首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upon fractionation of a postmitochondrial supernatant from rat liver, the synthase phosphatase (EC 3.1.3.42) activity (assayed at high tissue concentrations) was largely recovered in the glycogen fraction and to a minor extent in the cytosol. In contrast, the phosphorylase phosphatase (EC 3.1.3.17) activity was approximately equally distributed between these two fractions, a lesser amount being recovered in the microsomal fraction. The phosphatase activities in the microsomal and glycogen fractions were almost completely inhibited by a preincubation with the modulator protein, a specific inhibitor of type-1 (ATP,Mg-dependent) protein phosphatases. In the cytosolic fraction, however, type-2A (polycation-stimulated) phosphatase(s) contributed significantly to the dephosphorylation of phosphorylase and of in vitro phosphorylated muscular synthase. Liver synthase b, used as substrate for the measurement of synthase phosphatase throughout this work, was only activated by modulator-sensitive phosphatases. Trypsin treatment of the subcellular fractions resulted in a dramatically increased (up to 1000-fold) sensitivity to modulator, a several-fold increase in phosphorylase phosphatase activity and a complete loss of synthase phosphatase activity. Similar changes occurred during dilution of the glycogen-bound enzyme. A preincubation with the deinhibitor protein, which is known to counteract the effects of inhibitor-1 and modulator, increased several-fold the phosphorylase phosphatase activity, but exclusively in the cytosolic and microsomal fractions. It did not affect the synthase phosphatase activity. Taken together, the results indicate the existence of distinct, multi-subunit type-1 phosphatases in the cytosolic, microsomal and glycogen fractions.  相似文献   

2.
Synthase phosphatase, phosphorylase phosphatase and histone phosphatase in rat liver were measured using as substrates purified liver synthase D, phosphorylase alpha and 32P-labelled phosphorylated f1 histone, respectively. The three phosphatase enzymes had different sedimentation characteristics. Both synthase phosphatase and phosphorylase phosphatase were found to sediment with the microsomal fraction under our experimental conditions. Only 10% of histone phosphatase was in this fraction; the majority was in the cytosol. No change in histone phosphatase was observed in the adrenalectomized fasted rat whereas synthase phosphatase and phosphorylase phosphatase activities were decreased 5-10 fold. Fractionation of liver extract with ethanol produced a dissociation of the three phosphatase activities. When a partially purified fraction was put on a DEAE-cellulose column, synthase phosphatase and phosphorylase phosphatase both exhibited broad elution profiles but their activity peaks did not coincide. Histone phosphatase eluted as a single discrete peak. When the supernatant of CaCl2-treated microsomal fraction was put on a Sepharose 4B column, the majority of synthase phosphatase was found to elute with the larger molecular weight proteins whereas the majority of phosphorylase phosphatase eluted with the smaller species. Histone phosphatase migrated as a single peak and was of intermediate size. Synthase phosphorylase phosphatase by synthase D (Ki approximately 2 units/ml). The inhibition of synthase phosphatase by phosphorylase alpha was kinetically non-competitive with substrate. Histone phosphatase activity was not inhibited by synthase D or by phosphorylase alpha. The above results suggest that different proteins are involved in the dephosphorylation of synthase D, phosphorylase alpha and histone in the cell.  相似文献   

3.
Summary Synthase phosphatase, phosphorylase phosphatase and histone phosphatase activity in a leukocyte homogenate were found to have different sedimentation charcteristics: both synthase phosphatase and phosphorylase phosphatase activity are associated with the microsomal fraction, while the majority of histone phosphatase activity (75–85%) was found in the cytosol. Synthase phosphatase, phosphorylase phosphatase and histone phosphatase activities accompanying the microsomal fraction are readily solubilized by 0.3% Triton X-100.When the solubilized microsomal enzymes were chromatographed on Sephadex G-200, the majority of synthase phosphatase, phosphorylase phosphatase and histone phosphatase activity migrated in single peaks corresponding to apparent molecular weights of 380 000, 250 000 and 68 000, respectively. A minor peak of 30 000, which had phosphatase activity against all three substrates was also obtained.Ethanol treatment resulted in solubilization and dissociation of the three phosphatase activities. It was found that although ethanol treatment resulted in a 4-fold increase of phosphorylase phosphatase activity, histone phosphatase activity was decreased (by 60%), while synthase phosphatase activity remained stable. Similar results were obtained when ethanol treatment was performed on the 17 000 × g supernatant.Chromatography of the ethanol-treated microsomes (or homogenate) on Sephadex G-200 showed that the phosphatase activity towards synthase D, phosphorylase a and phosphohistone coincided a Mr 30 000 species. Heat treatment of the Mr 30 000 peak resulted in dissociation of synthase phosphatase and phosphorylase phosphatase activity.Synthase phosphatase was inhibited by phosphorylase a in a kinetically non-competitive manner while histone phosphatase activity was notinhibited by synthase D (8.5 unit/ ml) orby phosphorylase a(12 unit/ ml).  相似文献   

