首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Phytophthora plurivora and other Phytophthora species are known to be serious pathogens of forest trees. Little is known, however, about the presence of P. plurivora in Polish oak forests and their role in oak decline. The aims of this study were to identify P. plurivora in healthy and declining Quercus robur stands in southern Poland and to demonstrate the relationship between different site factors and the occurrence of P. plurivora. In addition, the virulence of P. plurivora and other Phytophthora species was evaluated through inoculations using 2-year-old oak seedlings. Rhizosphere soil was investigated from 39 oak stands representing different healthy tree statuses. The morphology and DNA sequences of the internal transcribed spacer regions (ITS) of the ribosomal DNA and the mitochondrial cox1 gene were used for identifications. P. plurivora, an oak fine root pathogen, was isolated from rhizosphere soil samples in 6 out of 39 stands. Additionally, Phytophthora cambivora, Phytophthora polonica and Phytophthora rosacearum-like were also obtained from several stands. The results showed a significant association between the presence of P. plurivora and the health status of oak trees. Similar relationships were also observed for all identified Phytophthora species. In addition, there was evidence for a connection between the presence of all identified Phytophthora species and some site conditions. Phytophthora spp. occurred more frequently in declining stands and in silt loam and sandy loam soils with pH?≥?3.66. P. plurivora and P. cambivora were the only species capable of killing whole plants, producing extensive necrosis on seedling stems.  相似文献   

2.

Key message

Dense linkage maps derived by analysing SNP dosage in autotetraploids provide detailed information about the location of, and genetic model at, quantitative trait loci.

Abstract

Recent developments in sequencing and genotyping technologies enable researchers to generate high-density single nucleotide polymorphism (SNP) genotype data for mapping studies. For polyploid species, the SNP genotypes are informative about allele dosage, and Hackett et al. (PLoS ONE 8:e63939, 2013) presented theory about how dosage information can be used in linkage map construction and quantitative trait locus (QTL) mapping for an F1 population in an autotetraploid species. Here, QTL mapping using dosage information is explored for simulated phenotypic traits of moderate heritability and possibly non-additive effects. Different mapping strategies are compared, looking at additive and more complicated models, and model fitting as a single step or by iteratively re-weighted modelling. We recommend fitting an additive model without iterative re-weighting, and then exploring non-additive models for the genotype means estimated at the most likely position. We apply this strategy to re-analyse traits of high heritability from a potato population of 190 F1 individuals: flower colour, maturity, height and resistance to late blight (Phytophthora infestans (Mont.) de Bary) and potato cyst nematode (Globodera pallida), using a map of 3839 SNPs. The approximate confidence intervals for QTL locations have been improved by the detailed linkage map, and more information about the genetic model at each QTL has been revealed. For several of the reported QTLs, candidate SNPs can be identified, and used to propose candidate trait genes. We conclude that the high marker density is informative about the genetic model at loci of large effects, but that larger populations are needed to detect smaller QTLs.  相似文献   

3.
4.
Using the diaminobenzidine (DAB) reaction catalase activity could be demonstrated histochemically in cytoplasmic structures of Phytophthora palmivora bearing general ultrastructural features of microbodies. These socalled U-bodies sediment together with the catalase activity in Ficoll-Sorbitol-Sucrose gradients following prior purification by differential centrifugation.  相似文献   

5.
Potato Solanum tuberosum L. plants expressing an antisense M21334 fragment were obtained by agrobacterial transformation. A manifold decrease in activity of anionic isoperoxidase with pI ~ 3.5 in the transformed plants demonstrated that the enzyme is encoded by M21334. The transformed plants showed a decrease in lignin accumulation and a dramatically lower resistance to the late blight agent Phytophthora infestans, implicating the enzyme in the response to P. infestans infection.  相似文献   

6.

Key message

This study demonstrates for the first time that resistance to different root lesion nematodes ( P. neglectus and P. penetrans ) is controlled by a common QTL. A major resistance QTL ( Rlnnp6H ) has been mapped to chromosome 6H using two independent barley populations.

