首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anthropogenic soil acidification in mountain forests and consequent Al release still present a significant problem in many regions. The effect of deposition may differ according to stand conditions, including altitude. This contribution is focused on three elevation transects, two in the Jizera Mountains strongly influenced by acid deposition, one in the less affected Novohradske Mountains. Quantification of pools of different Al forms and related soil characteristics (organic carbon, exchangeable hydrogen cations, sorption characteristics, etc.) is evaluated. In the Novohradske Mountains, the pool of both organically bound and water-soluble Al increases with increasing altitudes. In the Jizera Mountains, the distribution is more complicated; it is strongly affected by different forest type (beech vs. spruce), deforestation, and other local differences. Higher amounts of Al are bound in the mineral horizons compared to the surface organic horizons, even in the case of organically bound Al pools. Further differences between different altitudes and between soil horizons in Al distribution were revealed by detailed Al speciation using HPLC/IC method.  相似文献   

2.
Soil acidification promotes Al release from minerals and parent bedrocks; it also affects Al mobilization and speciation. Speciation of KCl extractable and water-extractable Al in forest soils was done by means of HPLC/IC method. Species Al3+ were the most abundant Al forms in the KCl extracts (around 93%). Prevailing Al forms (more than 70%) in aqueous extracts were Al(X)1+, [i.e., Al(OH)2+, Al(SO4)+, AlF2+, Al(oxalate)+, Al(H-citrate)+, etc.] species. It is assumed that most of KCl and water-extractable Al is bound in soil sorption complex (i.e., highly dispersed colloidal fraction of the soil solid phase creating negative charge) where majority of Al exists in the form of Al3+ species. The ECEC values, total carbon content and parameters related to soil organic matter composition (N and S content) have apparent effect on Al speciation. The most toxic Al3+ species are more concentrated in the B horizons compared to the A and E horizons. Aqueous extracts simulate Al release to soil solution under normal conditions; it can thus exhibit the actual Al toxicity. On the other hand, KCl extraction describes a potential threat for case of strong disturbance of natural soil conditions.  相似文献   

3.
The effect of European beech (Fagus sylvatica) and Norway spruce (Picea abies) on acid deposition and soil water chemistry was studied at a site in the Ore Mts., Czech Republic, that has been subjected to decades of elevated acidic deposition. Dry deposition onto the spruce canopy significantly increased acid input to the soil in comparison to the beech canopy. As a result soil waters were more acidic; Al, SO4(2-), and NO3- concentrations were significantly higher; and Ca and K concentrations were lower in the spruce stand than in the beech stand. The concentrations of potentially toxic inorganic aluminium (Al(in)) were, on average, three times higher in the spruce stand than in the beech stand. Thus, Al played a major role in neutralizing acid inputs to mineral soils in the spruce stand. Despite the higher dissolved organic carbon (DOC) concentrations in spruce organic soil solutions, organic Al (Al(org)) accounted for only 30% of total Al (Al(tot)), whereas in beech organic soil solutions Al(org) was 60% of Al(tot). Soil waters in the beech stand exhibited Al(in) concentrations close to solubility with jurbanite (Al(SO4)OH.5H2O). The more acidic soil waters in the spruce stand were oversaturated with respect to jurbanite. The Bc/Al(in) ratio (Bc = Ca + Mg + K) in O horizon leachate was 4.6 and 70 in spruce and beech stands, respectively. In beech mineral soil solutions, the Bc/Al(in) ratio declined significantly to about 2. In the spruce stand, mineral soil solutions had Bc/Al(in) values below the critical value of 1. The observed Bc/Al(in) value of 0.4 at 30 cm depth in the spruce stand suggests significant stress for spruce rooting systems. A more favourable value of 31 was observed for the same depth in the beech stand. The efficiency of the spruce canopy in capturing acidic aerosols, particulates, and cloud water has resulted in the long-term degradation of underlying soils as a medium for sustainable forest growth.  相似文献   

