首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Queens of the slave-making ant, Polyergus breviceps, take over nests of adult Formica workers when establishing new colonies. Although naïve to slave-maker brood, the usurped Formica rear Polyergus offspring and nests containing both host and parasite species forms. Host worker acceptance of parasite brood has been attributed to the similarity of brood tending signals between these closely related taxa and/or the presence of an attractive pheromone in the slave-maker brood. By presenting single-species groups of Formica occulta and Formica gnava (two host species of P. breviceps) with a choice of Formica pupae of both species or with a choice of P. breviceps pupae from both types of mixed-species nests, it seems that neither close phylogenetic relatedness nor an attractive brood odor alone can account for the propensity of host workers to adopt slave-maker pupae. Significantly greater numbers of P. breviceps pupae were adopted by enslaved workers than by free-living workers, and within the enslaved groups and the free-living F. gnava group, greater numbers of P. breviceps pupae were adopted if they were from nests where the host species was conspecific to workers used in tests. When presented with F. gnava and F. occulta pupae, Formica workers adopted conspecific pupae almost exclusively and ignored or consumed pupae of the other host species. Taken together, these results imply that P. breviceps pupae have both a species-specific odor and a general brood-tending pheromone, upon which a host odor may be imposed. The disparate requirements of immatures at different stages of development for cue specificity or generality in maintaining nest exclusivity and maximizing inclusive fitness are discussed.  相似文献   

2.
During the process of coevolution, social parasites have evolved sophisticated strategies to exploit the brood care behavior of their social hosts. Slave-making ant queens invade host colonies and kill or eject all adult host ants. Host workers, which eclose from the remaining brood, are tricked into caring for the parasite brood. Due to their high prevalence and frequent raids, following which stolen host broods are similarly enslaved, slave-making ants exert substantial selection upon their hosts, leading to the evolution of antiparasite adaptations. However, all host defenses shown to date are active before host workers are parasitized, whereas selection was thought to be unable to act on traits of already enslaved hosts. Yet, here we demonstrate the rebellion of enslaved Temnothorax workers, which kill two-thirds of the female pupae of the slave-making ant Protomognathus americanus . Thereby, slaves decrease the long-term parasite impact on surrounding related host colonies. This novel antiparasite strategy of enslaved workers constitutes a new level in the coevolutionary battle after host colony defense has failed. Our discovery is analogous to recent findings in hosts of avian brood parasites where perfect mimicry of parasite eggs leads to the evolution of chick recognition as a second line of defense.  相似文献   

3.
The ecological success of ants has made them abundant in most environments, yet inter‐ and intraspecific competition usually limit nest density for a given population. Most invasive ant populations circumvent this limitation through a supercolonial structure, eliminating intraspecific competition through a loss of nestmate recognition and lack of aggression toward non‐nestmates. Native to South America, Brachymyrmex patagonicus has recently invaded many locations worldwide, with invasive populations described as extremely large and dense. Yet, in contrast with most invasive ants, this species exhibits a multicolonial structure, whereby each colony occupies a single nest. Here, we investigated the interplay between genetic diversity, chemical recognition, and aggressive behaviors in an invasive population of B. patagonicus. We found that, in its invasive range, this species reaches a high nest density with individual colonies located every 2.5 m and that colony boundaries are maintained through aggression toward non‐nestmates. This recognition and antagonism toward non‐nestmates is mediated by chemical differentiation between colonies, as different colonies exhibit distinct chemical profiles. We highlighted that the level of aggression between colonies is correlated with their degree of genetic difference, but not their overall chemical differentiation. This may suggest that only a few chemical compounds influence nestmate recognition in this species or that weak chemical differences are sufficient to elicit aggression. Overall, this study demonstrates that invasive ant populations can reach high densities despite a multicolonial structure with strong aggression between colonies, raising questions about the factors underlying their ecological success and mitigating negative consequences of competitive interactions.  相似文献   

4.

