首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An earlier demonstration of a circadian rhythm in rat atria by others is complemented herein by observations in culture: A single murine myocardial cell and two sets of grouped cells beating in culture for several days reveal several features of an anticipated, presumably built-in spectrum of multifrequency rhythms and trends, the chronome. Circadian and about 12-h (circasemidian) components are modulated by an approximately 84-h (circasemiseptan) component, which cannot be separated from trends in view of the brevity of the series. The circumstance under which the culture is aging and in which fibroblasts proliferate is a further complication that limits the findings to a single cycle reproduced in three separate cultures. Whether it is a rhythm that repeats itself of a response to placement into culture, an approximately 3.5-d component in the beating of myocardial cells in culture is to be aligned with a very prominent similar component found in the incidence of 85,819 human myocardial infarctions.  相似文献   

2.
A Lucite attachment which permitted the measurement of oxygen consumption in cells in culture without manipulating the cells was constructed. The attachment fit over commercially available dishes for cell culture and had an oxygen electrode built into it. Oxygen uptake of cells in culture was thus measured. Cells were attached to the substrate of the culture dish during the measurements and could be observed in an inverted phase microscope. Cells did not show any morphological changes, e.g., cell shapes or beating rate in case of myocardial cells, before and after the measurements of oxygen consumption. Using this method the rate of oxygen consumption was determined in rat myocardial and heart non-muscle cells in culture and also in HeLa and L6 cell lines. Myocardial cells in culture had an approximately four times higher rate of oxygen uptake compared with heart non-muscle, HeLa, and L6 cells. The oxygen uptake of beating myocardial cells was higher by about 50% compared with quiescent myocardial cells.  相似文献   

3.
1. 1. Single myocardial cells from fetal mouse heart beat spontaneously in monolayer culture. In standard medium they maintained a constant beating rate for at least 5 h. After the beating rate of individual cells had been accelerated for a short time by electrical stimulation, the original beating rate could be immediately restored by interrupting the stimulation. Quiescent myocardial cells from neonatal mouse atrium could be induced to beat by electrical stimulation and most of them ceased to beat again immediately by interrupting the stimulation.
2. 2. After the spontaneous beating of individual myocardial cells had been stopped or slowed down for a short time by incubation in medium of low temperature or high potassium or low calcium concentration, the original beating rate could be restored by replacing the cells in the original, normal medium.
3. 3. After the spontaneous beating of individual myocardial cells had been stopped by adding a metabolic inhibitor, such as 2,4-dinitrophenol or 2-deoxyglucose, the original beating rate could be restored by replacing the cells in the original, normal medium.
4. 4. Both single myocardial cells and cell clusters showed arrhythmia, including flutter and fibrillation, in medium of low potassium or high calcium concentration. After a short period of arrhythmia, the original beating rate could be restored by replacing the cells in the original, normal medium. The arrhythmia of cell clusters produced in either low potassium or high calcium medium was also corrected immediately by addition of quinidine sulfate.
  相似文献   

4.
To investigate the roles that the community effect and entrainment function of cultured cardiomyocyte play in decreasing beating fluctuation and reestablishing synchronized beating, we developed a single-cell-based two-dimensional network culture assay to measure and compare the dynamics of beating rhythm synchronization of individual cells before and after they form networks. Studying the formation of two-cell networks, we found that their synchronized beating tended to be determined by the cardiomyocyte whose beat rate fluctuated less than that of the other cardiomyocyte. We further found that the strength of this tendency increased with the number of cells in the network. These results indicate that (1) beating fluctuation is one of the important factors influencing the reestablishment of a stable synchronous beating rhythm, (2) the larger networks reduce fluctuation, and (3) the formation of a spatial network can itself stabilize cardiomyocyte beat rates.  相似文献   

5.
Single myocardial cells from fetal mouse heart beat spontaneously in monolayer culture. In standard medium they maintained constant beating rates for at least 5 h at 37 °C. When the beats of single myocardial cells were stopped for a short time by treatment with EGTA, or slowed down by incubating the cells in medium of low pH, the original beating rates could be restored by replacing the cells in the original medium. The same procedure also restored the rates after they had been disturbed by incubating the cells in medium of low sodium and high potassium ion content. Moreover, the original beating rates could be restored after keeping the cells at 10 °C for 22–24 h, but not after keeping them at 37 °C for 22–24 h.  相似文献   