4.
张泰东  王传宽  张全智 《生态学杂志》2017,28(10):3135-3143
采用土壤分层取样法测定了帽儿山地区相同气候条件、不同立地条件下林龄相近的2种人工针叶林(红松林和兴安落叶松林)和3种天然落叶阔叶林(蒙古栎林、杨桦林、硬阔叶林)的土壤碳(C)、氮(N)、磷(P)元素含量,以及土壤容重、土壤厚度等,研究土壤C、N、P含量和密度及化学计量关系的垂直变化特征.结果表明: 不同林型间土壤C、N、P含量和密度差异显著,其中硬阔叶林土壤O层和A层的C、N含量和密度均显著高于其他林型.所有林型土壤的C、N含量均随土层加深而下降;落叶阔叶林土壤P含量随土层加深而显著下降,但针叶林各土层间P含量差异不显著.不同林型间A层土壤C/N、O层土壤N/P,以及A和B层土壤C/P均存在显著差异.不同林型间土壤C-N存在显著的线性关系,且其斜率和截距在林型间差异均不显著,但土壤N-P、C-P关系只在阔叶林中存在显著相关关系.这表明不同林型间土壤C-N耦联关系有趋同现象,而土壤N-P和C-P关系随林型而变.  相似文献   

5.
Possible method of aluminium speciation in forest soils   总被引:4,自引:0,他引:4  
Labile Al forms and species can be a threat in acid soils due to their potential toxicity to plants. However, there is no universally accepted extraction method. Several extraction reagents for Al release from soil have been tested. KCl (0.5 or 1 M) is recommended for extraction of exchangeable Al, while 0.5 or 0.3 M CuCl(2) is suggested for extraction of 'weakly organically bound Al'. Both 0.1 and 0.05 M Na(4)P(2)O(7) are shown to be suitable for the extraction of 'total organically bound Al'. These extractions are relatively simple, robust, and applicable to different soils and soil horizons. In the second part of the paper, detailed speciation of exchangeable soil Al by means of an HPLC instrument equipped with an ion column (IC) is presented. An experimental set-up is described and tested on a set of samples. Interpretation of the speciation results is proposed, based on the separation of Al ions and Al complexes according to their charge. Speciation is shown to be dependent mainly on soil pH and organic matter quality. A general scheme of Al fractionation and speciation in soil is proposed.  相似文献   

6.
The Jizera Mountains area is affected by natural and anthropogenic acidification processes. The effect of acidification is reflected by presence of elevated amount of different Al forms in soil horizons. Changes of water extractable forms of Al (total $ {\text{Al}}_{{{\text{H}}_{2} {\text{O}}}} $ , species: Al(X)1+, Al(Y)2+ and Al3+) and other soil characteristics (e.g. DOC, pH) were investigated in forest soils from April to October 2008. Seasonal changes of Al forms were identified in organic F and H soil horizons. No significant effect of the soil type on Al forms was documented. Nevertheless, influence of vegetation cover (beech and spruce forest, clear-cut area) on Al(X)1+, Al(Y)2+ forms was proved. The results show that binding and mobility of Al forms are controlled mostly by pH and dissolved organic carbon (DOC).  相似文献   

7.
We measured Al, Fe, and P fractions by horizon in two southern Appalachian forest soil profiles, and compared solution PO4 –1 removal in chloroform-sterilized and non-sterilized soils, to determine whether biological and geochemical P subcycles were vertically stratified in these soils. Because organic matter can inhibit Al and Fe oxide crystallization, we hypothesized that concentrations of non-crystalline (oxalate-extractable) Al (Al0) and Fe (Fe0), and concomitantly P sorption, would be greatest in near-surface mineral (A) horizons of these soils.Al0 and Fe0 reached maximum concentrations in forest floor and near-surface mineral horizons, declined significantly with depth in the mineral soil, and were highly correlated with P sorption capacity. Small pools of readily acid-soluble (AF-extractable) and readily-desorbable P suggested that PO4 3– was tightly bound to Al and Fe hydroxide surfaces. P sorption in CHCl3-sterilized mineral soils did not differ significantly from P sorption in non-sterilized soils, but CHCl3 sterilization reduced P sorption 40–80% in the forest floor. CHCl3 labile (microbial) P also reached maximum concentrations in forest floor and near-surface mineral horizons, comprising 31–35% of forest floor organic P. Combined with previous estimates of plant root distributions, data suggest that biological and geochemical P subcycles are not distinctly vertically stratified in these soils. Plant roots, soil microorganisms, and P sorbing minerals all reach maximum relative concentrations in near-surface mineral horizons, where they are likely to compete strongly for PO4 3– available in solution.  相似文献   

