首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 75 毫秒
1.
The magnitude by which plasma cortisol levels increase following exposure to a stressor is a heritable trait in rainbow trout. The relative growth in coculture of F1 lines selected for high responsiveness (HR) and low responsiveness (LR) to a confinement stressor suggested that behavioral characteristics related to food acquisition, aggression, or competitive ability might differ between the two lines. This hypothesis was tested using the F2 generation of the selected lines. The F2 lines clearly exhibited the characteristics of the F1 parents, displaying significantly divergent plasma cortisol responses to a 1-h confinement stressor and a high heritability for the trait. Behavioral differences between the lines were assessed by observing the outcome of staged fights for dominance in size-matched pairs of HR and LR fish. The identification of dominant and subordinate fish within each pair on the basis of their behavior was supported by the levels of blood cortisol in the fish attributed to each group (dominant < subordinate). Fish from the LR line were identified as dominant in significantly more trials than were HR individuals. The results suggest that behavioral attributes that affect the outcome of rank-order fights are closely linked to the magnitude of the plasma cortisol response to stress in rainbow trout. Whether the link is causal or circumstantial is not yet evident.  相似文献   

2.
In rainbow trout (Oncorhynchus mykiss), selection for divergent post-stress plasma cortisol levels has yielded low (LR)- and high (HR) responsive lines, differing in behavioural and physiological aspects of stress coping. For instance, LR fish display prolonged retention of a fear response and of previously learnt routines, compared to HR fish. This study aims at investigating putative central nervous system mechanisms controlling behaviour and memory retention. The stress hormone cortisol is known to affect several aspects of cognition, including memory retention. Cortisol acts through glucocorticoid receptors 1 and 2 (GR1 and 2) and a mineralcorticoid receptor (MR), all of which are abundantly expressed in the salmonid brain. We hypothesized that different expressions of MR and GRs in LR and HR trout brains could be involved in the observed differences in cognition. We quantified the mRNA expression of GR1, GR2 and MR in different brain regions of stressed and non-stressed LR and HR trout. The expression of MR was higher in LR than in HR fish in all brain parts investigated. This could be associated with reduced anxiety and enhanced memory retention in LR fish. MR and GR1 expression was also subject to negative regulation by stress in a site-specific manner.  相似文献   

3.
Acute temperature stress in animals results in increases in heat shock proteins (HSPs) and stress hormones. There is evidence that stress hormones influence the magnitude of the heat shock response; however, their role is equivocal. To determine whether and how stress hormones may affect the heat shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout. We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response but provided insight into stress-coping styles and environmental stress. HR fish also had a significantly greater and faster heat shock response and less oxidative protein damage than LR fish. Despite these clear differences in the physiological and cellular responses to heat shock, there were no differences in the thermal tolerance of HR and LR fish. Our results support the hypothesis that responsiveness to environmental change underpins the physiological differences in stress-coping styles. Here, we demonstrate that the heat shock response is a distinguishing feature of the HR and LR lines and suggest that it may have been coselected with the hormonal responses to stress.  相似文献   

4.
The production and welfare of intensively reared fish would be improved by reducing stress responsiveness. One approach to achieving this goal is selective breeding utilising stress-responsive genes as direct genetic markers of the desirable trait. As a first step in this process, microarray analysis has been carried out on liver tissues of rainbow trout selectively bred for high (HR) or low (LR) responsiveness to a stressor. Microarray hybridizations provided gene expression profiles for pooled samples of fish confined for 6 h, 24 h and 168 h and for individual fish (168 h only). 161 genes were shown to be differentially regulated in HR and LR fish during confinement exposure and eight of these gene expression profiles were validated by quantitative PCR. Genes of particular interest included intelectin-2 precursor which showed greater than 100-fold higher expression in HR fish compared to LR fish irrespective of whether the fish were confined or not; interferon inducible transmembrane protein 3 which was differentially stress-induced between the two lines; and hepatic pro-opiomelanocortin B (POMC B) which was upregulated during stress in HR fish but downregulated in LR fish. All these offer potential as direct markers of low stress responsiveness in a marker-assisted selection scheme.  相似文献   