Abstract

Root lesion nematodes (Pratylenchus spp.) are important pests in cereal production worldwide. We selected two doubled haploid populations of barley (Igri × Franka and Uschi × HHOR 3073) and infected them with Pratylenchus penetrans and Pratylenchus neglectus. Nematode multiplication rates were measured 7 or 10 weeks after infection. In both populations, continuous phenotypic variations for nematode multiplication rates were detected indicating a quantitative inheritance of resistance. In the Igri × Franka population, four P. penetrans resistance QTLs were mapped with 857 molecular markers on four linkage groups (2H, 5H, 6H and 7H). In the Uschi × HHOR 3073 population, eleven resistance QTLs (P. penetrans and P. neglectus) were mapped with 646 molecular markers on linkage groups 1H, 3H, 4H, 5H, 6H and 7H. A major resistance QTL named Rlnnp6H (LOD score 6.42–11.19) with a large phenotypic effect (27.5–36.6 %) for both pests was mapped in both populations to chromosome 6H. Another resistance QTL for both pests was mapped on linkage group 5H (Igri × Franka population). These data provide first evidence for common resistance mechanisms against different root lesion nematode species. The molecular markers are a powerful tool for the selection of resistant barley lines among segregating populations because resistance tests are time consuming and laborious.  相似文献   

7.
Transgenic (DesA-LicBM3) potato (Solanum tuberosum L., cv. Desnitsa) plants expressing gene encoding Δ12 acyl-lipid desaturase from Synechosystis sp. PCC 6803 were obtained. A significant increase in the relative content of polyunsaturated (linoleic and linolenic) fatty acids in transformants as compared with original genotype was demonstrated. The improved resistance of transgenic plants to late blight causal agent (Phytophthora infestans) as compared with original cultivar was observed.  相似文献   

8.
Phytophthora species cause enormous economic loss every year worldwide. Xenocoumacin 1 (Xcn1), isolated from the bacterium Xenorhabdus nematophilus, is a broad-spectrum antibiotic against agricultural pathogens, especially Phytophthora. To understand the inhibitory mode of Xcn1 toward Phytophthora pathogens, we determined the inhibitory effects of Xcn1 on Phytophthora capsici both in vitro and in vivo. In vitro, Xcn1 inhibited different stages in the life cycle of P. capsici, including sporangium formation, zoospore germination, and mycelial growth, with 50% effective concentration (EC50) values of 0.037, 0.81, and 2.44 μg ml?1, respectively. Xcn1 also reduced zoospore motility. In vivo, Xcn1 efficiently controlled the Phytophthora blight of pepper with a disease reduction of 99% at a concentration of 5 μg ml?1 assessed on the third day after incubation of wound stem plants. In addition, Xcn1-treated P. capsici mycelia exhibited increased mycelial branch spacing, evident plasmolysis, and leakage of intracellular components. In conclusion, in the presence of Xcn1, several stages in the life cycle of P. capsici were inhibited, and the hyphae exhibited obvious morphological changes.  相似文献   

9.

Key message

We finely map a novel resistance gene ( RpsJS ) to Phytophthora sojae in soybean. RpsJS was mapped in 138.9 kb region, including three NBS-LRR type predicted genes, on chromosome 18.

Abstract

Phytophthora root rot (PRR) caused by Phytophthora sojae (P. sojae) has been reported in most soybean-growing regions throughout the world. Development of PRR resistance varieties is the most economical and environmentally safe method for controlling this disease. Chinese soybean line Nannong 10-1 is resistant to many P. sojae isolates, and shows different reaction types to P. sojae isolates as compared with those with known Rps (Resistance to P. sojae) genes, which suggests that the line may carry novel Rps genes or alleles. A mapping population of 231 F2 individuals from the cross of Nannong 10-1 (Resistant, R) and 06-070583 (Susceptible, S) was used to map the Rps gene. The segregation fits a ratio of 3R:1S within F2 plants, indicating that resistance in Nannong 10-1 is controlled by a single dominant gene (designated as RpsJS). The results showed that RpsJS was mapped on soybean chromosome 18 (molecular linkage group G, MLG G) flanked by SSR (simple repeat sequences) markers BARCSOYSSR_18_1859 and SSRG60752K at a distance of 0.9 and 0.4 cm, respectively. Among the 14 genes annotated in this 138.9 kb region between the two markers, three genes (Glyma18g51930, Glyma18g51950 and Glyma18g51960) are the nucleotide-binding site and a leucine-rich repeat (NBS-LRR) type gene, which may be involved in recognizing the presence of pathogens and ultimately conferring resistance. Based on marker-assisted resistance spectrum analyses of RpsJS and the mapping results, we inferred that RpsJS was a novel gene or a new allele at the Rps4, Rps5 or Rps6 loci.  相似文献   

10.