Background

Social parasitism is an important selective pressure for social insect species. It is particularly the case for the hosts of dulotic (so called slave-making) ants, which pillage the brood of host colonies to increase the worker force of their own colony. Such raids can have an important impact on the fitness of the host nest. An arms race which can lead to geographic variation in host defenses is thus expected between hosts and parasites. In this study we tested whether the presence of a social parasite (the dulotic ant Myrmoxenus ravouxi) within an ant community correlated with a specific behavioral defense strategy of local host or non-host populations of Temnothorax ants. Social recognition often leads to more or less pronounced agonistic interactions between non-nestmates ants. Here, we monitored agonistic behaviors to assess whether ants discriminate social parasites from other ants. It is now well-known that ants essentially rely on cuticular hydrocarbons to discriminate nestmates from aliens. If host species have evolved a specific recognition mechanism for their parasite, we hypothesize that the differences in behavioral responses would not be fully explained simply by quantitative dissimilarity in cuticular hydrocarbon profiles, but should also involve a qualitative response due to the detection of particular compounds. We scaled the behavioral results according to the quantitative chemical distance between host and parasite colonies to test this hypothesis.

Results

Cuticular hydrocarbon profiles were distinct between species, but host species did not show a clearly higher aggression rate towards the parasite than toward non-parasite intruders, unless the degree of response was scaled by the chemical distance between intruders and recipient colonies. By doing so, we show that workers of the host and of a non-host species in the parasitized site displayed more agonistic behaviors (bites and ejections) towards parasite than toward non-parasite intruders.

Conclusions

We used two different analyses of our behavioral data (standardized with the chemical distance between colonies or not) to test our hypothesis. Standardized data show behavioral differences which could indicate qualitative and specific parasite recognition. We finally stress the importance of considering the whole set of potentially interacting species to understand the coevolution between social parasites and their hosts.
  相似文献   

5.
Long-term field studies of the composition and spatial structure of settlements of ants of the Formica rufa group were carried out in two regions of Russia (Moscow and Arkhangelsk provinces). Fragmentation of damaged nests followed by reintegration of the fragments is the main way of formation of mixed colonies of ants from different nests (including different species). The principal factor of nest fragmentation is their damage by wild boars, bears, and in some localities, by poachers. The formation of mixed nests and nest complexes with participation of different Formica species was observed. They are formed by joining the ants from several damaged nests or by a colony from a destroyed nest immigrating into an intact one. Regular damage of many nests leads to the formation of broad zones of mixed colonies. The mixed colonies including 2–3 species of wood ants have recently become common. The phenomenon of mixed colonies raises a question as to the relative importance of two basic principles (sociality and specific identity) in the life of ant societies and demonstrates the priority of the social principle.  相似文献   

6.
Slave-making ants exploit the worker force of host colonies permanently and have to make recurrent raids in order to replenish the slave’s stock. Some of these parasite species exploit different host species and few studies so far have been devoted to host species recognition mechanisms. Here, we tried to determine if opportunist slave-making ants using different host species rely on innate or experience-induced preferences to discriminate host from non-host species. We show that Myrmoxenus ravouxi slave-making workers are not only more aggressive toward heterocolonial host and potential host species workers when compared with non-host species workers, but also toward heterocolonial host workers than toward heterocolonial conspecifics. Moreover, M. ravouxi workers display more antennations and contacts toward the heterocolonial host species when compared with the non-host species. We also show that they do not discriminate between homocolonial and heterocolonial conspecifics. Together, our results suggest that this opportunistic slave-making ant species may have a complex social recognition template based on both innate and experience-based mechanisms.  相似文献   

7.
Summary In a laboratory choice-test, free-living ant workers ofFormica cunicularia andF. rufibarbis (subgenusServiformica), both potentially slave species of the obligatory slave-makerPolyergus rufescens, cared for cocoons of this parasite and for homocolonial cocoons at comparable rates. Both potential hosts did not differ in their capacity to rear the parasite brood. This fact is discussed in relation to host selection and specificity inP. rufescens. No such attraction and/or tolerance was found towards cocoons of the facultative slave-makerFormica sanguinea, which also enslaves both host species. Workers ofF. lugubris, a species which is never enslaved, destroyed cocoons from both slave-making species. The attractiveness of the brood ofP. rufescens for both potentially slave species could be due to an interspecific brood pheromone in addition to brood mimicry. An alternative hypothesis is a close phylogenetic distance between this slave-maker andServiformica species. The capacity to gain acceptance by adult slave workers might be one of the crucial evolutionary steps separating obligatory from facultative slave-making ants.  相似文献   