5.
Two lines of rainbow trout selected for high (HR) and low (LR) responsiveness to a standardised confinement stressor displayed a sustained divergence in plasma cortisol levels during a 3-h period of confinement (max.: HR: 167+/-13 ng ml(-1); LR: 103+/-8 ng ml(-1); P<0.001). However, no significant difference in plasma ACTH levels was evident (max: HR: 153+/-9 pg ml(-1); LR: 142+/-7 pg ml(-1)). Dexamethasone (DEX) was administered to HR and LR fish to block endogenous adrenocorticotropin (ACTH) release. Administration of a weight-adjusted dose of ACTH to the DEX-blocked fish elevated plasma cortisol levels to a significantly greater extent in HR (233+/-24 ng ml(-1)) than LR (122+/-14 ng ml(-1)) fish (P<0.001). Plasma cortisol levels in DEX-blocked HR and LR fish after sham injection were low but also significantly different (HR: 6.7+/-1 ng ml(-1); LR: 2.2+/-0.2 ng ml(-1); P<0.001). These results indicate that modulation of cortisol responsiveness to stressors in HR and LR fish resides, at least in part, downstream of the hypothalamic-pituitary axis.  相似文献   

6.
The aim for this study was to examine whether the F4 generation of two strains of rainbow trout divergent in their plasma cortisol response to confinement stress (HR: high responder or LR: low responder) would also differ in stress-induced effects on forebrain concentrations of mRNA for corticotropin-releasing factor (CRF), arginine vasotocin (AVT), CRF receptor type 1 (CRF-R1), CRF receptor type 2 (CRF-R2) and AVT receptor (AVT-R). In addition, plasma cortisol concentrations, brainstem levels of monoamines and monoamine metabolites, and behaviour during confinement were monitored. The results confirm that HR and LR trout differ in their cortisol response to confinement and show that fish of these strains also differ in their behavioural response to confinement. The HR trout displayed significantly higher locomotor activity while in confinement than LR trout. Moreover, following 180 min of confinement HR fish showed significantly higher forebrain concentrations of CRF mRNA than LR fish. Also, when subjected to 30 min of confinement HR fish showed significantly lower CRF-R2 mRNA concentrations than LR fish, whereas there were no differences in CRF-R1, AVT or AVT-R mRNA expression between LR and HR fish either at 30 or 180 min of confinement. Differences in the expression of CRF and CRF-R2 mRNA may be related to the divergence in stress coping displayed by these rainbow trout strains.  相似文献   

7.
Two lines of rainbow trout (Oncorhynchus mykiss) that exhibit divergent endocrine responsiveness to stressors also display disparate behavioral traits. To investigate whether the high-responding (HR) and low-responding (LR) fish also differ in cognitive function, the rate of extinction of a conditioned response was compared between the two lines. Groups of HR and LR fish were exposed to a paired conditioned stimulus (CS; water off) and unconditioned stimulus (US; confinement stressor). After exposure to 18 CS-US pairings, at least 70% of individuals of both lines acquired a conditioned response (CR) manifested as an elevation of blood cortisol levels on presentation of the CS only. Post-conditioning, the fish were tested by presentation of the CS at weekly intervals, for 4 weeks, with no further reinforcement, and the extinction of the CR in the two lines was compared. The decline in mean plasma cortisol levels after exposure to the CS over successive tests suggested that the CR was retained for a shorter period among the HR (<14 days) than LR fish (<21 days). The frequency of individuals within each line whose plasma cortisol levels indicated a stress response when exposed to the CS was significantly greater among the LR than HR fish at 14 and 21 days with no HR fish falling into this category at 21 days. At 28 days post-conditioning, there were no HR fish and only three LR fish were categorized as "stressed". These results suggest that there are differences in cognitive function between the two lines. Possible mechanisms underlying these differences are discussed.  相似文献   

8.
Bold, risk-taking animals have previously been putatively linked with a proactive stress coping style whereas it is suggested shyer, risk-averse animals exhibit a reactive coping style. The aim of this study was to investigate whether differences in the expression of bold-type behaviour were evident within and between two lines of rainbow trout, Oncorhynchus mykiss, selectively bred for a low (LR) or high (HR) endocrine response to stress, and to link boldness and stress responsiveness with the expression of related candidate genes. Boldness was determined in individual fish over two trials by measuring the latency to approach a novel object. Differences in plasma cortisol concentrations and the expression of eight novel candidate genes previously identified as being linked with divergent behaviours or stress were determined. Bold and shy individuals, approaching the object within 180 s or not approaching within 300 s respectively, were evident within each line, and this was linked with activity levels in the HR line. Post-stress plasma cortisol concentrations were significantly greater in the HR line compared with the LR line, and six of the eight tested genes were upregulated in the brains of LR fish compared with HR fish. However, no direct relationship between boldness and either stress responsiveness or gene expression was found, although clear differences in stress physiology and, for the first time, gene expression could be identified between the lines. This lack of correlation between physiological and molecular responses and behavioural variation within both lines highlights the complexity of the behavioural-physiological complex.  相似文献   

