首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Nevitt T  Thiele DJ 《PLoS pathogens》2011,7(3):e1001322
The fungal pathogen Candida glabrata has risen from an innocuous commensal to a major human pathogen that causes life-threatening infections with an associated mortality rate of up to 50%. The dramatic rise in the number of immunocompromised individuals from HIV infection, tuberculosis, and as a result of immunosuppressive regimens in cancer treatment and transplant interventions have created a new and hitherto unchartered niche for the proliferation of C. glabrata. Iron acquisition is a known microbial virulence determinant and human diseases of iron overload have been found to correlate with increased bacterial burden. Given that more than 2 billion people worldwide suffer from iron deficiency and that iron overload is one of the most common single-gene inherited diseases, it is important to understand whether host iron status may influence C. glabrata infectious disease progression. Here we identify Sit1 as the sole siderophore-iron transporter in C. glabrata and demonstrate that siderophore-mediated iron acquisition is critical for enhancing C. glabrata survival to the microbicidal activities of macrophages. Within the Sit1 transporter, we identify a conserved extracellular SIderophore Transporter Domain (SITD) that is critical for siderophore-mediated ability of C. glabrata to resist macrophage killing. Using macrophage models of human iron overload disease, we demonstrate that C. glabrata senses altered iron levels within the phagosomal compartment. Moreover, Sit1 functions as a determinant for C. glabrata to survive macrophage killing in a manner that is dependent on macrophage iron status. These studies suggest that host iron status is a modifier of infectious disease that modulates the dependence on distinct mechanisms of microbial Fe acquisition.  相似文献   

5.
The opportunistic Candida species existing as part of commensal microbiota in humans are usually the etiological agents causing infections. We investigated whether isolates collected from different age groups, hospital units, and sources have distinct characteristics. A total of 913 isolates comprising 395 Candida albicans, 230 Candida tropicalis, 202 Candida glabrata, 62 Candida parapsilosis, 13 Candida krusei, and 11 of other six species were analyzed. Urine was the most common source (41.2%), followed by sputum (16.3%), blood (15.2%), and others (27.3%). Candida albicans and C. parapsilosis were more prevalent in the working group [from 19 to 65 years], whereas C. tropicalis and C. glabrata were more prevalent in the elder one (≥ 66 years). We found that the age of patients and the source of isolates affect the distribution of species. On the other hand, the drug susceptibility of isolates was associated with fungal species and whether patients were hospitalized.  相似文献   

6.
Stoyan T  Carbon J 《Eukaryotic cell》2004,3(5):1154-1163
The human pathogenic yeast Candida glabrata is the second most common Candida pathogen after Candida albicans, causing both bloodstream and mucosal infections. The centromere (CEN) DNA of C. glabrata (CgCEN), although structurally very similar to that of Saccharomyces cerevisiae, is not functional in S. cerevisiae. To further examine the structure of the C. glabrata inner kinetochore, we isolated several C. glabrata homologs of S. cerevisiae inner kinetochore protein genes, namely, genes for components of the CBF3 complex (Ndc10p, Cep3p, and Ctf13p) and genes for the proteins Mif2p and Cse4p. The amino acid sequence identities of these proteins were 32 to 49% relative to S. cerevisiae. CgNDC10, CgCEP3, and CgCTF13 are required for growth in C. glabrata and are specifically found at CgCEN, as demonstrated by chromatin immunoprecipitation experiments. Cross-complementation experiments revealed that the isolated genes, with the exception of CgCSE4, are species specific and cannot functionally substitute for the corresponding genes in S. cerevisiae deletion strains. Likewise, the S. cerevisiae CBF3 genes NDC10, CEP3, and CTF13 cannot functionally replace their homologs in C. glabrata CBF3 deletion strains. Two-hybrid analysis revealed several interactions between these proteins, all of which were previously reported for the inner kinetochore proteins of S. cerevisiae. Our findings indicate that although many of the inner kinetochore components have evolved considerably between the two closely related species, the organization of the C. glabrata inner kinetochore is similar to that in S. cerevisiae.  相似文献   

