首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. The relative proportions of cuticular components having the same retention times were compared between the slave-making ant Polyergus rufescens and the slave ant Formica rufibarbis living in monospecific or mixed colonies. The two species were found to present different spectra. The Formica workers, when enslaved by Polyergus , tend to lose their colony characteristics but they do not seem to adopt the characteristics of Polyergus.  相似文献   

2.
The purpose of this study was to compare cuticular hydrocarbon profiles of slave-making Polyergus rufescens ants reared alone or with their Formica rufibarbis slaves. Chemical analyses showed that due to the close contacts occurring when the Formica were tending the Polyergus, the synthesis of the cuticular hydrocarbons carried by the slaves was enhanced in the slave-makers. The postpharyngeal hydrocarbon levels increased during the first 15 days of life, whether or not the Polyergus were exposed to Formica. Our findings suggest that Polyergus is able to secrete all components of their cuticular hydrocarbon blend and that none are acquired through contact with Formica. In addition to presenting our experimental evidence, several hypotheses are proposed to explain the synthesis and regulation of hydrocarbon blends borne when these two species cohabitate within a single colony.  相似文献   

3.
The pace and trajectory of coevolutionary arms races between parasites and their hosts are strongly influenced by the number of interacting species. In environments where a parasite has access to more than one host species, the parasite population may become divided in preference for a particular host. In the present study, we show that individual colonies of the pirate ant Polyergus breviceps differ in host preference during raiding, with each colony specializing on only one of two available Formica host species. Moreover, through genetic analyses, we show that the two hosts differ in their colony genetic structure. Formica occulta colonies were monogynous, whereas Formica  sp. cf. argentea colonies were polygynous and polydomous (colonies occupy multiple nest sites). This difference has important implications for coevolutionary dynamics in this system because raids against individual nests of polydomous colonies have less impact on overall host colony fitness than do attacks on intact colonies. We also used primers that we designed for four microsatellite loci isolated from P. breviceps to verify that colonies of this species, like other pirate ants, are comprised of simple families headed by one singly mated queen.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 565–572.  相似文献   

4.
Comparisons of cuticular hydrocarbons between workers of the dulotic ant Polyergus samurai and its slave, Formica japonica, were carried out. Gas chromatography–mass spectrometry showed that the slave‐maker and its slave shared the major cuticular hydrocarbon compounds, but possessed several minor products unique to each species. No difference in hydrocarbon composition was detected between enslaved and free‐living F. japonica workers, suggesting that association with P. samurai has no qualitative effect on hydrocarbon composition in these ants. Principal component analyses of the cuticular hydrocarbon profiles (CHP) revealed that (i) CHP was species specific in a given mixed colony; and (ii) among mixed colonies, P. samurai workers had species‐colony specific CHP, while the same feature was not always found in enslaved and free‐living F. japonica workers. Therefore, a ‘uniform colony odor’ in terms of CHP is not achieved in naturally mixed colonies of P. samurai nor those of its slaves, F. japonica.  相似文献   

5.
Highly social ants, bees and wasps employ sophisticated recognition systems to identify colony members and deny foreign individuals access to their nest. For ants, cuticular hydrocarbons serve as the labels used to ascertain nest membership. Social parasites, however, are capable of breaking the recognition code so that they can thrive unopposed within the colonies of their hosts. Here we examine the influence of the socially parasitic slave-making ant, Polyergus breviceps on the nestmate recognition system of its slaves, Formica altipetens. We compared the chemical, genetic, and behavioral characteristics of colonies of enslaved and free-living F. altipetens. We found that enslaved Formica colonies were more genetically and chemically diverse than their free-living counterparts. These differences are likely caused by the hallmark of slave-making ant ecology: seasonal raids in which pupa are stolen from several adjacent host colonies. The different social environments of enslaved and free-living Formica appear to affect their recognition behaviors: enslaved Formica workers were less aggressive towards non-nestmates than were free-living Formica. Our findings indicate that parasitism by P. breviceps dramatically alters both the chemical and genetic context in which their kidnapped hosts develop, leading to changes in how they recognize nestmates.  相似文献   

6.
Raiding behavior of the Japanese slave-making antPolyergus samurai   总被引:2,自引:0,他引:2  
Summary Raiding behavior of the Japanese slave-making antPolyergus samurai was investigated in the field. Raiding trips occurred from early June to early September. A raiding column of several hundreds workers would rush into a target nest and rob mainly worker pupae of the host species,Formica (Serviformica) japonica. Most trips occurred on sunny days. Air temperature, soil temperature, relative humidity, and radiation energy at the ground surface were significantly different between days with and without raiding trips. Nuptial flights occurred on hot, sunny days, and mostPolyergus colonies released alates simultaneously. Behaviors of newly mated queens are also provided and are compared with otherPolyergus species.  相似文献   