9.
The aim of this study was to establish whether two lines of rainbow trout divergent for their plasma cortisol response to a standardized stressor would show consistent differences in their behavioural response to a range of challenging situations. Our results show that the high- and low-responding (HR and LR) lines of rainbow trout did not differ in the aggression shown towards an intruder or in their response to the introduction of a novel object to their home environment. However, there was a difference in behaviour between the two selection lines when they were exposed to two unfamiliar environments. These results suggest that the behaviour of the HR and LR fish differs when they are challenged in unfamiliar environments, while their behaviour does not differ when they are challenged in their home environment. These observations are in agreement with studies on mammals that show that individuals with reactive coping styles perform similarly to proactive animals when they are challenged in a familiar environment, while they show different behaviour when they are challenged in unfamiliar environments. Thus, these results provide further evidence that the HR and LR selection lines of rainbow trout exemplify the two different coping styles described in mammals.  相似文献   

10.
Consistent and heritable individual differences in reaction to challenges, often referred to as stress coping styles, have been extensively documented in vertebrates. In fish, selection for divergent post-stress plasma cortisol levels in rainbow trout (Oncorhynchus mykiss) has yielded a low (LR) and a high responsive (HR) strain. A suite of behavioural traits is associated with this physiological difference, with LR (proactive) fish feeding more rapidly after transfer to a new environment and being socially dominant over HR (reactive) fish. Following transport from the UK to Norway, a switch in behavioural profile occurred in trout from the 3rd generation; HR fish regained feeding sooner than LR fish in a novel environment and became dominant in size-matched HR–LR pairs. One year after transport, HR fish still fed sooner, but no difference in social dominance was found. Among offspring of transported fish, no differences in feeding were observed, but as in pre-transported 3rd generation fish, HR fish lost fights for social dominance against size-matched LR opponents. Transported fish and their offspring retained their distinctive physiological profile throughout the study; HR fish showed consistently higher post-stress cortisol levels at all sampling points. Altered risk-taking and social dominance immediately after transport may be explained by the fact that HR fish lost more body mass during transport than did LR fish. These data demonstrate that some behavioural components of stress coping styles can be modified by experience, whereas behavioural plasticity is limited by genetic effects determining social position early in life story.  相似文献   

11.
12.
Eurasian perch (Perca fluviatilis) is a promising aquaculture candidate, but the growth performance of this non-domesticated species may be negatively affected by its stress responsiveness to intensive culture conditions. To evaluate this potential problem, juvenile Eurasian perch were exposed to a standardized handling stressor twice a week for an 8-week period. A similar study was conducted on domesticated rainbow trout (Oncorhynchus mykiss) for comparison of intra- and inter-specific differences. The stressed fish of both species showed lower body growth than the non-stressed control fish, however, the final mean body mass was 35.4% lower in the stressed Eurasian perch than in the non-stressed controls, compared to 22.8% difference between the two groups in rainbow trout. The stress responsiveness was examined by comparing the post-stress cortisol and glucose levels in repeatedly stressed fish and fish exposed to the stressor only once. The cortisol stress response in both species strongly indicated a habituation to the repeated stressor. Thus, repeatedly stressed Eurasian perch reached maximum cortisol levels of 130 ng/mL after 0.5 h compared to 200 ng/mL in the fish stressed once, while considerably smaller differences in cortisol levels were shown between the repeatedly and single stressed rainbow trout. Rainbow trout also showed lower post-stress glucose levels in the repeatedly stressed fish compared to the single stressed fish. In contrast, the glucose levels in both groups of Eurasian perch increased abruptly after stress treatment and remained elevated at approximately 19 mM for 6 h; levels were three times as high as the peak levels 3 h post-stress in rainbow trout. Together, the habituation of the stress response shown in both species did not eliminate the growth difference found in the repeatedly stressed fish versus the control fish. Further, the lower growth performance of Eurasian perch compared to rainbow trout could partly be due to the increased energy consumption in the more stress responsive Eurasian perch.  相似文献   