Key message

In wheat, advantageous gene-rich or pleiotropic regions for stripe, leaf, and stem rust and epistatic interactions between rust resistance loci should be accounted for in plant breeding strategies.

Abstract

Leaf rust (Puccinia triticina Eriks.) and stripe rust (Puccinia striiformis f. tritici Eriks) contribute to major production losses in many regions worldwide. The objectives of this research were to identify and study epistatic interactions of quantitative trait loci (QTL) for stripe and leaf rust resistance in a doubled haploid (DH) population derived from the cross of Canadian wheat cultivars, AC Cadillac and Carberry. The relationship of leaf and stripe rust resistance QTL that co-located with stem rust resistance QTL previously mapped in this population was also investigated. The Carberry/AC Cadillac population was genotyped with DArT® and simple sequence repeat markers. The parents and population were phenotyped for stripe rust severity and infection response in field rust nurseries in Kenya (Njoro), Canada (Swift Current), and New Zealand (Lincoln); and for leaf rust severity and infection response in field nurseries in Canada (Swift Current) and New Zealand (Lincoln). AC Cadillac was a source of stripe rust resistance QTL on chromosomes 2A, 2B, 3A, 3B, 5B, and 7B; and Carberry was a source of resistance on chromosomes 2B, 4B, and 7A. AC Cadillac contributed QTL for resistance to leaf rust on chromosome 2A and Carberry contributed QTL on chromosomes 2B and 4B. Stripe rust resistance QTL co-localized with previously reported stem rust resistance QTL on 2B, 3B, and 7B, while leaf rust resistance QTL co-localized with 4B stem rust resistance QTL. Several epistatic interactions were identified both for stripe and leaf rust resistance QTL. We have identified useful combinations of genetic loci with main and epistatic effects. Multiple disease resistance regions identified on chromosomes 2A, 2B, 3B, 4B, 5B, and 7B are prime candidates for further investigation and validation of their broad resistance.  相似文献   

11.

Key message

We detected several, most likely novel QTL for adult plant resistance to rusts. Notably three QTL improved resistance to leaf rust and stripe rust simultaneously indicating broad spectrum resistance QTL.

Abstract

The rusts of wheat (Puccinia spp.) are destructive fungal wheat diseases. The deployment of resistant cultivars plays a central role in integrated rust disease management. Durability of resistance would be preferred, but is difficult to analyse. The Austrian winter wheat cultivar Capo was released in the 1989 and grown on a large acreage during more than two decades and maintained a good level of quantitative leaf rust and stripe rust resistance. Two bi-parental mapping populations: Capo × Arina and Capo × Furore were tested in multiple environments for severity of leaf rust and stripe rust at the adult plant stage in replicated field experiments. Quantitative trait loci associated with leaf rust and stripe rust severity were mapped using DArT and SSR markers. Five QTL were detected in multiple environments associated with resistance to leaf rust designated as QLr.ifa-2AL, QLr.ifa-2BL, QLr.ifa-2BS, QLr.ifa-3BS, and QLr.ifa-5BL, and five for resistance to stripe rust QYr.ifa-2AL, QYr.ifa-2BL, QYr.ifa-3AS, QYr.ifa-3BS, and QYr.ifa-5A. For all QTL apart from two (QYr.ifa-3AS, QLr.ifa-5BL) Capo contributed the resistance improving allele. The leaf rust and stripe rust resistance QTL on 2AL, 2BL and 3BS mapped to the same chromosome positions, indicating either closely linked genes or pleiotropic gene action. These three multiple disease resistance QTL (QLr.ifa-2AL/QYr.ifa-2AL, QLr.ifa.2BL/QYr.ifa-2BL, QLr.ifa-3BS/QYr.ifa.3BS) potentially contribute novel resistance sources for stripe rust and leaf rust. The long-lasting resistance of Capo apparently rests upon a combination of several genes. The described germplasm, QTL and markers are applicable for simultaneous resistance improvement against leaf rust and stripe rust.  相似文献   