7.
Slave-making ants are social parasites that exploit the labor of workers from their host species by keeping them captive in the slave-maker nest. Slave-makers vary in their degree of specialization, ranging from obligate slave-makers that cannot survive without captives, to facultative slave-makers, which are often found living independently. Our study system included one obligate slave-maker, Polyergus breviceps, two facultative slave-makers, Formica puberula and F. gynocrates, and two hosts, F. occulta and F. sp. cf. argentea. We observed all raids conducted during two raiding seasons by seven P. breviceps colonies, two F. puberula colonies, and two F. gynocrates colonies. We report on raiding frequency, average raid distances, and then compare the probability of being raided multiple times in a single raiding season for the two host species. We also report on the spatial distribution of slave raids, which suggests that slave-makers avoid raiding in areas used by other slave-maker colonies. This is the first report of raiding activity for P. breviceps in this location, and the first report of raiding activity of any kind for F. puberula and F. gynocrates.  相似文献   

8.
In eusocial Hymenoptera, females are more tolerant towards nest-mate than towards non-nest-mate females. In solitary Hymenoptera, females are generally aggressive towards any conspecific female. Field observations of the nest biology of Manuelia postica suggested nest-mate recognition. Experiments were performed involving two live interacting females or one live female interacting with a dead female. Live females from different nests were more intolerant to each other than females from the same nest. Females were more intolerant towards non-nest-mate than towards nest-mate dead females. When dead females were washed with pentane, no differences in tolerant and intolerant behaviours were detected between non-nest-mate and nest-mate females. Females were more intolerant towards nest-mate female carcasses coated with the cuticular extract from a non-nest-mate than towards non-nest-mate female carcasses coated with the cuticular extract from a nest-mate. The compositions of the cuticular extracts was more similar between females from the same nest than between females from different nests. The results demonstrate for the first time nest-mate recognition mediated by cuticular chemicals in a largely solitary species of Apidae. The position of Manuelia at the base of the Apidae phylogeny suggests that nest-mate recognition in eusocial species apical to Manuelia represents the retention of a primitive capacity in Apidae.  相似文献   

9.
Summary. Groups of enslaved Formica fusca workers from mixed colonies of Polyergus rufescens with numerous slave workforce tend to split off and found small and almost homospecific nests around the main nest, with at least some of them connected with the latter with underground passages. Their inhabitants are able, at least temporarily, to adopt young F. fusca gynes. P. rufescens invades these satellite nests in a manner similar to the normal slave raids, and carries the slaves back to the main nest. The supposed evolutionary cause of this behaviour is to keep integrity of mixed colonies and prevent possible emancipation of slaves.Received 18 August 2004; revised 27 September 2004; accepted 11 October 2004.  相似文献   

10.
Social parasites are able to exploit their host's communication code and achieve social integration. For colony foundation, a newly mated slave-making ant queen must usurp a host colony. The parasite's brood is cared for by the hosts and newly eclosed slave-making workers integrate to form a mixed ant colony. To elucidate the social integration strategy of the slave-making workers, Polyergus rufescens, behavioural and chemical analyses were carried out. Cocoons of P. rufescens were introduced into subcolonies of four potential host species: Formica subgenus Serviformica (Formica cunicularia and F. rufibarbis, usual host species; F. gagates, rare host; F. selysi, non-natural host). Slave-making broods were cared for and newly emerged workers showed several social interactions with adult Formica. We recorded the occurrence of abdominal trophallaxis, in which P. rufescens, the parasite, was the donor. Social integration of P. rufescens workers into host colonies appears to rely on the ability of the parasite to modify its cuticular hydrocarbon profile to match that of the rearing species. To study the specific P. rufescens chemical profile, newly emerged callows were reared in isolation from the mother colony (without any contact with adult ants). The isolated P. rufescens workers exhibited a chemical profile closely matching that of the primary host species, indicating the occurrence of local host adaptation in the slave-maker population. However, the high flexibility in the ontogeny of the parasite's chemical signature could allow for host switching.  相似文献   

11.
Long-term field studies of the composition and spatial structure of settlements of ants of the Formica rufa group were carried out in two regions of Russia (Moscow and Arkhangelsk provinces). Fragmentation of damaged nests followed by reintegration of the fragments is the main way of formation of mixed colonies of ants from different nests (including different species). The principal factor of nest fragmentation is their damage by wild boars, bears, and in some localities, by poachers. The formation of mixed nests and nest complexes with participation of different Formica species was observed. They are formed by joining the ants from several damaged nests or by a colony from a destroyed nest immigrating into an intact one. Regular damage of many nests leads to the formation of broad zones of mixed colonies. The mixed colonies including 2–3 species of wood ants have recently become common. The phenomenon of mixed colonies raises a question as to the relative importance of two basic principles (sociality and specific identity) in the life of ant societies and demonstrates the priority of the social principle.  相似文献   