8.
Abstract In this paper, we analyze and compare nest composition and architecture as well as worker relatedness in three related species of slave-making ants: Rossomyrmex anatolicus, R. minuchae, and R. quandratinodum. Colony structure within nests is an important trait in ants, especially in the case of mixed societies, when host and parasite coexist in the same nest. Data for their respective free-living hosts, Proformica korbi, P. longiseta and P. sp., are also provided. For our study, we integrated a meticulous excavation procedure with a genetic method. We conclude that the average number of parasites, as well as of slaves, is species-specific, whereas nest depth depends on the nest architecture of the host. The genus Rossomyrmex seems to be monogynous and monandrous, whereas Proformica shows differences in the number of queens and mating frequency. R. quandratinodum shows different traits in nest composition (host/parasite ratio: P/R) and architecture. The difference in traits may account for some differences in parasitism: raid process or avoidance of parasitism.  相似文献   

9.
A new colony of the slave-making ant Polyergus breviceps is initiated when a newly mated gyne invades a host nest and kills the resident queen. This process seems to result in chemical camouflage of the invading gyne and allows her to usurp the position of colony reproductive. Young, recently mated Formica gynes, however, are not attacked. To determine whether worker and/or immature presence is the basis for aggression, we placed eggs, larvae, pupae and workers from mature F. gnava queens with newly mated F. gnava queens and observed the responses of introducedP. breviceps queens. Because no newly mated gyne was attacked, we tested newly mated F. gnava queens (1) once they had produced eggs, (2) when the offspring reached the larval, pupal and callow stages of development, and (3) every 2 weeks until aggression ensued. Eventually all F. gnava queens were attacked but only 29 weeks after having mated. Thus, although offspring are the ultimate benefit from attacking an established F. gnava queen,P. breviceps queens detect mature queens using another time-dependent feature that is reliably indicative of reproductive status. The similarity of host queen hydrocarbon profiles, often correlated with reproductive status in other ant species, suggests that other compounds reflect queen fecundity and produce a kairomonal effect, or that another cue signals host queen and colony suitability. Our findings indicate P. breviceps gynes have evolved to respond aggressively to a host gyne cue that appears long after mating, preventing attacks on gynes without the workers necessary for colony founding.Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

10.
Understanding habitat requirements of species is important in conservation. As an obligate ant nest associate, the survival of the globally vulnerable shining guest ant, Formicoxenus nitidulus, is strictly tied to that of its hosts (mound building Formica ants). We investigated how host species, nest density, inter-nest distance and nest mound size relate to the occurrence of F. nitidulus. In total, 166 red wood ant nests were surveyed in SW Finland (120 Formica polyctena, 25 F. rufa, 14 F. aquilonia, 5 F. pratensis, and 2 F. lugubris). Overall, F. nitidulus was found in 60% of the nests. For the actual analysis, only F. polyctena and F. rufa nests were included due to the small number of other nests. F. nitidulus was more likely to be found among F. polyctena than F. rufa. Also, while inter-nest distance was not important, a high nest density, commonly found in polydomous (multi-nest) wood ant colonies, was beneficial for F. nitidulus. The guest ant was also more likely to be found in large host nests than small nests. Thus, our results show that the best habitat for the guest ant is a dense population of host nest mounds with a high proportion of large mounds. Conservation efforts should be directed at keeping the quality of the red wood ant habitats high to preserve their current populations and to increase colonization. This will not only benefit the guest ant, but also a plethora of other species, and help in maintaining the biodiversity of forests.  相似文献   