8.

Soils represent important pools of soil organic carbon (SOC) that can be greatly influenced by labile C inputs, which are expected to increase in future due to CO2 enrichment of atmosphere and a concomitant rise in plant primary productivity. Studying effects of variable labile C inputs on SOC pool helps to understand how soils respond to global change. However, this knowledge is missing for coniferous forest soils despite being widespread throughout the northern temperate zone. We conducted a 7-month field manipulation experiment to study the effects of variable labile C inputs (simulated by additions of C4 sucrose) on the C content in soil fractions and on microbial abundance in the organic (O), surface mineral (A), and subsoil mineral (B) horizons of a temperate coniferous forest soil. SOC in less-protected soil fractions and total organic C were substantially decreased by labile C additions that simulated future increases in C inputs. The SOC losses were comparable between the A and B horizon (40% vs. 30%). However, because sucrose availability estimated from its incorporation into soil fractions and microbial biomass sharply decreased with soil depth, the loss of C was higher in the B than in the A horizon when related to the amount of sucrose added. Utilization of sucrose was highest by fungi in the O horizon and by bacteria in the mineral soil horizons. The results indicate that future increases in labile C inputs to coniferous forest soils will cause rapid and substantial losses of SOC in both the surface and subsoil mineral horizons.

  相似文献   

9.
喀斯特峰丛洼地土壤矿物质的组成特征与作用   总被引:3,自引:0,他引:3  
基于喀斯特峰丛洼地农作区、人工林、次生林、原生林4类典型生态系统动态监测样地(200 m×40 m)土壤矿质养分因子(7个)、植被(9个)、地形(4个)、土壤理化性状(10个)共计30个指标的全面调查取样分析,采用经典统计分析、主成分分析和典范相关分析探讨了土壤矿物质的组成特征、作用以及与植被、地形、其他土壤性状的耦合关系.结果表明: 喀斯特峰丛洼地土壤矿物质组成以SiO2、Al2O3、K2O、Fe2O3为主,明显低于全球土壤平均背景值和同区域地带性红壤,CaO、MgO含量居中,MnO含量很低;不同生态系统土壤矿物质组成和变异不同,土壤的发育程度也不同,植被和土壤的原生性呈同比正相关,均有潜在的石漠化风险;4类生态系统景观异质性高,主成分分析的降维效果不好,土壤矿物质均为各生态系统的主要影响因子,且与植被、地形、其他土壤性状的关系非常密切,特别是SiO2、CaO和MnO,其中对植被的影响主要是物种多样性,对土壤则为有机质、全氮、全钾等主要养分.土壤矿物质是影响喀斯特峰丛洼地土壤肥力和植物生长发育的限制因子之一,有效利用矿物质资源、合理施用矿质养分对喀斯特退化生态系统的恢复与重建作用重大.  相似文献   