4.
A detailed investigation was conducted to determine the precise subcellular localization of the rate-limiting enzymes of hepatic glycogen metabolism (glycogen synthase and phosphorylase) and their regulatory enzymes (synthase phosphatase and phosphorylase phosphatase). Rat liver was homogenized and fractionated to produce soluble, rough and smooth microsomal fractions. Enzyme assays of the fractions were performed, and the results showed that glycogen synthase and phosphorylase were located in the soluble fraction of the livers. Synthase phosphatase and phosphorylase phosphatase activities were also present in soluble fractions, but were clearly identified in both rough and smooth microsomal fractions. It is suggested that the location of smooth endoplasmic reticulum (SER) within the cytosome forms a microenvironment within hepatocytes that establishes conditions necessary for glycogen synthesis (and degradation). Thus the location of SER in the cell determines regions of the hepatocyte that are rich in glycogen particles. Furthermore, the demonstration of the association of synthase phosphatase and phosphorylase phosphatase with membranes of SER may account for the close morphological association of SER with glycogen particles (i.e., disposition of SER membranes brings the membrane-bound regulatory enzymes in close contact with their substrates).  相似文献   

5.
Glycogen synthase (labelled in sites-3) and glycogen phosphorylase from rabbit skeletal muscle were used as substrates to investigate the nature of the protein phosphatases that act on these proteins in the glycogen and microsomal fractions of rat liver. Under the assay conditions employed, glycogen synthase phosphatase and phosphorylase phosphatase activities in both subcellular fractions could be inhibited 80-90% by inhibitor-1 or inhibitor-2, and the concentrations required for half-maximal inhibition were similar. Glycogen synthase phosphatase and phosphorylase phosphatase activities coeluted from Sephadex G-100 as broad peaks, stretching from the void volume to an apparent molecular mass of about 50 kDa. Incubation with trypsin decreased the apparent molecular mass of both activities to about 35 kDa, and decreased their I50 for inhibitors-1 and -2 in an identical manner. After tryptic digestion, the I50 values for inhibitors-1 and -2 were very similar to those of the catalytic subunit of protein phosphatase-1 from rabbit skeletal muscle. The glycogen and microsomal fractions of rat liver dephosphorylated the beta-subunit of phosphorylase kinase much faster than the alpha-subunit and dephosphorylation of the beta-subunit was prevented by the same concentrations of inhibitor-1 and inhibitor-2 that were required to inhibit the dephosphorylation of phosphorylase. The same experiments performed with the glycogen plus microsomal fraction from rabbit skeletal muscle revealed that the properties of glycogen synthase phosphatase and phosphorylase phosphatase were very similar to the corresponding activities in the hepatic glycogen fraction, except that the two activities coeluted as sharp peaks near the void volume of Sephadex G-100 (before tryptic digestion). Tryptic digestion of the hepatic glycogen and microsomal fractions increased phosphorylase phosphatase about threefold, but decreased glycogen synthase phosphatase activity. Similar results were obtained with the glycogen plus microsomal fraction from rabbit skeletal muscle or the glycogen-bound form of protein phosphatase-1 purified to homogeneity from the same tissue. Therefore the divergent effects of trypsin on glycogen synthase phosphatase and phosphorylase phosphatase activities are an intrinsic property of protein phosphatase-1. It is concluded that the major protein phosphatase in both the glycogen and microsomal fractions of rat liver is a form of protein phosphatase-1, and that this enzyme accounts for virtually all the glycogen synthase phosphatase and phosphorylase phosphatase activity associated with these subcellular fractions.  相似文献   