6.
In estimating, by use of cosinor-test, the 12- and 24-h component parameters of body temperature circadian rhythm in monkeys under ultradian schedules of lighting and feeding (LD 6:6; DL 6:6) we have shown that an intensive 12-h component is registered in both cases. The presence of a 24-h component of circadian rhythm depends on the zeitgeber phase. This component is present in LD 6:6 (lighting hours 07:00-13:00 and 19:00-01:00) and is absent in DL 6:6 (01:00-07:00 and 13:00-19:00). We hold that the most satisfactory explanation of the phenomena observed is that 12-h component is the result of a masking effect induced by the 12-h schedule (exogenous component) whereas the 24-h component reflects the intrinsic pacemaker work (endogenous component). It should be noted that in our case the masking effect in body temperature rhythm is circadian phase-dependent.  相似文献   

7.
The primary culture of neonatal mice cardiomyocyte model enables researchers to study and understand the morphological, biochemical, and electrophysiological characteristics of the heart, besides being a valuable tool for pharmacological and toxicological studies. Because cardiomyocytes do not proliferate after birth, primary myocardial culture is recalcitrant. The present study describes an improved method for rapid isolation of cardiomyocytes from neonatal mice, as well as the maintenance and propagation of such cultures for the long term. Immunocytochemical and gene expression data also confirmed the presence of several cardiac markers in the beating cells during the long-term culture condition used in this protocol. The whole culture process can be effectively shortened by reducing the enzyme digestion period and the cardiomyocyte enrichment step. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Abstract: Light has at least two distinguishable effects on the circadian rhythm of melatonin output displayed by dispersed chick pineal cells in static culture: acute suppression of melatonin output and entrainment (phase shifts) of the underlying pacemaker. Previous results indicated that these two effects of light are mediated by different mechanistic pathways. The pathways for the acute and phase-shifting effects of light either branch from the same, single photopigment or differ from the outset, starting from separate photopigments. If a single rhodopsin-like photopigment mediates both effects of light, then vitamin A depletion and retinoid addition should affect both responses in parallel, although not proportionately. We therefore compared the effects of vitamin A depletion and retinoid addition on the acute and phase-shifting effects of light under several experimental conditions. When chick pineal cells were depleted of vitamin A, acute responses to light were markedly reduced. Addition of 11-cis-retinaldehyde specifically restored (and enhanced) the acute response. When allowed to free run in constant red light, depleted cells displayed a rhythm of melatonin output with the same period as that of control cells. In contrast to the acute effects, phase shifts in response to 2- or 4-h light pulses did not differ between depleted and control cells. Addition of retinaldehyde to depleted cells did not, by itself, reduce melatonin output or induce phase shifts. Retinaldehyde did increase the acute response to 4-h light pulses but not the ensuing phase shifts. Responses increased with duration of the light pulse: Both the acute effect and the phase shifts induced by 4-h light pulses were considerably larger than those induced by 2-h (or 1-h) light pulses. Addition of retinaldehyde to depleted cells increased the acute effect of 2-h (or 1-h) light pulses to at least that seen with 4-h light pulses but did not Increase the size of the ensuing phase shifts. These results strongly confirm previous dissociations of the mechanistic pathways mediating the acute and phase-shifting effects of light on chick pineal cells. They also support a role for rhodopsin-like photopigment in the acute, but not phase-shifting, response. They favor, but do not prove, the conclusion that separate photopigments mediate the acute and entraining effects of light.  相似文献   

9.
Pyramimonas parkeae Norris et Pearson was examined for evidence of a settling rhythm while growing in laboratory culture. The alga settled rhythmically in a diet cycle when kept in a regularly alternating light-dark cycle. Cells moved out of suspension when settling and attached themselves to the sides and base of the culture vessel. Although rhythmic settling was inhibited in constant dim light (LL), it continued in constant darkness for 4 days with a period of approximately 24 h. The settling rhythm was temperature-compensated and could be reset by 6-h exposures to light. These observations demonstrate that the settling behavior of P. parkeae is controlled by an endogenous circadian oscillator. Regular low temperature pulses every 12 h removed the inhibition caused by LL and this points to the possible role of temperature changes as stimuli entraining the circadian settling rhythm of P. parkeae.  相似文献   