10.
Soil solution chemistry, soil acidity andcomposition of adsorbed cations were determinedin two soil profiles developed under a mixedspruce (Picea abies and Piceasitchensis) stand and in one soil profiledeveloped under an oak (Quercus robur)stand. Soils under spruce were classified asSpodosols and soils under oak were classifiedas Inceptisols. All profiles were developed inthe same parent material; a Saahlian sandy tillcontaining less than 2% clay. In the mineralsoil, the contribution from mineral surfaces tothe total cation-exchange capacity (CECt)was estimated to be less than 3%. Soilsolution pH and the percent base saturation ofCECt [%BS = 100 (2Ca + 2Mg + Na + K)CECt –1] were substantially lower inthe upper 35–40 cm of the two Spodosols, ascompared to the Inceptisol. The total amount ofsoil adsorbed base cations (BC) did not differamong the three profiles on an area basis downto 1 m soil depth. Thus, soil acidification ofCECt due to net losses of BC could notexplain differences in soil pH and %BS amongthe soil profiles. A weak acid analogue, takingthe pH-effect of metal complexation intoconsideration, combined with soil solutionionic strength as a covariate, could describeboth the pH variation by depth within soilprofiles and pH differences between theInceptisol and the two Spodosol profiles. Ourresults confirm and extend earlier findingsfrom O and E horizons of Spodosols that theextent to which organic acid groups react withAl minerals to form Al-SOM complexes is a majorpH-buffering process in acidic forest soils. Wesuggest that an increasing Al-saturation of SOMis the major reason for the widely observed pHincrease by depth in acidic forest soils with apH less than approximately 4.5. Our resultsstrongly imply that changes in mass of SOM, theionic strength in soil solution and therelative composition of soil adsorbed Al and Hneed to be considered when the causality behindchanges in pH and base saturation isinvestigated.  相似文献   

11.
Richter DD  Allen HL  Li J  Markewitz D  Raikes J 《Oecologia》2006,150(2):259-271
Although low solubility and slow cycling control P circulation in a wide range of ecosystems, most studies that evaluate bioavailability of soil P use only indices of short-term supply. The objective here is to quantify changes in P fractions in an Ultisol during the growth of an old-field pine forest from 1957 to 2005, specifically changes with organic P (Po) and with inorganic P (Pi) associated with Fe and Al oxides as well as Ca compounds. Changes in soil P were estimated from archived mineral soil samples collected in 1962 shortly after pine seedlings were planted, and on six subsequent occasions (1968, 1977, 1982, 1990, 1997, and 2005) from eight permanent plots and four mineral soil layers (0–7.5, 7.5–15, 15–35, and 35–60 cm). Despite the net transfer of 82.5 kg ha−1 of P from mineral soil into tree biomass and O horizons, labile soil P was not diminished, as indexed by anion exchange resins, and NaHCO3 and Mehlich III extractants. An absence of depletion in most labile P fractions masks major restructuring of soil P chemistry driven by ecosystem development. During 28 years of forest growth, decreases were significant and substantial in slowly cycling Po and Pi associated with Fe and Al oxides and Ca compounds, and these accounted for most of the P supplied to biomass and O horizons, and for buffering labile soil fractions as well. Changes in soil P are attributed to the P sink strength of the aggrading forest (at 2.9 kg ha−1 year−1 over 28 years); legacies of fertilization, which enriched slowly cycling fractions of Po and Pi; and the changing biogeochemistry of the soil itself.  相似文献   

12.
At two forest sites in Germany (Pfaffenwinkel, Pustert) stocked with mature Scots pine (Pinus sylvestris L.), we investigated changes of topsoil chemistry during the recent 40 years by soil inventories conducted on replicated control plots of fertilization experiments, allowing a statistical analysis. Additionally, we monitored the nutritional status of both stands from 1964 until 2019 and quantified stand growth during the monitoring period by repeated stand inventories. Moreover, we monitored climate variables (air temperature and precipitation) and calculated annual climatic water balances from 1991 to 2019. Atmospheric nitrogen (N) and sulfur (S) deposition between 1964 and 2019 was estimated for the period 1969–2019 by combining annual deposition measurements conducted in 1985–1987 and 2004 with long‐term deposition records from long‐term forest monitoring stations. We investigated interrelations between topsoil chemistry, stand nutrition, stand growth, deposition, and climate trends. At both sites, the onset of the new millennium was a turning point of important biogeochemical processes. Topsoil acidification turned into re‐alkalinization, soil organic matter (SOM) accumulation stopped, and likely turned into SOM depletion. In the new millennium, topsoil stocks of S and plant‐available phosphorus (P) as well as S and P concentrations in Scots pine foliage decreased substantially; yet, age‐referenced stand growth remained at levels far above those expected from yield table data. Tree P and S nutrition as well as climate change (increased temperature and drought stress) have replaced soil acidification as major future challenges for both forests. Understanding of P and S cycling and water fluxes in forest ecosystems, and consideration of these issues in forest management is important for successfully tackling the new challenges. Our study illustrates the importance of long‐term forest monitoring to identify slow, but substantial changes of forest biogeochemistry driven by natural and anthropogenic global change.  相似文献   