6.
Rat liver microsomes contain type-1 S6 phosphatase (acting on the serine residues phosphorylated by protein kinase A) and type-1 phosphorylase phosphatase activities. The main aim of this study has been to characterize the microsomal S6 phosphatase activity and to compare its properties with those of the phosphorylase phosphatase activity in the same microsomal preparation. The specific activities of both microsomal S6 phosphatase and phosphorylase phosphatase were 1.6- to 1.7-fold higher in the smooth endoplasmic reticulum than in the rough sarcoplasmic reticulum. Both phosphatase activities were inhibited to a similar extent by MgCl2 (10 mM) and NaF (22 mM), were completely suppressed by glycerophosphate (80 mM) and ZnCl2(10 mM), and were stimulated by MnCl2(1 mM). When analyzed by gel filtration on Sephadex G-100 superfine, both phosphatase activities eluted as broad peaks, stretching from the void volume to 45-60 kDa. The microsomal S6 phosphatase and phosphorylase phosphatase activities also displayed the following distinct characteristics: (a) Mn2+ stimulated the S6 phosphatase activity 2.9-fold more than the phosphorylase phosphatase activity, (b) limited trypsin digestion of microsomal preparations increased the phosphorylase phosphatase activity by 1.5- to 2-fold, but decreased the S6 phosphatase activity by 50%, (c) a synthetic peptide analog of S6 (S6229-239) (200 microM), which did not act as a substrate for the microsomal S6 phosphatase and did not affect its activity, inhibited the microsomal phosphorylase phosphatase activity by about 50%, and (d) the elution profile of the phosphorylase phosphatase activity was markedly broader than that of the S6 phosphatase activity. A series of in vivo studies showed that streptozotocin-diabetes and insulin replacement therapy as well as ip injection of insulin or vanadate, which modified the microsomal S6 phosphatase activity, had no statistically significant effects on the microsomal phosphorylase phosphatase activity. Taken together, these results suggest that the microsomal S6 phosphatase and phosphorylase phosphatase activities are due to two distinct enzyme populations.  相似文献   

7.
Hexose phosphates as regulators of hepatic glycogen synthase phosphatases   总被引:1,自引:0,他引:1  
The activity of glycogen synthase phosphatase from smooth endoplasmic reticulum of liver was stimulated markedly by galactose-6- and fructose-6-phosphates and to a lesser extent by glucose-1- and 2-deoxyglucose-6-phosphates. The synthase phosphatase of liver cytosol showed strong activation by glucose-1-, glucose-6- and fructose-6-phosphates and smaller activation by galactose-6- and 2-deoxyglucose-6-phosphates. Kinetic analysis showed that the activators did not affect the Km for glycogen synthase D, for either enzyme. The mechanism of activation of the two phosphatases by hexose phosphates appears to be by combination of the activator at a specific activator site on the enzyme rather than by substrate modulation. It is concluded that certain hexose phosphates, particularly fructose-6-phosphate and glucose-1-phosphate, can function as regulators of hepatic synthase phosphatase activity, and that this may explain the ability of elevated blood glucose to increase both glycogen synthase I activity and glycogen synthesis in the liver.  相似文献   

