP22). Unequal meiotic crossover mediated by misalignment of proximal and distal copies of the CMT1A-REP in humans leads to a 1.5-Mb duplication or deletion associated with two common peripheral nerve diseases, Charcot-Marie-Tooth disease type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP). Previous molecular hybridization studies with CMT1A-REP sequences suggested that two copies of the repeat are also found in the chimpanzee, raising the possibility that this unique repeat arose during primate evolution. To further characterize the structure and evolutionary synthesis of the CMT1A-REP repeat, fluorescent in situ hybridization (FISH) analysis and heterologous PCR-based assays were carried out for a series of primates. Genomic DNA was analyzed with primers selected to differentially amplify the centromeric and telomeric ends of the human proximal and distal CMT1A-REP elements and an associated mariner (MLE) sequence. All primate species examined (common chimpanzee, pygmy chimpanzee, gorilla, orangutan, gibbon, baboon, rhesus monkey, green monkey, owl monkey, and galago) tested positive for a copy of the distal element. In addition to humans, only the chimpanzee was found to have a copy of the proximal CMT1A-REP element. All but one primate species (galago) tested positive for the MLE located within the CMT1A-REP sequence. These observations confirm the hypothesis that the distal CMT1A-REP element is the ancestral sequence which was duplicated during primate evolution, provide support for a human-chimpanzee clade, and suggest that insertion of the MLE into the CMT1A-REP sequence occurred in the ancestor of anthropoid primates.  相似文献   

11.
Summary A 3.7 kilobase fragment of Dictyostelium discoideum genomic DNA has been cloned by its ability to complement a yeast ura5 mutation affecting the activity of orotidine-5-phosphate carboxy-lyase (EC 4.1.1.23). This fragment also complements a yeast ura5 mutation that leads to a defect in orotate phosphoribosyl transferase (EC 2.4.2.10). The orotidine-5-phosphate carboxy-lyase and the orotate phosphoribosyl transferase activities that result from Dictyostelium gene expression in yeast have been detected. The size of the DNA required for both complementations has been localised to a segment of less than 2 kb. A unique Dictyostelium RNA species of 1,600 base pairs hybridises to this fragment. In vitro deletions in this fragment lead to the simultaneous loss of the two activities. The two enzymatic activities coelute as a protein of 120.000 daltons during gel filtration of a Dictyostelium extract. These results favour the existence, on the cloned Dictyostelium DNA fragment, of a unique structural gene which codes for a bifunctional enzyme carrying the two activities, orotidine-5-phosphate carboxy-lyase and orotate phosphoribosyl transferase.Abbreviations bp basepair - kb kilobasepair - MOPS Morpholino propane sulfonic acid  相似文献   

12.
Families of related, but nonidentical repetitive DNA sequences, termed the alphoid DNAs, have been identified and characterized in representative species from seven major primate Families. The sequences appear as old as the primate Order itself: they are found in a prosimian (lemur), in a New World monkey, and in all Old World primates examined, including man. The alphoid DNAs are uniquely primate sequences and they may represent the most abundant repetitive DNAs in the primate genome. — A classification scheme for two major families of alphoid DNAs is proposed that is based upon restriction enzyme analysis and Southern blotting with radioactive probes prepared from component DNA (Maio, 1971) and from the human EcoRI dimer sequences (Manuelidis, 1976). The family of alphoid DNAs that hybridizes readily with component is termed the HindIII family of alphoid DNAs. This family shows an almost universal distribution among present-day primates. The family of DNA sequences that hybridizes readily with the human EcoRI dimer probe is termed the EcoRI dimer family of alphoid DNAs. This family may be restricted to the great apes and man. The two probes permitted the discrimination of different, but related alphoid families in present-day primates. Multiple alphoid sequence families are found within the genomes of individual primates and the major primate taxa can be characterized by the representations of the various alphoid DNAs within their genomes. — An Appendix is presented (Brown et al., 1981) indicating that competition hybridization effects may influence the autoradiographic banding patterns, and hence, the interpretations of Southern filter-transfer hybridizations when dealing with related repetitive sequences such as the alphoid DNAs that are present in abundance in eukaryotic genomes.  相似文献   

13.
A member of satellite repetitive DNA was isolated and sequenced from a saltwater fishSillago japonica (Percoidei). This sequence consists of several oligo-dA/dT tracts and two inverted repeats which resemble each other. Dot blot hybridization analysis using a satellite DNA clone pSJ2 among the species in the suborder Percoidei revealed that the pSJ2 sequence was amplified at least after the family Sillaginidae had been derived.  相似文献   