13.
《农业工程》2014,34(6):302-310
Soil acidification is defined as the process in which exchangeable cations are leaching and soil H+ concentration is raising thereby increases soil acidity. Changes in soil pH value and acid neutralizing capacity are mainly indicators of soil acidification. Soil acidification is considered to be a serious ecological and environmental issue, which not only reduces soil quality, but also decreases biodiversity of forest ecosystem and induces forest decline. With nitrogen (N) deposition rapidly increasing, its contribution to soil acidification becomes a major concern in the world. However, the impact of increased N deposition on soil acidification is not well addressed highlighting the need for further attention to the issue. In this paper, the studies on forest soil acidification induced by N deposition were reviewed. The factors related to soil acidification driven by N deposition were classified and discussed, which included soil acidic buffering capacity, N components in atmospheric N deposition, climate, plant species in forests, and N status in ecosystem. Iron (Fe) buffering phase and the consequent Fe toxicity occurring to the acidified soil caused by high N deposition were concerned. The scarcity of phosphorus (P) element induced by soil acidification was particularly emphasized. The research methods used to study soil acidification driven by N deposition were also evaluated. In the end we stressed the importance of the study on soil acidification especially in tropical and subtropical regions driven by N deposition and its mechanisms. This paper can serve for maintaining sustainable forest and agricultural ecosystems.  相似文献   

14.
Clear-cut areas formed after forest decline due to acid deposition, pest attacks, or wind-breaks in temperate mountainous regions are often populated by grass (mainly Calamagrostis villosa). This study focused on the changes of soil chemical characteristics under the grass cover replacing the forest, focusing mainly on aluminium (Al) speciation. Clear-cut area due to strong acid deposition in the Jizera Mountains (Northern Bohemia) was studied. The soils under grass cover exhibit higher pH values and lower exchangeable Al content compared to adjacent surviving forest. Mobile Al species under the grass have larger proportion of non-toxic organic complexes. The content of exchangeable base cations is slightly higher under the grass. The positive effect of grass on soil chemistry was enhanced by liming. The temporary grass cover can therefore improve soil chemical quality for following reforestation. However, the differences are generally limited to surface organic horizons. Similar results were found also on a bark-beetle clear-cut area in the Bohemian Forest (Southern Bohemia) with smaller acid deposition; nevertheless, most differences were not significant there.  相似文献   