7.
8.
9.
CTBT (7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine) causes intracellular superoxide production and oxidative stress and enhances the susceptibility of Saccharomyces cerevisiae, Candida albicans, and C.?glabrata cells to cycloheximide, 5-fluorocytosine, and azole antimycotic drugs. Here, we demonstrate the antifungal activity of CTBT against 14 tested filamentous fungi. CTBT prevented spore germination and mycelial proliferation of Aspergillus niger and the pathogenic Aspergillus fumigatus. The action of CTBT is fungicidal. CTBT increased the formation of reactive oxygen species in fungal mycelium as detected by 2',7'-dichlorodihydrofluorescein diacetate and reduced the radial growth of colonies in a dose-dependent manner. Co-application of CTBT and itraconazole led to complete inhibition of fungal growth at dosages lower than the chemicals alone. Antifungal and chemosensitizing activities of CTBT in filamentous fungi may be useful in combination treatments of infections caused by drug-resistant fungal pathogens.  相似文献   

10.
The increasing diversity of opportunistic fungi causing serious invasive fungal infections (IFI) has been documented. Accurate identification (ID) is important in guiding therapy, determining prognosis for IFIs and in epidemiological surveys. We assessed the utility of PCR-based methods for the ID of yeasts and moulds that either were uncommon, failed conventional ID, or represented unusual biochemical or phenotypic profiles of common species. Among 1,790 viable fungal clinical isolates received during the SENTRY Program in 2010, 322 strains from 40 study sites had ID confirmed by molecular methods. Isolates were previously identified in participant institutions. Yeasts that were not confirmed by morphology on CHROMagar, growth at 45?°C (Candida albicans/dubliniensis), or assimilation of trehalose (C. glabrata) as well as non-Candida yeasts and all moulds were amplified and sequenced using primers amplifying one or more of the following genes: ITS, 28S, β-tubulin (Aspergillus spp.), TEF (Fusarium spp.), IGS (Trichosporon spp.). The isolates selected for molecular ID included 149 isolates of Candida species, 77 of Aspergillus species, 73 non-Candida yeasts, and 23 other moulds (a total of 41 different species). Overall, the ID determined by the submitting site was confirmed for 189 isolates (58.7?%): Aspergillus spp. (64.1?% correct); Candida spp. (60.1?% correct); non-Candida yeasts (58.9?% correct); non-Aspergillus moulds (30.4?% correct). Species with high levels of concordance between conventional and molecular ID included A. fumigatus (95.0 %), C. lusitaniae (100?%), C. dubliniensis (92.3?%), C. kefyr (100?%), and C. neoformans (90.2?%). Only 50.0?% of isolates of C. albicans and 59.1?% of C. glabrata selected due to unusual phenotypic or biochemical features were found to be correctly identified by the submitting site. Molecular methods for the identification of fungal pathogens are an important adjunct to the conventional identification of many less common clinically relevant yeasts and moulds including species of Candida with unusual or erroneous phenotypic or biochemical profiles. Molecular confirmation of fungal identification is essential in epidemiological surveys such as SENTRY.  相似文献   

11.
The incidence of Candida species causing bloodstream infections in the University Hospital of Szeged, Hungary, between 1996 and 2009, and the susceptibilities of these isolates to antifungal agents were evaluated.Automated blood culture systems (Vital, bioMérieux, Marcy-l'Etoile, France; and BACTEC 9120, Becton-Dickinson Diagnostic Systems, Sparks, USA) were used. The in vitro susceptibilities of the yeast isolates to antifungal agents were determined by the Etest method (AB Biodisk, Solna, Sweden).Bloodstream infections were caused by yeast strains in 231 cases during this period, and 226 Candida strains were cultured from 216 candidaemia patients. Bloodstream infections caused by multiple Candida spp. were diagnosed almost every year. Of the 216 patients, 67 were children; and 55 infants needed intensive care. In 2005, C. glabrata caused an increase in the incidence of invasive fungal infections in the Neonatal Intensive Care Unit. The PFGE analysis of 12 isolates distinguished 4 different karyotypes. The incidence of bloodstream infections caused by fungi did not change during the 14-year study period. The most frequent species cultured from blood samples were C. albicans and C. glabrata. The incidence of resistant isolates remained constant. The local trends of fungaemia must be monitored and compared with global reports.  相似文献   