10.
Cardiac muscle cells from newt embryos were cultured at relatively low cell density. Within 10 days in culture, 2 cell types (spindle and flat type) were distinguished both among beating and non-beating cells. Mitosis in single beating cells was frequently observed both in spindle and flat cells. Some cells maintained almost constant contractile activities throughout the mitotic stages, while the others transiently stopped beating during mitosis, which accords well to the case in chick embryos (1). Ultra-thin section shows the presence of myofibril's structure in a dividing cell, as shown in newborn rats (2, 3, 4), chick embryos (1, 5, 6, 7) and adult newts (8, 9). As a consequence of mitosis, 3 types (spindle, flat and mixed type) of beating colonies developed after 34 weeks in culture. Cell proliferation was accompanied with pulsation and could be directly pursued till the 4th division, suggesting that differentiated myocardiac cells with myofibrils proliferate by their mitoses in vivo , maintaining rhythmic contraction.  相似文献   

11.
The rabbit pup is well suited to track the age-dependent development of periodic thermoregulation during the suckling period. Since the litters are regularly nursed once per day for a total of 3 to 4 min, an exogenous, metabolic, nonphotic periodic variable is supposed to have an impact on the 24-h rhythm of body temperature. The authors monitored the course of core body temperature during the suckling period of 20 pups by means of a transmitter implanted intraperitoneally on day 3 postpartum. The 24-h mean rose from an average of 37.8+/-0.3 degrees C on day 4 of life to 39.5+/-0.2 degrees C at weaning on day 27, for 2 out of 20 pups, and day 28, for 18 out of 20 pups. In constant dim illumination, the pups exhibited a 24-h rhythm even on postnatal day 4, which consolidated around days 5 to 7. The rhythm consisted of a significant anticipatory rise of 0.4 to 0.6 degrees C above the respective 24-h mean commencing 2.5 to 3.5 h prior to nursing. Milk intake was followed by a further increase of temperature for an additional 0.3 to 0.6 degrees C. Then the temperature dropped for 1.2 to 1.5 degrees C within 1 to 3 h and returned to average 3 to 5 h later. During a 48-h fast, the rhythm continued to exist, though in a modified shape: the anticipatory component persisted almost unchanged; a further elevation of temperature, however, did not occur. Thus, the anticipatory component apparently is generated endogenously and the second surge represents an exogenous suckling-induced, thermogenic peak. When maternal nursing was advanced for 15 min/day for a total of 5 h, the temperature rhythm of the pups followed the shift of the zeitgeber in parallel. These data confirm the assumption that a circadian rhythm exists during the first postnatal days of the rabbit and that this rhythm is entrained by the 24-h nursing rhythm. The authors suggest that the biological significance of a feeding entrainable oscillator (FEO) in the rabbit might be to activate the pups prior to the periodic nursing visit of the rabbit doe. Thus, the pups are prepared to quantitatively use the one and only short nursing episode per day for maximal milk ingestion.  相似文献   

12.
The present study focused on beating synchronization, and tried to elucidate the interlayer regulatory mechanisms between the cells and clump in beating synchronization with using the stochastic simulations which realize the beating synchronizations in beating cells with low cell–cell conductance. Firstly, the fluctuation in interbeat intervals (IBIs) of beating cells encouraged the process of beating synchronization, which was identified as the stochastic resonance. Secondly, fluctuation in the synchronized IBIs of a clump decreased as the number of beating cells increased. The decrease in IBI fluctuation due to clump formation implied both a decline of the electrophysiological plasticity of each beating cell and an enhancement of the electrophysiological stability of the clump. These findings were identified as the community effects. Because IBI fluctuation and the community effect facilitated the beating stability of the cell and clump, these factors contributed to the spontaneous ordering in beating synchronization. Thirdly, the cellular layouts in clump affected the synchronized beating rhythms. The synchronized beating rhythm in clump was implicitly regulated by a complicated synergistic effect among IBI fluctuation of each beating cell, the community effect and the cellular layout. This finding was indispensable for leading an elucidation of mechanism of emergence. The stochastic simulations showed the necessity of considering the synergistic effect, to elucidate the interlayer regulatory mechanisms in biological system.  相似文献   

13.
In chick and mouse embryogenesis, a population of cells described as the secondary heart field (SHF) adds both myocardium and smooth muscle to the developing cardiac outflow tract (OFT). Following this addition, at approximately HH stage 22 in chick embryos, for example, the SHF can be identified architecturally by an overlapping seam at the arterial pole, where beating myocardium forms a junction with the smooth muscle of the arterial system. Previously, using either immunohistochemistry or nitric oxide indicators such as diaminofluorescein 2-diacetate, we have shown that a similar overlapping architecture also exists in the arterial pole of zebrafish and some shark species. However, although recent work suggests that development of the zebrafish OFT may also proceed by addition of a SHF-like population of cells, the presence of a true SHF in zebrafish and in many other developmental biological models remains an open question. We performed a comprehensive morphological study of the OFT of a wide range of vertebrates. Our data suggest that all vertebrates possess three fundamental OFT components: a proximal myocardial component, a distal smooth muscle component, and a middle component that contains overlapping myocardium and smooth muscle surrounding and supporting the outflow valves. Because the middle OFT component of avians and mammals is derived from the SHF, our observations suggest that a SHF may be an evolutionarily conserved theme in vertebrate embryogenesis.  相似文献   