8.
The intravenous administration of glucagon to anesthetized rats resulted within 5 min in a 20% drop in the hepatic phosphorylase phosphatase activity, as measured in a post-mitochondrial supernatant at low dilution, but it did not affect the activity of glycogensynthase phosphatase. On the other hand, the injection of insulin plus glucose caused increases by about 35% in both phosphatase activities. Upon subcellular fractionation these effects were recovered in the cytosol, but not in the glycogen/microsomal fraction. However, activity changes in the latter fraction were observed after recombination with the liver cytosol from a hormone-treated animal. Preincubation of the liver cytosol with modulator protein (a specific inhibitor of type-1 protein phosphatases) cancelled the activity changes induced by insulin plus glucose. No hormonal effects on hepatic protein phosphatase activities were observed when the fractions were either diluted an additional 10-fold or pretreated with trypsin. An acute hormonal regulation of protein phosphatases could also be demonstrated in the perfused liver. When added to the perfusion medium, glucose as well as insulin increased the cytosolic protein phosphatase activities by about 25%. Their effect was additive, irrespective of the order of addition. On the other hand, the addition of glucagon and/or vasopressin resulted in a 20% drop in the phosphorylase phosphatase activity. The presence of glucagon did not interfere with the effectiveness of insulin, and vice versa. The changes in the phosphorylase phosphatase activities induced by glucagon, insulin, and glucose represented changes in the Vmax only. We propose that the acute control of the hepatic glycogen synthase phosphatase and phosphorylase phosphatase activities is mediated by transferable, cytosolic effector(s).  相似文献   

9.
The subcellular distribution of polyisoprenyl pyrophosphate phosphatase activity has been examined in rat brain by assaying the release of 32Pi from [beta-32P]dolichyl pyrophosphate (Dol-P-P) as described previously (Scher,M.G. and Waechter, C.J. (1984) J. Biol. Chem., 259, 14580-14585). The highest specific activities of Dol-P-P phosphatase in rat brain were found in the Golgi-enriched light microsomal, synaptic plasma membrane and heavy microsomal fractions. A comparative analysis of the distribution of galactosyltransferase and dolichol kinase reveals that Dol-P-P phosphatase activity co-fractionates with galactosyltransferase activity, and that the high level found in the Golgi-enriched fraction is not due to cross-contamination with heavy microsomes. When beta-labelled C95 Dol-P-P and the C95 allylic polyisoprenyl pyrophosphate (Poly-P-P) were compared as substrates for the Golgi-enriched light microsomal and heavy microsomal fractions, similar Km values were calculated for the two pyrophosphorylated substrates for each membrane fraction. Based on these kinetic analyses, the enzyme(s) catalysing this reaction do not distinguish between substrates containing saturated or allylic alpha-isoprene units. When Dol-P-P phosphatase activity was assessed in submicrosomal fractions obtained from rat liver by two separate procedures, the highest specific activity was also detected in the Golgi-enriched fraction. While the specific activities for Dol-P-P phosphatase and sialyltransferase were in the relative order of Golgi greater than smooth endoplasmic reticulum (ER) greater than rough ER, the relative order of dolichol kinase was rough ER greater than smooth ER greater than Golgi.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Using substrates purified from liver, the apparent Km values of synthase phosphatase ([UDPglucose--glycogen glucosyltransferase-D]phosphohydrolase, EC 3.1.3.42) and phosphorylase phosphatase (phosphorylase a phosphohydrolase, EC 3.1.3.17) were found to be 0.7 and 60 units/ml respectively. The maximal velocity of phosphorylase phosphatase was more than a 100 times that of synthase phosphatase. In adrenalectomized, fasted animals there was a complete loss of synthase phosphatase but only a slight decrease in phosphorylase phosphatase when activity was measured using endogenous substrates in a concentrated liver extract. When assayed under optimal conditions with purified substrates, both activities were present but had decreased to very low levels. Mixing experiments indicated that synthase D present in the extract of adrenalectomized fasted animals was altered such that it was no longer a substrate for synthase phosphatase from normal rats. Phosphorylase a substrate on the other hand was unaltered and readily converted. When glucose was given in vivo, no change in percent of synthase in the I form was seen in adrenalectomized rats but the percent of phosphorylase in the a form was reduced. Precipitation of protein from an extract of normal fed rats with ethanol produced a large activation of phosphorylase phosphatase activity with no corresponding increase in synthase phosphatase activity. Despite the low phosphorylase phosphatase present in extracts of adrenalectomized fasted animals, ethanol precipitation increased activity to the same high level as obtained in the normal fed rats. Synthase phosphatase and phosphorylase phosphatase activities were also decreased in normal fasted, diabetic fed and fasted, and adrenalectomized fed rats. Both enzymes recovered in the same manner temporally after oral glucose administration to adrenalectomized, fasted rats. These results suggest an integrated regulatory mechanism for the two phosphatase.  相似文献   