12.
The increasing number of fungal genomes whose sequence has been completed permits their comparison both at the nucleotide and protein levels. The information thus obtained improves our knowledge on evolutionary relationships between fungi. Comparison of the Saccharomyces cerevisiae genome with other Hemiascomycetes genomes confirms that a whole-genome duplication occurred before the diversification between Candida glabrata and the Saccharomyces sensu stricto species and after separation from the branch leading to the other Hemiascomycetes. Duplication was followed by individual gene losses and rearrangements affecting extensive DNA regions. Although S. cerevisiae and C. glabrata are two closely related yeast species at an evolutionary scale, their different habitats and life styles correlate with specific gene differences and with more extensive gene loses having occurred in the parasitic C. glabrata. At a closer evolutive scale, diversification among the sensu stricto species began with nucleotide changes at the intergenic regions affecting sequences that are not relevant for gene regulation, together with more extensive genome rearrangements involving transposons and telomeric regions. One important characteristic of fungal genomes that is shared with other eukaryotes is the fusion of gene sequences coding for separate protein modules into a single open reading frame. This allows diversification of protein functions while saving gene information.  相似文献   

13.
Human fungal pathogens such as the dimorphic Candida albicans or the yeast-like Candida glabrata can cause systemic candidiasis of high mortality in immunocompromised individuals. Innate immune cells such as dendritic cells and macrophages establish the first line of defense against microbial pathogens and largely determine the outcome of infections. Among other cytokines, they produce type I IFNs (IFNs-I), which are important modulators of the host immune response. Whereas an IFN-I response is a hallmark immune response to bacteria and viruses, a function in fungal pathogenesis has remained unknown. In this study, we demonstrate a novel mechanism mediating a strong IFN-β response in mouse conventional dendritic cells challenged by Candida spp., subsequently orchestrating IFN-α/β receptor 1-dependent intracellular STAT1 activation and IFN regulatory factor (IRF) 7 expression. Interestingly, the initial IFN-β release bypasses the TLR 4 and TLR2, the TLR adaptor Toll/IL-1R domain-containing adapter-inducing IFN-β and the β-glucan/phagocytic receptors dectin-1 and CD11b. Notably, Candida-induced IFN-β release is strongly impaired by Src and Syk family kinase inhibitors and strictly requires completion of phagocytosis as well as phagosomal maturation. Strikingly, TLR7, MyD88, and IRF1 are essential for IFN-β signaling. Furthermore, in a mouse model of disseminated candidiasis we show that IFN-I signaling promotes persistence of C. glabrata in the host. Our data uncover for the first time a pivotal role for endosomal TLR7 signaling in fungal pathogen recognition and highlight the importance of IFNs-I in modulating the host immune response to C. glabrata.  相似文献   

14.
Farnesyl pyrophosphate (FPP) is utilized for many cellular processes, including the production of dolichols, ubiquinone (CoQ), sterols, farnesylated heme A and prenylated proteins. This lipid synthesized by FPP synthetase (ERG20) becomes attached to target proteins by the prenyltransferases, CDC43/RAM2 and RAM1/RAM2 complexes after the formation of the C15 and C20 units, respectively. Defects in protein prenylation as a result of inhibiting these enzyme complexes lead to pleiotropic effects in all eukaryotes. In this study, using Candida glabrata conditional mutants, the importance of the ERG20 and RAM2 genes for growth using both in vivo and in vitro assays was assessed by placing the RAM2 and ERG20 genes under the control of a regulatable promoter. Repression of RAM2 gene expression revealed growth defects under both conditions. However, repression of ERG20 gene expression did not impair fungal growth in a mouse host, but did result in growth defects on laboratory media. Thus, FPP synthase is not required for survival in an infected mouse, but the RAM2-encoded prenyltransferase was critical for growth under both conditions. This study strongly suggests that inhibitors of prenyltransferase may be promising antifungals.  相似文献   