14.
Isolated, spontaneously beating rabbit sinoatrial node cells were subjected to longitudinal stretch, using carbon fibers attached to both ends of the cell. Their electrical behavior was studied simultaneously in current-clamp or voltage-clamp mode using the perforated patch configuration. Moderate stretch ( approximately 7%) caused an increase in spontaneous beating rate (by approximately 5%) and a reduction in maximum diastolic and systolic potentials (by approximately 2.5%), as seen in multicellular preparations. Mathematical modeling of the stretch intervention showed the experimental results to be compatible with stretch activation of cation nonselective ion channels, similar to those found in other cardiac cell populations. Voltage-clamp experiments validated the presence of a stretch-induced current component with a reversal potential near -11 mV. These data confirm, for the first time, that the positive chronotropic response of the heart to stretch is, at least in part, encoded on the level of individual sinoatrial node pacemaker cells; all reported data are in agreement with a major contribution of stretch-activated cation nonselective channels to this response.  相似文献   

15.
5-day-old neonatal offspring of exercised or non-exercised pregnant Sprague Dawley rats were used to prepare primary cultures of beating myocardial cells. The cells from the exercise group exhibited a slower beating rate for both single and aggregate cells; a larger cell size; an increased percentage of contracting cells; a greater capacity to form confluent monolayers, and a greater viability. It was concluded that exercise during the period of pregnancy produced morphological alterations in the myocardium of the progeny.  相似文献   

16.
The direct effects of the glucocorticoids hydrocortisone and corticosterone on myocardial metabolism were studied in cultured heart cells by assessing several parameters previously unreported. Hormone and growth factor concentrations were carefully controlled by using a serum-free medium, which also allowed maintenance of cells in the absence of glucocorticoids. Heart cell beating rate, glucose uptake rate, and CO2 evolution from radioactively labeled glucose were increased by the addition of 0.03 microM corticosterone to the medium of cells maintained in culture for 11 days. There were no further changes in these parameters as steroid concentration was increased to 14.43 microM. The activity of NAD-linked sn-glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) was increased by both corticosteroids and was dose dependent between 0.06 and 1.44 microM corticosterone. The difference between glycerol-3-phosphate dehydrogenase activity in cells maintained with hydrocortisone as compared to cells maintained without hydrocortisone increased with days in culture. The protein and DNA contents of dishes maintained with corticosteroid were depressed, demonstrating an inhibitory effect on cellular replication. Glucocorticoids have numerous direct effects on cardiac cell metabolism, and the nature of these effects suggests that secondary responses of the cell to chronic exposure are significant.  相似文献   

17.
The influence of plating cell density of an originally enriched myocardial cell population has been studied in neonatal rat heart cells in culture. Low density (LDM) is defined as a density (24 h after plating) of 209 +/- 44 cells/mm2 (mean +/- SEM) and is compared with high density (HDM), 419 +/- 67 cells/mm2. Cell growth is evaluated by the total cell number, the percentage of myocardial cells (M) in culture (PAS method) and the protein content per cell. Some differentiation parameters such as beating rates, glycogen concentration, enzymatic activities (cytochrome C oxidase and glycogen phosphorylase) are studied with time in culture (48, 96 and 192 hr). High density was designed to yield a complete confluency of the cells within 24 hr after plating and to minimize cell division of the non-muscle cells (F). At high density, cell division of F cells is effectively limited, thus leading to a more stable model regarding the cell density per plate and the percentage of M cells: 85.7 +/- 4% and 33.4 +/- 6% in LDM cultures compared with 86.5 +/- 4.7% and 51.7 +/- 9.8% in HDM cultures at 24 and 192 hr (mean +/- SEM). Heart cells increase similarly in size with age in culture in both groups. In HDM cultures the spontaneous contractions begin sooner (24 hr) than in LDM cultures and are more rapidly synchronized. The beating rate is higher in HDM cultures between 48 and 96 hr; however, after this time it falls in HDM and does not fall in LDM. Thus the overgrowth of muscle cells by non-muscle cells is not responsible for loss of beating with time in culture but more likely high density could be a limiting factor for isotonic contraction. There is more glycogen per myocyte in LDM than in HDM cultures. The cell density influences the enzymatic activities of cytochrome C oxidase and glycogen phosphorylase. The cytochrome oxidase activity is higher in HDM cultures than in LDM cultures at 96 hr whereas glycogen phosphorylase activity is higher in LDM cultures at time 96 and 192 hr. In LDM cultures, the ratio cytochrome C oxidase/glycogen phosphorylase decreases with time in culture from 1.685 +/- 0.680 at 48 hr to 0.780 +/- 0.290 at 192 hr but not in HDM cultures (2.13 +/- 0.36 and 1.64 +/- 0.34 respectively). Thus plating density influences properties of heart cell cultures with regard to the overgrowth of the F-cell population and the differentiated state of M cells.  相似文献   