11.
1. Livers from gsd/gsd rats, which do not express phosphorylase kinase activity, also contain much less particulate type-1 protein phosphatases. In comparison with normal Wistar rats, the glycogen/microsomal fraction contained 75% less glycogen-synthase phosphatase and 60% less phosphorylase phosphatase activity. This was largely due to a lower amount of the type-1 catalytic subunit in the particulate fraction. In the cytosol, the synthase phosphatase activity was also 50% lower, but the phosphorylase phosphatase activity was equal. 2. Both Wistar rats and gsd/gsd rats responded to an intravenous injection of insulin plus glucose with an acute increase (by 30-40%) in the phosphorylase phosphatase activity in the liver cytosol. In contrast, administration of glucagon or vasopressin provoked a rapid fall (by about 25%) in the cytosolic phosphorylase phosphatase activity in Wistar rats, but no change occurred in gsd/gsd rats. 3. Phosphorylase kinase was partially purified from liver and subsequently activated. Addition of a physiological amount of the activated enzyme to a liver cytosol from Wistar rats decreased the V of the phosphorylase phosphatase reaction by half, whereas the non-activated kinase had no effect. The kinase preparations did not change the activity of glycogen-synthase phosphatase, which does not respond to glucagon or vasopressin. Furthermore, the phosphorylase phosphatase activity was not affected by addition of physiological concentrations of homogeneous phosphorylase kinase from skeletal muscle (activated or non-activated). 4. It appears therefore that phosphorylase kinase plays an essential role in the transduction of the effect of glucagon and vasopressin to phosphorylase phosphatase. However, this inhibitory effect either is specific for the hepatic phosphorylase kinase, or is mediated by an unidentified protein that is a specific substrate of phosphorylase kinase.  相似文献   

12.
The activity of glycogen synthase phosphatase in rat liver stems from the co-operation of two proteins, a cytosolic S-component and a glycogen-bound G-component. It is shown that both components possess synthase phosphatase activity. The G-component was partially purified from the enzyme-glycogen complex. Dissociative treatments, which increase the activity of phosphorylase phosphatase manyfold, substantially decrease the synthase phosphatase activity of the purified G-component. The specific inhibition of glycogen synthase phosphatase by phosphorylase a, originally observed in crude liver extracts, was investigated with purified liver synthase b and purified phosphorylase a. Synthase phosphatase is strongly inhibited, whether present in a dilute liver extract, in an isolated enzyme-glycogen complex, or as G-component purified therefrom. In contrast, the cytosolic S-component is insensitive to phosphorylase a. The activation of glycogen synthase in crude extracts of skeletal muscle is not affected by phosphorylase a from muscle or liver. Consequently we have studied the dephosphorylation of purified muscle glycogen synthase, previously phosphorylated with any of three protein kinases. Phosphorylase a strongly inhibits the dephosphorylation by the hepatic G-component, but not by the hepatic S-component or by a muscle extract. These observations show that the inhibitory effect of phosphorylase a on the activation of glycogen synthase depends on the type of synthase phosphatase.  相似文献   

13.
Plasma membrane isolated from rat liver contained activities of phosphoprotein phosphatase dephosphorylating [32P]phosphorylase a or [32P]phosphohistone. The properties of the membrane-bound phosphatase were examined using these exogenous substrates. The optimal reaction rate was at pH near neutrality. At concentrations as low as 0.1-1.0 mM, Mg2+ or Mn2+ slightly stimulated the activity for phosphorylase a or phosphohistone, respectively; at higher concentrations, they were inhibitory with both substrates. Co2+ was inhibitory with both substrates, while Ca2+ had no significant effect. The phosphatase activities were inhibited by ATP, ADP, or AMP; the extents of inhibition were in opposite order with the two substrates. Phosphorylase phosphatase activity was strongly inhibited by KF or Pi. Phosphorylase phosphatase activity could be completely solubilized by incubating the membrane with 0.5 M NaCl or trypsin, and this was associated with several-fold activation. While Vmax values were increased, Km values for phosphorylase a were not much affected by these treatments. Unlike the soluble phosphatase, freezing in the presence of mercaptoethanol or by precipitation with ethanol failed to activate or to solubilize the membrane-bound phosphatase. The molecular weights of the NaCl-and the trypsin-solubilized phosphatase were estimated on gel filtration to be about 42,000 and 32,000, respectively. The present results indicate that the phosphoprotein phosphatase associated with liver plasma membrane shares several properties in common with phosphatases from other sources reported, and that, like those in the soluble fraction, it may be bound to some inhibitory proteins.  相似文献   