14.
Species-specific repetitive DNA probes are a useful tool for the molecular identification of somatic hybrids. Therefore, the distribution of three repetitive DNA elements of Solanum was investigated in Solanum wild species, Solanum breeding lines, and in more distantly related species of the genera Lycopersicon, Nicotiana, and Datura. The clone pSCH15, obtained from S. circaeifolium, represents a new 168-bp repetitive element; it shows 73–79% sequence similarity to repetitive elements of S. brevidens and Lycopersicon species. The 163-bp element in pSBH6, cloned from S. bulbocastanum, turned out to be very similar (95% sequence homology) to the Lycopersicon element pLEG15/TGRI previously regarded to be present only in species of the genus Lycopersicon and in S. lycopersicoides. Lower sequence similarity of approximately 80% was observed to repetitive elements of S. brevidens which are organized differently. The repeats exhibited different degrees of specificity: by Southern hybridization the element represented by the clone pSBH6 could be detected in almost all Solanum species investigated here but only after long exposure to X-ray film. The previously described Solanum-specific element represented by the clone pSA287 was also found, although in a very low copy number, in Lycopersicon esculentum. Therefore, detection of the repetitive elements pSA287 and pSBH6 in those species in which the respective repeat is less represented depends on exposure time. In contrast, the element pSCH15 is prominently present only in a small number of Solanum wild species and — to some extent — in the diploid breeding lines as revealed after long exposure. Use of these repeated elements for the identification of specific genomes in protoplast-fusion hybrids between Solanum wild species and Solanum breeding lines, or between two breeding lines, was evaluated.  相似文献   

15.
Alpha satellite DNA is a repetitive sequence known to be a major DNA component of centromeres in primates (order Primates). New World monkeys form one major taxon (parvorder Platyrrhini) of primates, and their alpha satellite DNA is known to comprise repeat units of around 340 bp. In one species (Azara''s owl monkey Aotus azarae) of this taxon, we identified two types of alpha satellite DNA consisting of 185- and 344-bp repeat units that we designated as OwlAlp1 and OwlAlp2, respectively. OwlAlp2 exhibits similarity throughout its entire sequence to the alpha satellite DNA of other New World monkeys. The chromosomal locations of the two types of sequence are markedly distinct: OwlAlp1 was observed at the centromeric constrictions, whereas OwlAlp2 was found in the pericentric regions. From these results, we inferred that OwlAlp1 was derived from OwlAlp2 and rapidly replaced OwlAlp2 as the principal alpha satellite DNA on a short time scale at the speciation level. A less likely alternative explanation is also discussed.  相似文献   

16.
Summary The locus, I2, which in tomato confers resistance against Fusarium oxysporum f. sp. lycopersici race 2, was introgressed into Lycopersicon esculentum from the wild species L. pimpinellifolium (P.I. 126915). We searched for restriction fragment length polymorphisms (RFLPs) between nearly isogenic lines (NILs) in clones that map to the region introgressed from the wild species. Since I2 maps to chromosome 11, we used DNA clones from this chromosome as hybridization probes to Southern blots containing bound DNA of the NILs digested with 23 restriction enzymes. Of the 14 chromosome 11 clones, 9 exhibited polymorphism. These clones were further hybridized to verification filters that contained DNA from resistant and susceptible L. esculentum varieties digested with the enzymes that gave the polymorphism. One clone, TG105, was found to be associated with I2; 19 susceptible lines showed a different RFLP with this probe than 16 resistant lines, including the original L. pimpinellifolium accession used as a source for the resistance gene. These results together with our mapping analysis indicate that TG105 is closely linked to the resistance gene.  相似文献   

17.
Summary We have developed a system for the detection of a new type of insertion mutation in mammalian cells. We have used a shuttle vector, plasmid pNK1, which contains the SV40 and pBR322 replication origins, and ApR, galK, and neo R genes. This plasmid was introduced into monkey COS1 cells, allowed to replicate, and then recovered plasmids were reintroduced into Escherichia coli HB101 to detect insertion mutations in the galK gene. We selected galK KMR ApR mutants in order to eliminate galK KmS deletion mutants. Insertion mutations in the plasmids recovered were then screened by agarose gel electrophoresis. Finally, insertion mutants that had the following characteristics were selected. First, they had the ability to produce gal+ revertants caused by the precise excision of inserted DNA in E. coli, implying that they had a target site duplication on both sides of the insertion. Second, they contained some repetitive sequence(s) as judged by hybridization with a bulk monkey DNA probe. Nucleotide sequence analysis of one of the mutants, 15K-1, showed that it contained -satellite sequences within the coding region of the galK gene. It contained tandem repeat units of -satellite sequence and was flanked by a 64 bp target site duplication, indicating that the -satellite sequence had been translocated from the monkey genome into the plasmid by illegitimate recombination. Another insertion mutant, N11-1, contained an 11 kb insert which included an unknown repetitive sequence that was also flanked by a target site duplication of 353 bp. Since both of the insertion mutations contain long target site duplications, we concluded that the insertion mutations detected here are a new type of insertion mutation. A model for the formation of the insertion-duplication mutation is proposed, in which DNA replication plays a role in this illegitimate recombination.  相似文献   