12.
L. Gallé 《Ecography》1991,14(1):31-37
Ant assemblages of a successional dune area (Tvärminne, south Finland) were analysed at three levels: the distribution of species among habitats, the distribution of colonies within habitats and the spatio-temporal distribution of individuals. The distribution of ant species among habitat patches representing different stages of succession is correlated with the composition of the epigeic fauna, the number and condition of dead twigs on the ground and the vegetation architecture. The composition of ant assemblages seems relatively independent of the plant species composition, and there are uncoordinated successional steps between the vegetation and ant communities.
In the early successional stages interference competition is weak and insignificant, as indicated by the random spatial arrangement of colonies, the absence of postcompetitive niche segregation and the low encounter rates of ant workers on the ground and at baits. In the aggressive behavioural hierarchy, Formica cinerea is a submissive species as compared with either Formica sanguinea or Lasius alienus.  相似文献   

13.
The cuticular hydrocarbon profiles of the cockroaches Nauphoeta cinerea and Leucophaea maderae are species-specific when maintained in homospecific rearings. When individuals were reared in mixed species colonies, they initially remained in homospecific groups under different shelters. However, after 14 days they formed one heterospecific group with cuticular profiles showing characteristics of both species. When individuals were returned in monospecific rearings, their cuticular hydrocarbon profiles returned to species-specific ones within 3 weeks.  相似文献   

14.
Nest-mate recognition plays a key role in the biology of ants. Although individuals coming from a foreign nest are, in most cases, promptly rejected, the degree of aggressiveness towards non nest-mates may be highly variable among species and relies on genetic, chemical and environmental factors. We analyzed intraspecific relationships among neighboring colonies of the dominant Mediterranean acrobat ant Crematogaster scutellaris integrating genetic, chemical and behavioral analyses. Colony structure, parental relationships between nests, cuticular hydrocarbons profiles (CHCs) and aggressive behavior against non nest-mates were studied in 34 nests located in olive tree trunks. Bayesian clustering analysis of allelic variation at nine species-specific microsatellite DNA markers pooled nests into 14 distinct clusters, each representing a single colony, confirming a polydomous arrangement of nests in this species. A marked genetic separation among colonies was also detected, probably due to long distance dispersion of queens and males during nuptial flights. CHCs profiles varied significantly among colonies and between nests of the same colony. No relationship between CHCs profiles and genetic distances was detected. The level of aggressiveness between colonies was inversely related to chemical and spatial distance, suggesting a ‘nasty neighbor’ effect. Our findings also suggest that CHCs profiles in C. scutellaris may be linked to external environmental factors rather than genetic relationships.  相似文献   

15.
Colony usurpations by newly mated queens of Polyergus samurai were observed under artificial conditions. Newly mated queens of P. samurai were introduced into three kinds of Formica japonica host colonies: queenright, queenless (artificially orphaned), and workerless (only a queen remaining) colonies. In the queenright condition, the P. samurai queen intruded into the host nest and killed the host queen, and was subsequently adopted by the host workers. In all queenright and queenless host colonies, seven of 13 queens of P. samurai succeeded in colony usurpation, although the starting time of grooming, a nestmate behavior, by host workers in the queenright condition occurred earlier than in the queenless condition. In workerless conditions, four of five P. samurai queens ignored the F. japonica queen. The results suggest that while host-queen killing is not necessary, it is important to win acceptance by host workers.  相似文献   

16.
Although the majority of social insect colonies are headed by a single queen, some species possess nests that contain numerous reproductive queens (polygyny), a trait that is particularly widespread amongst the ants. Polygyny is often associated with a lack of conspecific inter-nest aggression between workers. This is hypothesised to result from increased nestmate cue diversity within nests, since polygynous nests are more genetically diverse than monogynous nests. Alternatively, it may reflect the common origin of polygynous nests that form polydomous networks. We exploit the recent discovery that the nestmate discrimination system in the ant Formica exsecta is based on cuticular hydrocarbons to investigate cue (Z9-alkenes) diversity in several monogynous and polygynous populations. Contrary to previous predictions, in all polygynous populations, the variation between nests in the Z9-alkene profiles was reduced relative to that found in monogynous populations. However, nest-specific Z9-alkene profiles with little variation amongst nestmate workers were still maintained irrespective of nest type or population. This suggests a very effective gestalt mechanism that homogenises the chemical discrimination cues, despite genetic diversity within colonies. Although the reduction in variation between nests was associated with reduced worker aggression on the population level, it cannot totally explain the weak aggression associated with polygynous populations.  相似文献   