15.
At the Harvard Forest, Massachusetts, a long-term effort is under way to study responses in ecosystem biogeochemistry to chronic inputs of N in atmospheric deposition in the region. Since 1988, experimental additions of NH4NO3 (0, 5 and 15 g N m–2 yr–1) have been made in two forest stands:Pinus resinosa (red pine) and mixed hardwood. In the seventh year of the study, we measured solute concentrations and estimated solute fluxes in throughfall and at two soil depths, beneath the forest floors (Oa) and beneath the B horizons.Beneath the Oa, concentrations and fluxes of dissolved organic C and N (DOC and DON) were higher in the coniferous stand than in the hardwood stand. The mineral soil exerted a strong homogenizing effect on concentrations beneath the B horizons. In reference plots (no N additions), DON composed 56% (pine) and 67% (hardwood) of the total dissolved nitrogen (TDN) transported downward from the forest floor to the mineral soil, and 98% of the TDN exported from the solums. Under N amendments, fluxes of DON from the forest floor correlated positively with rates of N addition, but fluxes of inorganic N from the Oa exceeded those of DON. Export of DON from the solums appeared unaffected by 7 years of N amendments, but as in the Oa, DON composed smaller fractions of TDN exports under N amendments. DOC fluxes were not strongly related to N amendment rates, but ratios of DOC:DON often decreased.The hardwood forest floor exhibited a much stronger sink for inorganic N than did the pine forest floor, making the inputs of dissolved N to mineral soil much greater in the pine stand. Under the high-N treatment, exports of inorganic N from the solum of the pine stand were increased >500-fold over reference (5.2 vs. 0.01 g N m–2 yr–1), consistent with other manifestations of nitrogen saturation. Exports of N from the solum in the pine forest decreased in the order NO3-N> NH4-N> DON, with exports of inorganic N 14-fold higher than exports of DON. In the hardwood forest, in contrast, increased sinks for inorganic N under N amendments resulted in exports of inorganic N that remained lower than DON exports in N-amended plots as well as the reference plot.  相似文献   

16.
Luwe  Michael W. F. 《Plant and Soil》1995,168(1):195-202
In a beech (Fagus sylvatica L.) stand in north-west Germany vegetation of two transects (25m:1m and 20m:1m) was mapped and contents of macronutrients (Ca, Mg and K), micronutrients (Fe, Mn, Zn and Cu), and potentially phytotoxic metals (Pb, Cd, Ni and Al) were measured in different soil compartments and in roots, rhizomes, stems and leaves of two forest floor plant species (Mercurialis perennis L. and Polygonatum multiflorum L.). NH4Cl extractable cation contents, pH and other soil variables were also determined.The highest macronutrient contents could be found in the leaves of M. perennis and P. multiflorum. Heavy metals and Al accumulated in the roots. Correlation analysis suggests a considerable translocation of Zn and Cd between below- and above-ground organs of both investigated forest floor plants. No significant correlation was found between the contents of the other elements in the below- and above-ground parts.Available data indicate a considerable uptake by the plants not only of nutrients, but also of heavy metals from the upper mineral soil. Amounts of heavy metals and Al solubilized in the presence of NH4Cl increased with decreasing pH, whereas levels of soluble Ca and Mg were maximal at high pH-values of the extracts. It can be concluded that element uptake in the investigated plants is indirectly controlled by the pH of the upper mineral soil.  相似文献   

17.
面对全球变化,准确掌握陆地森林生态系统生物地球化学循环过程及其影响因素,有助于维持生态系统多功能性与稳定性,实现增汇并延长碳汇服务,持续增进并改善人民福祉。为了探究贺兰山山地森林生态系统优势建群种青海云杉(Picea crassifolia)林土壤生态化学计量特征对海拔的生态响应及其影响因素,从土壤、林分、地形影响因素的角度出发,采用冗余分析(Redundancy analysis, RDA)和方差分解分析(Variance partitioning analysis, VPA)阐明影响其非根和根围土壤生态化学计量特征空间变异的关键因素。结果表明:(1)贺兰山青海云杉林非根和根围土壤C、N养分含量均维持在较高水平,高海拔区域青海云杉生长受土壤P限制高;相较非根土壤,根围土壤虽养分含量较低,但具有较高的养分周转能力,如有机质分解与矿化、固持P的潜力等。(2)随海拔变化,非根和根围土壤养分及其生态化学计量比变化趋势不同,非根土除了全氮(TN)含量外其他养分含量及化学计量比在不同海拔间均差异显著(P<0.05),根围土全磷(TP)、碳磷比(C/P)具有显著性差异(P>0.05)。...  相似文献   