12.
Mapping resistance genes for Oculimacula acuformis in Aegilops longissima   总被引:1,自引:0,他引:1  

Key message

This study identified three QTL conferring resistance to Oculimacula acuformis in Aegilops longissima and their associated markers, which can be useful in marker-assisted selection breeding for eyespot resistance.

Abstract

Oculimacula acuformis is one of two species of soilborne fungi that cause eyespot of wheat, the other being Oculimacula yallundae. Both pathogens can coexist in the same field and produce elliptical lesions on stem bases of wheat that are indistinguishable. Pch1 and Pch2 are the only two eyespot resistance genes readily available to wheat breeders, but neither provides complete control. A new source of eyespot resistance was identified from Aegilops longissima (2n = 14, SlSl), a wild relative of wheat. Three QTL for resistance to O. acuformis were mapped in chromosomes 1Sl, 3Sl, and 5Sl using a recombinant inbred line population developed from the cross Ae. longissima accessions PI 542196 (R) × PI 330486 (S). The three QTL explained 66 % of phenotypic variation by β-glucuronidase score (GUS) and 84 % by visual rating. These QTL had LOD values of 10.6, 8.8, and 6.0 for GUS score, and 16.0, 10.0, and 13.0 for visual rating. QTL associated with resistance to O. acuformis have similar chromosomal locations as some for resistance to O. yallundae, except that a QTL for resistance to O. yallundae was found in chromosome 7Sl but not for O. acuformis. Thus, it appears that some genes at the same locus in Ae. longissima may control resistance to both eyespot pathogens. QTL effective against both pathogens will be most useful for breeding programs and have potential to improve the effectiveness and genetic diversity of eyespot resistance.  相似文献   

13.
14.
Two intestinal bacterial strains MT4s-5 and MT42 involved in the degradation of (?)-epigallocatechin (EGC) were isolated from rat feces. Strain MT4s-5 was tentatively identified as Adlercreutzia equolifaciens. This strain converted EGC into not only 1-(3, 4, 5-trihydroxyphenyl)-3-(2, 4, 6-trihydroxyphenyl)propan-2-ol (1), but also 1-(3, 5-dihydroxyphenyl)-3-(2, 4, 6-trihydroxyphenyl)propan-2-ol (2), and 4′-dehydroxylated EGC (7). Type strain (JCM 9979) of Eggerthella lenta was also found to convert EGC into 1. Strain MT42 was identified as Flavonifractor plautii and converted 1 into 4-hydroxy-5-(3, 4, 5-trihydroxyphenyl)valeric acid (3) and 5-(3, 4, 5-trihydroxyphenyl)-γ-valerolactone (4) simultaneously. Strain MT42 also converted 2 into 4-hydroxy-5-(3, 5-dihydroxyphenyl)valeric acid (5), and 5-(3, 5-dihydroxyphenyl)-γ-valerolactone (6). Furthermore, F. plautii strains ATCC 29863 and ATCC 49531 were found to catalyze the same reactions as strain MT42. Interestingly, formation of 2 from EGC by strain MT4s-5 occurred rapidly in the presence of hydrogen supplied by syntrophic bacteria. Strain JCM 9979 also formed 2 in the presence of the hydrogen or formate. Strain MT4s-5 converted 1, 3, and 4 to 2, 5, and 6, respectively, and the conversion was stimulated by hydrogen, whereas strain JCM 9979 could catalyze the conversion only in the presence of hydrogen or formate. On the basis of the above results together with previous reports, the principal metabolic pathway of EGC and EGCg by catechin-degrading bacteria in gut tract is proposed.  相似文献   

15.