17.
It was examined whether Formica polyctena and F. sanguinea ants from a mixed colony elicit higher levels of aggression of conspecific ants in comparison to ants from homospecific colonies. Individuals were confronted in an experimental arena and their behavior was recorded. It was found that F. polyctena workers behaved more aggressively toward ants from a mixed colony. This pattern, however, was not confirmed in F. sanguinea. Moreover, both species clearly discriminated between conspecific and allospecific ants from a mixed colony. It seems that as a result of social interactions both species exchanged cuticular hydrocarbons, which caused their recognition labels to adjust to some extent. Results of the present study support the idea that that F. sanguinea is able to form mixed colonies in which species-specific recognition cues are probably still retained.  相似文献   

18.
Parabiotic ants—ants that share their nest with another ant species—need to tolerate not only conspecific nestmates, but also nestmates of a foreign species. The parabiotic ants Camponotus rufifemur and Crematogaster modiglianii display high interspecific tolerance, which exceeds their respective partner colony and extends to alien colonies of the partner species. The tolerance appears to be related to unusual cuticular substances in both species. Both species possess hydrocarbons of unusually high chain lengths. In addition, Cr. modiglianii carries high quantities of hereto unknown compounds on its cuticle. These unusual features of the cuticular profiles may affect nestmate recognition within both respective species as well. In the present study, we therefore examined inter-colony discrimination within the two parabiotic species in relation to chemical differentiation. Cr. modiglianii was highly aggressive against workers from alien conspecific colonies in experimental confrontations. In spite of high inter-colony variation in the unknown compounds, however, Cr. modiglianii failed to differentiate between intracolonial and allocolonial unknown compounds. Instead, the cuticular hydrocarbons functioned as recognition cues despite low variation across colonies. Moreover, inter-colony aggression within Cr. modiglianii was significantly influenced by the presence of two methylbranched alkenes acquired from its Ca. rufifemur partner. Ca. rufifemur occurs in two varieties (‘red’ and ‘black’) with almost no overlap in their cuticular hydrocarbons. Workers of this species showed low aggression against conspecifics from foreign colonies of the same variety, but attacked workers from the respective other variety. The low inter-colony discrimination within a variety may be related to low chemical differentiation between the colonies. Ca. rufifemur majors elicited significantly more inter-colony aggression than medium-sized workers. This may be explained by the density of recognition cues: majors carried significantly higher quantities of cuticular hydrocarbons per body surface.  相似文献   

19.
Freeliving workers of Formica occulta, an ant species enslaved by the obligatory slavemaking ant Polyergus breviceps, retrieve and nurse Polyergus pupaejust as well as conspecific pupae in a choice test. No such attraction was found toward pupae of the facultative slavemaker; Formica wheeleri,which also enslaves F. occulta. Formica neogagates,a sympatric species which is not parasitized by either slavemaker, preferentially retrieves and tends conspecific brood over that of Polyergusand F. wheeleri.It is proposed that brood of obligatory slavemaking species must possess an attractive pheromone for slavemaker colony foundation to be successful, since slavemaker brood must be nursed by adult slave workers with no prior exposure to slavemaker brood. An attractive pheromone is not necessary in the brood of facultative slavemakers, since this brood is cared for by newly eclosed slave workers who imprint on the slavemaker brood.  相似文献   

20.
The ability of social insects to differentiate between colony members and others is essential for the survival of the colony. It enables individuals to direct altruistic behavior towards colony mates, while protecting the colony from intruders. Colonies have a distinct chemical signature that facilitates colony-mate recognition. However, in large polydomous colonies, this signal is likely to be modified by factors unique to each nest. We demonstrate, using near-infrared spectroscopy (NIRS), that individual weaver ants, Oecophylla smaragdina, can be differentiated with respect to their colony and nest of origin. 76.5% of individuals from four colonies could be correctly assigned to their colony of origin; and 79.6% of individuals could be assigned to the correct nest (of two) within their colony. Despite the differences between nests within colonies, in most cases individuals from one nest were more similar to individuals from the other nest within the colony than they were to individuals from any nest outside the colony. Therefore, a distinctive colony identity is maintained despite differences between nests within colonies. We discuss the advantages of using NIRS as a faster and less expensive alternative to the analysis of cuticular hydrocarbons following extraction and identification with gas chromatography/mass spectroscopy. Received 26 November 2007; revised 22 January 2008; accepted 25 January 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号