18.
喀斯特峰丛洼地不同生态系统的土壤肥力变化特征   总被引:4,自引:0,他引:4  
基于喀斯特峰丛洼地坡耕地、草丛、灌丛、人工林、次生林、原生林6种典型生态系统的土壤主要养分、矿质养分和微生物这3组变量共计20个指标的调查、取样和分析,运用多重比较分析、主成分分析和典范相关分析探讨了其土壤肥力变化特征、主要影响因子及两两之间的相互关系。结果表明,喀斯特峰丛洼地土壤pH值为6.60—7.75,土壤主要养分、微生物种群数量和微生物生物量明显高于同纬度地区地带性红壤,矿质养分含量相对较低,其中SiO2、Al2O3、Fe2O3占矿质全量的90%以上。土壤肥力的总体趋势为原生林>次生林>灌丛>草丛>坡耕地>人工林。喀斯特石漠化地区实行林草结合的退耕还林还草模式更有利于土壤生态系统的环境改善,坡耕地应多施有机肥和氮肥,人工林应多施氮肥。原生林植物与养分之间达到了良好的平衡状态,主要应加强森林抚育管理,改善森林环境,保障植物、土壤养分及微生物之间的良好协调关系。确保土壤资源的合理利用,促进喀斯特峰丛洼地乃至整个西南喀斯特区域植被的迅速恢复和生态重建。  相似文献   

19.
Abstract The influence of forest stand composition on soil was investigated by comparing the forest floor (FH) and upper mineral soil (0–20 cm) nutritional properties of jack pine and aspen stands on two soil types of contrasting fertility, a coarse-textured and a fine-textured deposit, in a replicated design. The studied tree species are pioneers that are found after major disturbances in the southern boreal forest of western Quebec and that differ in their nutrient requirements but not in their growth rate. Soil organic matter as well as total and available N, P, K, Ca, Mg contents were determined and the relationships with nutrient accumulation in tree biomass were studied. On both soil types a greater total and available nutrient accumulation in the forest floor layer was observed in aspen than in jack pine whereas such differences between stand types could not be detected in the mineral soil. Differences in FH nutrient content between stand types were larger on coarse deposits than on fine-textured soils. These results support the hypothesis that tree species with greater nutrient requirements cause an enrichment of the surface soil at least in the short term. The modulation of tree species effect by soil type was contrary to the pattern observed in other studies since a greater expression of this effect was observed on poorer soils. Differences in soil nutrient content were related to levels of organic matter accumulation.  相似文献   

20.
Nitrogen (N) deposition is a component of global change that has considerable impact on belowground carbon (C) dynamics. Plant growth stimulation and alterations of fungal community composition and functions are the main mechanisms driving soil C gains following N deposition in N‐limited temperate forests. In N‐rich tropical forests, however, N deposition generally has minor effects on plant growth; consequently, C storage in soil may strongly depend on the microbial processes that drive litter and soil organic matter decomposition. Here, we investigated how microbial functions in old‐growth tropical forest soil responded to 13 years of N addition at four rates: 0 (Control), 50 (Low‐N), 100 (Medium‐N), and 150 (High‐N) kg N ha?1 year?1. Soil organic carbon (SOC) content increased under High‐N, corresponding to a 33% decrease in CO2 efflux, and reductions in relative abundances of bacteria as well as genes responsible for cellulose and chitin degradation. A 113% increase in N2O emission was positively correlated with soil acidification and an increase in the relative abundances of denitrification genes (narG and norB). Soil acidification induced by N addition decreased available P concentrations, and was associated with reductions in the relative abundance of phytase. The decreased relative abundance of bacteria and key functional gene groups for C degradation were related to slower SOC decomposition, indicating the key mechanisms driving SOC accumulation in the tropical forest soil subjected to High‐N addition. However, changes in microbial functional groups associated with N and P cycling led to coincidentally large increases in N2O emissions, and exacerbated soil P deficiency. These two factors partially offset the perceived beneficial effects of N addition on SOC storage in tropical forest soils. These findings suggest a potential to incorporate microbial community and functions into Earth system models considering their effects on greenhouse gas emission, biogeochemical processes, and biodiversity of tropical ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号