18.
Summary Anonymous DNA probes mapping to human chromosome 16 and the distal region of the human X chromosome were isolated from a genomic library constructed using lambda EMBL3 and DNA from a mouse/human hybrid. The hybrid cell contained a der(16)t(X;16)(q26;q24) as the only human chromosome. Fifty clones were isolated using total human DNA as a hybridisation probe. Forty six clones contained single copy DNA in addition to the repetitive DNA. Pre-reassociation with sonicated human DNA was used to map these clones by a combination of Southern blot analysis of a hybrid cell panel containing fragments of chromosomes 16 and X and in situ hybridisation. One clone mapped to 16pter 16p13.11, one clone to 16p13.316p13.11, four clones to 16p13.316p13.13, two clones to 16p13.1316p13.11, one clone to 16p13.11, seven clones to 16p13.1116q12 or 16q13, four clones to 16q12 or 16q13, three clones to 16q1316q22.1, four clones to 16q22.10516q24, and nineteen clones to Xq26Xqter. Two clones mapping to 16p13 detected RFLPs. VK5 (D16S94) detected an MspI RFLP, PIC 0.37. VK20 (D16S96) detected a TaqI RFLP, PIC 0.37 and two MspI RFLPs, PIC 0.30 and 0.50. The adult polycystic kidney disease locus (PKD1) has also been assigned to 16p13. The RFLPs described will be of use for genetic counselling and in the isolation of the PKD1 gene. Similarly, the X clones may be used to isolate RFLPs for genetic counselling and the isolation of genes for the many diseases that map to Xq26qter.  相似文献   

19.
Summary Repetitive DNA sequences present in the grapevine genome were investigated as probes for distinguishing species and cultivars. Microsatellite sequences, minisatellite sequences, tandemly arrayed genes and highly repetitive grapevine sequences were studied. The relative abundance of microsatellite and minisatellite DNA in the genome varied with the repeat sequence and determined their usefulness in detecting RFLPs. Cloned Vitis ribosomal repeat units were characterised and showed length heterogeneity (9.14–12.15 kb) between and within species. A highly repetitive DNA sequence isolated from V. vinifera was found to be specific only to those species classified as Euvitis. DNA polymorphisms were found between Vitis species and between cultivars of V. vinifera with all classes of repeat DNA sequences studied. DNA sequences suitable for DNA fingerprinting gave genotype-specific patterns for all of the cultivars and species examined. The DNA polymorphisms detected indicates a moderate to high level of heterozygosity in grapevine cultivars.On leave from the Biochemical Research Institute, Nippon Menard Cosmetic Co, Ltd, Ogaki Gifuken, 503 Japan  相似文献   

20.
During the early cleavage divisions in some Ascarids, parts of the chromosomes are eliminated from the somatic blastomeres (chromatin diminution, Boveri, 1887) while the chromosomes in the germ line cells maintain their integrity. To characterize the germ line and soma genome, DNA was isolated from gametes and embryonic somatic cells of two Ascarid species,Parascaris equorum var. univalens andAscaris suum. It was shown that the germ line limited DNAs of these species have the same density and almost identical reassociation kinetics: in CsCl the predominant component of the germ line limited DNA ofP. equorum andA. suum has the buoyant density of 1.697g/cm3, while soma DNA of both species bands at 1.700 g/cm3. InP. equorum there is a small additional germ line limited satellite DNA component with the density of 1.690 g/cm3, identical to that of mitochondrial DNA of both organisms. Comparison of the reassociation kinetics of germ line and soma DNA demonstrates for both species that the eliminated DNA sequences are highly repetitive. In contrast to these similarities between the germ line limited DNAs ofP. equorum andA. suum the analysis of their base composition revealed differences (40% guanine plus cytosine inP. equorum and 36% inA. suum). The only very fast reassociating DNA sequences which we could isolate from soma DNA was demonstrated to be foldback DNA. The reassociation kinetics of totalA. suum soma DNA was investigated by hydroxylapatite chromatography. Least squares analysis of the data revealed about 10% of intermediate repetitive DNA sequences. Their interspersion between single copy DNA sequences was analyzed by comparing the reassociation kinetics of DNA fragments 0.35 and 7.2 kilobases long. Thus the DNA sequence arrangement ofAscaris does not follow the short period interspersion pattern observed in most organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号