14.
The phosphoprotein phosphatase(s) acting on muscle phosphorylase a was purified from rabbit liver by acid precipitation, high speed centrifugation, chromatography on DEAE-Sephadex A-50, Sephadex G-75, and Sepharose-histone. Enzyme activity was recovered in the final step as two distinct peaks tentatively referred to as phosphoprotein phosphatases I and II. Each phosphatase showed a single broad band when examined by sodium dodecyl sulfate gel electrophoresis; the molecular weights derived by this method were approximately 30,500 for phosphoprotein phosphatase I and 34,000 for phosphoprotein phosphatase II. The s20, w value for each enzyme was 3.40. Using this value and values for the Stokes radii, the molecular weight for each enzyme was calculated to be 34,500. Both phosphatases, in addition to catalyzing the conversion of phosphorylase a to b, also catalyzed the dephosphorylation of glycogen synthase D, activated phosphorylase kinase, phosphorylated histone, phosphorylated casein, and the phosphorylated inhibitory component of troponin (TN-I). The relative activities of the phosphatases with respect to phosphorylase a, glycogen synthase D, histone, and casein remained essentially constant throughout the purification. The activities of both phosphatases with different substrates decreased in parallel when they were denatured by incubation at 55 degrees and 65 degrees. The Km values of phosphoprotein phosphatase I for phosphorylase a, histone, and casein were lower than the values obtained for phosphoprotein phosphatase II. With glycogen synthase D as substrate, each enzyme gave essentially the same Km value. Utilizing either enzyme, it was found that activity toward a given substrate was inhibited competitively by each of the alternative substrates. The results suggest that phosphoprotein phosphatases I and II are each active toward all of the substrates tested.  相似文献   

15.
1. Post-mitochondrial supernatants were prepared from the livers of 24 h-fasted rats. Upon centrifugation at high speed, the major part of the glycogen-synthase phosphatase activity sedimented with the microsomal fraction. However, two approaches showed that the enzyme was associated with residual glycogen rather than with vesicles of the endoplasmic reticulum. Indeed, the activity was entirely solubilized when the remaining glycogen was degraded either by glucagon treatment in vivo or by alpha-amylolysis in vitro. No evidence could be found for an association of glycogen-synthase phosphatase with the smooth endoplasmic reticulum, as isolated with the use of discontinuous sucrose gradients. 2. After solubilization by glucagon treatment in vivo, synthase phosphatase could be transferred to glycogen particles with very high affinity. Half-maximal binding occurred at a glycogen concentration of about 0.25 mg/ml, whereas glycogen synthase and phosphorylase required 1.5-2 mg/ml. 3. In gel-filtered extracts prepared from glycogen-depleted livers, the activation of glycogen synthase was not inhibited at all by phosphorylase alpha. The inhibition was restored when the liver homogenates were prepared in a glycogen-containing buffer. The effect was half-maximal at a glycogen concentration of about 0.25 mg/ml, and virtually complete at 1 mg/ml. These findings explain long-standing observations that in fasted animals the liver contains appreciable amounts of both synthase and phosphorylase in the active form.  相似文献   