13.
The aim of this study was to clarify to what extent the effects of elevated dietary L-tryptophan (Trp) on aggressive behavior and stress responsiveness in rainbow trout are mediated by circulating melatonin and central serotonin (5-HT), respectively. Isolated rainbow trout were paired for 1h a day for 7 days in order to create fish with experience of being dominant and subordinate. Following this week, the fish were tested for aggressive behavior using a resident-intruder test after which they were subjected to one of four treatments: (1) tryptophan, (2) the selective serotonin reuptake inhibitor (SSRI) citalopram, (3) melatonin, and (4) no treatment (controls). After 7 days of treatment, the fish were subjected to a second resident-intruder test. Trp-supplemented feed resulted in a suppression of aggressive behavior in fish with experience of being dominant. Moreover, fish fed Trp-supplemented feed, regardless of social experience, also displayed lower plasma cortisol levels than controls. These effects of elevated dietary Trp were closely mimicked by citalopram treatment, whereas exogenous melatonin had no effect on either aggressive behavior or plasma cortisol. Thus, the effect of elevated dietary Trp on aggressive behavior and stress responses does not appear to be mediated by melatonin even though elevated dietary intake of Trp resulted in an increase in plasma melatonin concentrations.  相似文献   

14.
Maternal size, age, and allostatic load influence offspring size, development, and survival. Some of these effects have been attributed to the release of glucocorticoids, and individual variation in these stress hormones is related to a number of traits. Correlated traits are often clustered and used to define the proactive and reactive stress coping styles. Although stress coping styles have been identified in a number of animal groups, little is known about the coupling between stress coping style and offspring characteristics. In the present study, plasma cortisol levels in ovulated mothers and cortisol levels in non-fertilized eggs from two rainbow trout (Oncorhynchus mykiss) strains selected for high (HR) and low (LR) post-stress plasma cortisol levels were compared. Offspring characteristics such as egg size, larval growth, and energy reserves also were compared between the two strains. Maternal plasma and egg cortisol levels were correlated, but no difference between the HR and LR strains was detected in either parameter. LR females produced larger eggs, and larvae with larger yolk sacs compared to HR females, however no differences in larval body size (excluding the yolk) was detected between strains. Considering that the HR and LR strains have a number of correlated behavioral and physiological traits that resemble the reactive and proactive stress coping styles, respectively, the results suggest that proactive mothers invest more energy into their offspring, producing larvae with larger energy reserves. It is possible that larger energy reserves in proactive larvae support the energy requirement for establishing and defending territory in salmonid fish. Furthermore, in the present study we found a positive relationship between mother plasma cortisol and egg cortisol; however neither mother plasma cortisol nor egg cortisol differed between strains. These results indicate that cortisol endowment from the mother to the offspring plays a minor role in the transfer of the behavioral and physiological traits which separates these strains.  相似文献   

15.
Following previously published observations that a conditioned response (CR) was lost more quickly by rainbow trout (Oncorhynchus mykiss) exhibiting a high responsiveness to stressors than by low responding individuals this study was designed to investigate the effects of exogenous cortisol on the retention of a CR in unselected rainbow trout. Fish held in isolation were conditioned over a 10-day period by pairing an innocuous signal (conditioned stimulus, CS: a water jet played on the surface of the tank water) with a mild stressor (unconditioned stimulus, US: 30 min of confinement). This resulted in a brief elevation of plasma cortisol levels (the CR) when the fish was exposed to the CS only. The effect of exogenous cortisol on the retention of the CR was evaluated by comparing the performance of fish that received cortisol-containing slow-release intraperitoneal implants, with fish receiving vehicle-only implants. Retention of the CR was assessed at intervals up to 35 days after conditioning ceased. The CR was considered to be evident when 30 min following presentation of the CS, mean plasma cortisol levels were significantly higher in conditioned than untrained fish. On day 1 both cortisol-implanted and vehicle-implanted conditioned fish exhibited a CR. However, from day 5 onwards the CR was observed only in the vehicle-implanted and conditioned group. This finding indicates that administration of cortisol accelerated the extinction of the CR in the cortisol-implanted fish, suggesting that elevated plasma cortisol levels can impair memory processes in rainbow trout.  相似文献   