18.
Cardiac ischemia results in a rapid decrease of intracellular pH and in the rise of intracellular Ca 2+ , changes that have been shown to reduce intercellular communication via gap junctions (GJ) between cardiac myocytes. Ischemia also results in electrical instability probably caused by the reduced GJ permeability contributing to an increased vulnerability to arrhythmias. This study aims at elucidating whether the fluctuations of contraction rhythm of spontaneously beating cardiac myocytes in culture changes during simulated ischemia/reperfusion. The coefficient of variation (CV) of contraction intervals, reflecting the fluctuation of contraction rhythm, increased significantly during simulated ischemia/reperfusion. However, the contraction rhythm of the cardiac myocytes in an aggregate remained synchronized during simulated ischemia/reperfusion. In contrast, pharmacological blockade of GJ with 12-doxyl stearic acid, a blocker of GJ permeability, resulted in the de-synchronization of contraction rhythm and in an increase in the CV of contraction intervals in normoxic conditions. The present findings lead to the suggestion that GJ remained open during simulated ischemia/reperfusion, and that a mechanism other than electrical uncoupling between myocytes contributed to the observed increase in the fluctuation of beating rhythm during ischemia.  相似文献   

19.
Parathyroid hormone (PTH), the plasma concentration of which is raised in uremia, has been suggested as one of the agents responsible for the myocardial changes commonly seen in uremia. The effect of intact [1–84] PTH on rat heart cells grown in tissue culture has been studied. Addition of the hormone to the media significantly stimulated beating rate. The stimulation was directly proportional to the amount of PTH in the medium. Excessively high concentration of PTH caused immediate cessation of the beating, which was reversed by the addition of calcium to the medium. The extent of stimulation by PTH was inversely proportional to the calcium concentrations in the medium. Isoproterenol and phenylephrine at excessively high concentrations in the medium did not mimic the PTH effect either alone or together with PTH. When beating ceased due to verapamil the effect was not reversed by the addition of calcium to the medium.Calcium added to the myocytes seen after beating ceased reversed the effect and the cells started to beat again. Cells kept for a longer period in the arrested state were not revived by the addition of calcium.  相似文献   

20.
We recorded transmembrane potential in whole cell recording mode from small clusters (2-4 cells) of spontaneously beating 7-day embryonic chick ventricular cells after 1-3 days in culture and investigated effects of the blockers D-600, diltiazem, almokalant, and Ba2+. Electrical activity in small clusters is very different from that in reaggregates of several hundred embryonic chick ventricular cells, e.g., TTX-sensitive fast upstrokes in reaggregates vs. TTX-insensitive slow upstrokes in small clusters (maximum upstroke velocity approximately 100 V/s vs. approximately 10 V/s). On the basis of our voltage- and current-clamp results and data from the literature, we formulated a Hodgkin-Huxley-type ionic model for the electrical activity in these small clusters. The model contains a Ca2+ current (ICa), three K+ currents (IKs, IKr, and IK1), a background current, and a seal-leak current. ICa generates the slow upstroke, whereas IKs, IKr, and IK1 contribute to repolarization. All the currents contribute to spontaneous diastolic depolarization, e.g., removal of the seal-leak current increases the interbeat interval from 392 to 535 ms. The model replicates the spontaneous activity in the clusters as well as the experimental results of application of blockers. Bifurcation analysis and simulations with the model predict that annihilation and single-pulse triggering should occur with partial block of ICa. Embryonic chick ventricular cells have been used as an experimental model to investigate various aspects of spontaneous beating of cardiac cells, e.g., mutual synchronization, regularity of beating, and spontaneous initiation and termination of reentrant rhythms; our model allows investigation of these topics through numerical simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号