15.
Proteases, key virulence factors of many bacterial and fungal pathogens, are pivotally important for nutrient acquisition, invasion and adherence to host cells and evasion/escape from host immune cells. In this study, we report a novel role for CgYps1, member of a family of 11 GPI-linked aspartyl proteases, in a human opportunistic fungal pathogen, Candida glabrata, in the regulation of pH homeostasis under acidic environmental conditions. We show that CgYps1 is required to survive low-external-pH environment and the inability of Cgyps1Δ mutant to maintain pH homeostasis results in intracellular acidification and increased reactive oxygen species (ROS) production. We also provide evidence that the reduced intracellular pH in Cgyps1Δ mutant under acidic conditions is, partly, owing to the diminished activity of a plasma membrane proton pump, CgPma1, an orthologue of a key component of pH homeostasis machinery in Saccharomyces cerevisiae, Pma1. In addition, we have examined C. glabrata's response to low environmental pH via genome-wide expression analysis and several genes required for protein folding/modification and stress response pathways including seven of the CgYPS genes were found to be upregulated. Lastly, we show that C. glabrata responds to acidic environment by reducing total β-glucan levels in the cell wall in a CgYps1-dependent manner.  相似文献   

16.
We developed a new in vitro model for a multi-parameter characterization of the time course interaction of Candida fungal cells with J774 murine macrophages and human neutrophils, based on the use of combined microscopy, fluorometry, flow cytometry and viability assays. Using fluorochromes specific to phagocytes and yeasts, we could accurately quantify various parameters simultaneously in a single infection experiment: at the individual cell level, we measured the association of phagocytes to fungal cells and phagocyte survival, and monitored in parallel the overall phagocytosis process by measuring the part of ingested fungal cells among the total fungal biomass that changed over time. Candida albicans, C. glabrata, and C. lusitaniae were used as a proof of concept: they exhibited species-specific differences in their association rate with phagocytes. The fungal biomass uptaken by the phagocytes differed significantly according to the Candida species. The measure of the survival of fungal and immune cells during the interaction showed that C. albicans was the more aggressive yeast in vitro, destroying the vast majority of the phagocytes within five hours. All three species of Candida were able to survive and to escape macrophage phagocytosis either by the intraphagocytic yeast-to-hyphae transition (C. albicans) and the fungal cell multiplication until phagocytes burst (C. glabrata, C. lusitaniae), or by the avoidance of phagocytosis (C. lusitaniae). We demonstrated that our model was sensitive enough to quantify small variations of the parameters of the interaction. The method has been conceived to be amenable to the high-throughput screening of mutants in order to unravel the molecular mechanisms involved in the interaction between yeasts and host phagocytes.  相似文献   

17.
Chen  Shu  Chen  Yi  Zhou  Yi-qin  Liu  Ning  Zhou  Rong  Peng  Jin-hui  Qian  Qi-rong 《Mycopathologia》2019,184(2):283-293
Mycopathologia - The incidence of deep fungal infection due to non-albicans Candida species (especially Candida glabrata) has significantly increased in recent decades. Candida glabrata is an...  相似文献   

18.
Micro-organisms must adapt to environmental change to survive, and this is particularly true for fungal pathogens such as Candida glabrata. C. glabrata is found both in the environment and in diverse niches in its human host. The ambient pH of these niches varies considerably, and therefore we have examined the response of C. glabrata to changes in ambient pH using a proteomic approach. Proteins expressed in C. glabrata cells growing at pH 4.0, 7.4 or 8.0 were compared by 2-DE, and 174 spots displaying reproducible and statistically significant changes in expression level were identified by peptide mass fingerprinting, thereby extending our 2-DE map of the C. glabrata proteome to a total of 272 identified spots. Proteins involved in glucose metabolism, the TCA cycle, respiration and protein synthesis were expressed at lower levels during growth at pH 7.4 and/or 8.0, whereas proteins involved in stress responses and protein catabolism were expressed at higher levels under these alkaline conditions. Our data suggest that C. glabrata perceives low pH as less stressful than higher pH. This contrasts with another opportunistic fungal pathogen of humans, Candida albicans.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号