16.
Hormonal regulation of hepatic glycogen synthase phosphatase   总被引:1,自引:0,他引:1  
Perfusion of livers from fed rats with medium containing glucagon (2 x 10(-10) or 1 x 10(-8) M) resulted in both time- and concentration-dependent inactivation of glycogen synthase phosphatase. Expected changes occurred in cAMP, cAMP-dependent protein kinase, glycogen synthase, and glycogen phosphorylase. The effect of glucagon on synthase phosphatase was partially reversed by simultaneous addition of insulin (4 x 10(-8) M), an effect paralleled by a decrease in cAMP. Addition of arginine vasopressin (10 milliunits/ml) resulted in a similar inactivation of synthase phosphatase and activation of phosphorylase, but independent of any changes in cAMP or its kinase. Phosphorylase phosphatase activity was unaffected by any of these hormones. Synthase phosphatase activity, measured as the ability of a crude homogenate to catalyze the conversion of purified rat liver synthase D to the I form, was no longer inhibited by glucagon or vasopressin when phosphorylase antiserum was added to the phosphatase assay mixture in sufficient quantity to inhibit 90-95% of the phosphorylase a activity. These data support the following conclusions: 1) hepatic glycogen synthase phosphatase activity is acutely modulated by hormones, 2) hepatic glycogen synthase phosphatase and phosphorylase phosphatase are regulated differently, 3) the hormone-mediated changes in synthase phosphatase cannot be explained by an alteration of the synthase D molecule affecting its behavior as a substrate, and 4) glycogen synthase phosphatase activity is at least partially controlled by the level of phosphorylase a.  相似文献   

17.
Two type 2A protein phosphatases, phosphatases I (Mr = 180,000) and III (Mr = 177,000), were purified to near homogeneity from human erythrocyte cytosol. Phosphatase I was composed of alpha (34 kDa), beta (63 kDa), and delta (74 kDa) subunits in a ratio of 1:1:1. Phosphatase III comprised alpha, beta, and gamma (53 kDa) subunits in the same ratio. Heparin-Sepharose column chromatography converted most of phosphatase I and 20% of phosphatase III into alpha 1 beta 1 which were indistinguishable from phosphatase IV (Usui, H., Kinohara, N., Yoshikawa, K., Imazu, M., Imaoka, T., and Takeda, M. (1983) J. Biol. Chem. 258, 10455-10463). The catalytic subunit alpha and the beta subunit of phosphatases I, III, and IV displayed identical V8 and papain peptide maps, respectively, while the peptide maps of the alpha, beta, gamma, and delta subunits were clearly distinct. The molar ratio of phosphatases I, III, and IV in erythrocyte cytosol was estimated to be 6:1:14. Comparison of molecular activities of alpha, alpha 1 beta 1, alpha 1 beta 1 delta 1, and alpha 1 beta 1 gamma 1 revealed that beta suppressed phosphorylase and P-H2B histone phosphatase activities of alpha but stimulated the P-H1 histone phosphatase activity, and delta suppressed all the phosphatase activities of alpha 1 beta 1. The gamma subunit stimulated the P-histone phosphatase activity of alpha 1 beta 1 but inhibited the phosphorylase and P-spectrin phosphatase activities. The beta subunit increased the Mg2+ or Mn2+ requirement for P-H2B histone phosphatase activity of alpha, an effect which was counteracted by delta. The effects of heparin, H1 histone, protamine, and polylysine on the phosphorylase phosphatase activity of phosphatases I, III, IV, and alpha were described and discussed in connection with the functions of the subunits.  相似文献   

18.
Hepatocytes from adrenalectomized 48 h-starved rats responded to increasing glucose concentrations with a progressively more complete inactivation of phosphorylase. Yet no activation of glycogen synthase occurred, even in a K+-rich medium. Protein phosphatase activities in crude liver preparations were assayed with purified substrates. Adrenalectomy plus starvation decreased synthase phosphatase activity by about 90%, but hardly affected phosphorylase phosphatase activity. Synthase b present in liver extracts from adrenalectomized starved rats was rapidly and completely converted into the a form on addition of liver extract from a normal fed rat. Glycogen synthesis can be slowly re-induced by administration of either glucose or cortisol to the deficient rats. In these conditions there was a close correspondence between the initial recovery of synthase phosphatase activity and the amount of synthase a present in the liver. The latter parameter was strictly correlated with the measured rate of glycogen synthesis in vivo. The decreased activity of synthase phosphatase emerges thus as the single factor that limits hepatic glycogen deposition in the adrenalectomized starved rat.  相似文献   