Key message

Phytophthora infestans resistant somatic hybrids of S. × michoacanum (+) S. tuberosum and autofused 4 x S. × michoacanum were obtained. Our material is promising to introgress resistance from S. × michoacanum into cultivated potato background.

Abstract

Solanum × michoacanum (Bitter.) Rydb. (mch) is a wild diploid (2n = 2x = 24) potato species derived from spontaneous cross of S. bulbocastanum and S. pinnatisectum. This hybrid is a 1 EBN (endosperm balance number) species and can cross effectively only with other 1 EBN species. Plants of mch are resistant to Phytophthora infestans (Mont) de Bary. To introgress late blight resistance genes from mch into S. tuberosum (tbr), genepool somatic hybridization between mch and susceptible diploid potato clones (2n = 2x = 24) or potato cultivar Rywal (2n = 4x = 48) was performed. In total 18,775 calli were obtained from postfusion products from which 1,482 formed shoots. The Simple Sequence Repeat (SSR), Cleaved Amplified Polymorphic Sequences (CAPS) and Random Amplified Polymorphic DNA (RAPD) analyses confirmed hybrid nature of 228 plants and 116 autofused 4x mch. After evaluation of morphological features, flowering, pollen stainability, tuberization and ploidy level, 118 somatic hybrids and 116 autofused 4x mch were tested for late blight resistance using the detached leaf assay. After two seasons of testing three somatic hybrids and 109 4x mch were resistant. Resistant forms have adequate pollen stainability for use in crossing programme and are a promising material useful for introgression resistance from mch into the cultivated potato background.  相似文献   

16.
17.
18.

Key message

The heritability of genetic resistance of radiata pine against Fusarium circinatum was not clear. We demonstrated that there are at least 3 QTLs that could be involved in this resistance/susceptibility.

Abstract

A genetic linkage map was developed for Pinus radiata, using Amplified Fragment Length Polymorphism (AFLP), Inter-Simple Sequence Repeat (ISSR), Selective Amplification of Microsatellite Polymorphic Loci (SAMPL), and Simple Sequence Repeat (SSR) molecular markers, based on a two-way pseudo-testcross strategy, using 86 individuals of a F1 full-sib family and 787 molecular markers for genotyping. Linkage analysis generated a map of medium to high density for each parent, with 1,060 and 1,258 cM for parents XO and XP, respectively. A total of 458 markers were mapped on 12 linkage groups (LG) in XO and XP, which equals the number of haploid chromosomes present in P. radiata. Analysis of quantitative trait loci (QTL) for resistance against pitch canker disease caused by Fusarium circinatum was made using Bayesian Information Criterion (BIC). In the XO parental map, two groups (LG-1 and LG-9) showed high probabilities for one or more QTLs. Only one group (LG-9) in the XP parental map showed probability for one or more QTLs. The results indicate that resistance to pitch canker is inherited from both parents. These results provide the basis for further studies focused on structure, evolution, and function of the P. radiata genome.  相似文献   

19.

Key message

QTL mapping in F 2 population [ V. luteola × V. marina subsp. oblonga ] revealed that the salt tolerance in V. marina subsp. oblonga is controlled by a single major QTL.

Abstract

The habitats of beach cowpea (Vigna marina) are sandy beaches in tropical and subtropical regions. As a species that grows closest to the sea, it has potential to be a gene source for breeding salt-tolerant crops. We reported here for the first time, quantitative trait loci (QTLs) mapping for salt tolerance in V. marina. A genetic linkage map was constructed from an F2 population of 120 plants derived from an interspecific cross between V. luteola and V. marina subsp. oblonga. The map comprised 150 SSR markers. The markers were clustered into 11 linkage groups spanning 777.6 cM in length with a mean distance between the adjacent markers of 5.59 cM. The F2:3 population was evaluated for salt tolerance under hydroponic conditions at the seedling and developmental stages. Segregation analysis indicated that salt tolerance in V. marina is controlled by a few genes. Multiple interval mapping consistently identified one major QTL which can explain about 50 % of phenotypic variance. The flanking markers may facilitate transfer of the salt tolerance allele from V. marina subsp. oblonga into related Vigna crops. The QTL for domestication-related traits from V. marina are also discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号