16.
Between June and September the magnitude of the plasma cortisol response of maturing male and female rainbow trout to confinement was indistinguishable. A progressive increase in confinement-induced cortisol levels in both sexes occurred during May to September, associated with the seasonal rise in water temperature. Between September and January a reduction of >50% in the magnitude of the cortisol response to confinement in male fish (but no decline in females) coincided with declining water temperature and significant increases in plasma 11-ketotestosterone and elevated plasma testosterone levels. Plasma oestradiol-17β levels were significantly greater in females than males throughout the study period and this difference was maximal between September and January. However, plasma testosterone was also elevated in females during this period and levels overall were higher than those in male fish. Previous studies have shown oestradiol-17β and testosterone to have diametrically opposed effects on stress responsiveness in trout, with the former enhancing, and the latter suppressing, the cortisol response to a stressor. The relative roles of androgens, estrogen and water temperature in modulating the stress responsiveness of rainbow trout are discussed.  相似文献   

17.
Within animal populations, genetic, epigenetic and environmental factors interact to shape individual neuroendocrine and behavioural profiles, conferring variable vulnerability to stress and disease. It remains debated how alternative behavioural syndromes and stress coping styles evolve and are maintained by natural selection. Here we show that individual variation in stress responsiveness is reflected in the visual appearance of two species of teleost fish; rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Salmon and trout skin vary from nearly immaculate to densely spotted, with black spots formed by eumelanin-producing chromatophores. In rainbow trout, selection for divergent hypothalamus–pituitary–interrenal responsiveness has led to a change in dermal pigmentation patterns, with low cortisol-responsive fish being consistently more spotted. In an aquaculture population of Atlantic salmon individuals with more spots showed a reduced physiological and behavioural response to stress. Taken together, these data demonstrate a heritable behavioural–physiological and morphological trait correlation that may be specific to alternative coping styles. This observation may illuminate the evolution of contrasting coping styles and behavioural syndromes, as occurrence of phenotypes in different environments and their response to selective pressures can be precisely and easily recorded.  相似文献   

18.
Crowding for 3 weeks significantly reduced the coefficient of condition of both brown trout and rainbow trout. However, acclimation of the hypothalamic-pituitary-interrenal (HPI) axis, as assessed by changes in plasma cortisol levels, occurred within 6 days for brown trout and within 10 days for rainbow trout. Blood lactate levels were significantly reduced in the crowded fish of both species throughout the experiment. Sexual maturation of the male fish significantly elevated the number of circulating red blood cells in both species, reduced the lactate levels in brown trout and elevated cortisol levels in the rainbow trout. Despite the relatively rapid interrenal acclimation, the numbers of thrombocytes and lymphocytes in the blood of both species were significantly reduced during the period of crowding and it is concluded that changes in the composition of circulating blood cells are more reliable indicators of chronic crowding stress than are plasma cortisol levels. These findings are discussed in relation to the role of the HPI axis in suppressing the defence systems of salmonid fish during periods of chronic stress.  相似文献   

19.
Two related experiments examined the relationship between plasma cortisol concentrations and the development of social hierarchies in fish. In the first, rainbow trout, Oncorhynchus mykiss, and brown trout, Salmo trutta, were observed for dominance interactions when confined within single-species pairs for 4, 48, or 168 h. Subordinate members of a pair exhibited significantly higher cortisol concentrations than dominant and single fish, but the pattern of cortisol elevation differed between the two species, being quicker to rise and increasing to a higher level in rainbow trout. Cortisol concentrations were correlated with behavioural measurements; the more subordinate the behaviour exhibited by a fish, the higher its cortisol concentration. Social stress was a chronic stressor, and no acclimation to social status occurred during the week. In the second experiment, measurements of plasma cortisol were made before pairing of rainbow trout and then after 48 h of confinement in pairs. Subordinate fish demonstrated significantly higher concentrations of plasma cortisol both before and after social stress. It therefore appears that in addition to cortisol being elevated during periods of social stress, an association may exist between initial cortisol levels and the likelihood of a fish becoming subordinate.  相似文献   

20.
Interspecific differences in the stress response of fish may be due, in part, to differences in the sensitivity of target tissues to cortisol. The relative response of brown and rainbow trout to a standardized dose of cortisol was assessed by monitoring condition (K factor), the number of circulating lymphocytes and mortality due to disease, following cortisol treatment. Cortisol implantation resulted in a significant decline in K factor and number of circulating lymphocytes in immature brown trout, but not in immature rainbow trout, despite plasma cortisol levels being similar in both cases. Cortisol implantation in mature brown and rainbow trout significantly increased the mortality rate due to bacterial and fungal infection compared with control fish. Furthermore, the mortality rate due to disease was significantly greater in brown trout than rainbow trout, despite both groups receiving similar doses of steroid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号