19.
The type-1 protein phosphatase associated with hepatic microsomes has been distinguished from the glycogen-bound enzyme in five ways. (1) The phosphorylase phosphatase/synthase phosphatase activity ratio of the microsomal enzyme (measured using muscle phosphorylase a and glycogen synthase (labelled in sites-3) as substrates) was 50-fold higher than that of the glycogen-bound enzyme. (2) The microsomal enzyme had a greater sensitivity to inhibitors-1 and 2. (3) Release of the catalytic subunit from the microsomal type-1 phosphatase by tryptic digestion was accompanied by a 2-fold increase in synthase phosphatase activity, whereas release of the catalytic subunit from the glycogen-bound enzyme decreased synthase phosphatase activity by 60%. (4) 95% of the synthase phosphatase activity was released from the microsomes with 0.3 M NaCl, whereas little activity could be released from the glycogen fraction with salt. (5) The type-1 phosphatase separated from glycogen by anion-exchange chromatography could be rebound to glycogen, whereas the microsomal enzyme (separated from the microsomes by the same procedure, or by extraction with NaCl) could not. These findings indicate that the synthase phosphatase activity of the microsomal enzyme is not explained by contamination with glycogen-bound enzyme. The microsomal and glycogen-associated enzymes may contain a common catalytic subunit complexed to microsomal and glycogen-binding subunits, respectively. Thiophosphorylase a was a potent inhibitor of the dephosphorylation of ribosomal protein S6, HMG-CoA reductase and glycogen synthase, by the glycogen-associated type-1 protein phosphatase. By contrast, thiophosphorylase a did not inhibit the dephosphorylation of S6 or HMG-CoA reductase by the microsomal enzyme, although the dephosphorylation of glycogen synthase was inhibited. The I50 for inhibition of synthase phosphatase activity by thiophosphorylase a catalysed by either the glycogen-associated or microsomal type-1 phosphatases, or for inhibition of S6 phosphatase activity catalysed by the glycogen-associated enzyme, was decreased 20-fold to 5-10 nM in the presence of glycogen. The results suggest that the physiologically relevant inhibitor of the glycogen-associated type-1 phosphatase is the phosphorylase a-glycogen complex, and that inhibition of the microsomal type-1 phosphatase by phosphorylase a is unlikely to play a role in the hormonal control of cholesterol or protein synthesis. Protein phosphatase-1 appears to be the principal S6 phosphatase in mammalian liver acting on the serine residues phosphorylated by cyclic AMP-dependent protein kinase.  相似文献   

20.
Three peaks of protein phosphatase (phosphoprotein phosphohydrolase, EC 3.1.3.16) activity (fractions a, b and c) acting on muscle phosphorylase (1,4-alpha-D-glucan:orthophosphate alpha-D-glucosyltransferase, EC 2.4.1.1) were separated by DEAE-cellulose chromatography of yeast extracts. In contrast to fractions a and b, only fraction c was able to liberate phosphate from 32P-labelled inactivated yeast phosphorylase. The activity of fraction c on both substrates was totally dependent on the presence of bivalent metal ions (Mg2+, Mn2+), and was activated by Mg . ATP. Following freezing in the presence of mercaptoethanol, fractions a and b were also able to dephosphorylate yeast phosphorylase. Rabbit muscle phosphoprotein phosphatase inhibitors 1 and 2 showed that yeast phosphatases acting on muscle phosphorylase were inhibited by inhibitor 2 but not by inhibitor 1. The action of fraction c on yeast phosphorylase was not inhibited by either inhibitor. The native yeast phosphorylase phosphatase (EC 3.1.3.17) was purified 8000-fold by ion-exchange chromatography, casein-Sepharose chromatography and Sephadex G-200 gel filtration. The purified enzyme was unable to dephosphorylate rabbit muscle phosphorylase a, but acted on casein phosphate (Km 3.3 mg/ml). Molecular weight was estimated to be 78 000 and pH optimum 6.5-7.5. Activity of the enzyme was dependent on bivalent metal ions (Mg2+, Mn2+) and was inhibited by fluoride (Ki 20 mM) and succinate (Ki 10 mM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号