11.
Nest-mate recognition plays a key role in the biology of ants. Although individuals coming from a foreign nest are, in most cases, promptly rejected, the degree of aggressiveness towards non nest-mates may be highly variable among species and relies on genetic, chemical and environmental factors. We analyzed intraspecific relationships among neighboring colonies of the dominant Mediterranean acrobat ant Crematogaster scutellaris integrating genetic, chemical and behavioral analyses. Colony structure, parental relationships between nests, cuticular hydrocarbons profiles (CHCs) and aggressive behavior against non nest-mates were studied in 34 nests located in olive tree trunks. Bayesian clustering analysis of allelic variation at nine species-specific microsatellite DNA markers pooled nests into 14 distinct clusters, each representing a single colony, confirming a polydomous arrangement of nests in this species. A marked genetic separation among colonies was also detected, probably due to long distance dispersion of queens and males during nuptial flights. CHCs profiles varied significantly among colonies and between nests of the same colony. No relationship between CHCs profiles and genetic distances was detected. The level of aggressiveness between colonies was inversely related to chemical and spatial distance, suggesting a ‘nasty neighbor’ effect. Our findings also suggest that CHCs profiles in C. scutellaris may be linked to external environmental factors rather than genetic relationships.  相似文献   

12.
The parasite pressure exerted by the slavemaker ant Protomognathus americanus on its host species Leptothorax longispinosus was analyzed demographically and genetically. The origin of slaves found in colonies of the obligate slavemaker was examined with nuclear and mitochondrial DNA markers to make inferences about the frequency and severity of slave raids. Relatedness of enslaved L. longispinosus workers in the same nest was very low, and our data suggest that, on average, each slavemaker nest raids six host colonies per season. Therefore, the influence of slavemaker species on their hosts is much stronger than simple numerical ratios suggest. We also found that slave relatedness was higher in small than in large slavemaker nests; thus, larger nests wield a much stronger influence on the host. We estimated that in the study population, on average, a host nest has a 50% chance of being attacked by a slavemaker colony per year. Free-living Leptothorax colonies in the vicinity of slavemaker nests did not represent the source of slaves working in P. americanus colonies, which suggests that raided nests either do not survive or migrate after being raided. Colony composition and intranest relatedness of free-living L. longispinosus colonies differed markedly between areas with slavemakers and those that are parasite-free. In the presence of slavemakers, host colonies were less likely to be polygynous and had fewer workers and a higher relatedness among worker brood. Host nests with slavemaker neighbors allocated more resources into sexuals, possibly caused by these shifts in nest demography. Finally, enslaved Leptothorax workers in P. americanus nests appeared to be less efficient than their counterparts in free-living colonies. Thus, slavemakers exert a much stronger impact on their hosts than had previously been suspected and represent an unique system to study parasite-host coevolution.  相似文献   

13.
Sociobiology of slave-making ants   总被引:4,自引:0,他引:4  
Social parasitism is the coexistence in the same nest of two species of social insects, one of which is parasitically dependent on the other. Though parasitism in general is known to be of crucial importance in the evolution of host species, social parasites, though intriguing, are often considered as a phenomenon of marginal interest and are typically not taken into account in reviews on parasitism. Nevertheless, social parasites are rather common in social bees, wasps, and ants and therefore may offer unique model systems to study a number of fundamental problems in evolutionary biology. Here we review several aspects of the peculiar life history of slave-making ants, which is characterized by socially parasitic founding of colonies and the pillage of broods from neighboring host colonies during slave raids. In particular we focus on the evolution of slave-making habits (dulosis), communication mechanisms between slave makers and their hosts, sex-allocation ratios and reproductive conflict, and the effect of slave makers on host populations. Received: 2 February 2000 / Received in revised form: 21 December 2000 / Accepted: 8 January 2001  相似文献   

14.
Myrmica ants have been model species for studies in a variety of disciplines, including insect physiology, chemical communication, ant social dynamics, ant population, community ecology, and ant interactions with other organisms. Species belonging to the genus Myrmica can be found in virtually every habitat within the temperate regions of the northern hemisphere and their biology and systematics have been thoroughly studied. These ants serve as hosts to highly diverse parasitic organisms from socially parasitic butterfly caterpillars to microbes, and many Myrmica species even evolved into parasitizing species of their own genus. These parasites have various impacts both on the individuals and on the social structure of their hosts, ranging from morphological malformations to reduction in colony fitness. A comprehensive review of the parasitic organisms supported by Myrmica and the effects of these organisms on individuals and on whole ant colonies has not yet been compiled. Here, we provide a review of the interactions of these organisms with Myrmica ants by discussing host and parasite functional, behavioral or physiological adaptations. In addition, for all “symbiont groups” of Myrmica ants described in this paper, we examine the present limitations of the knowledge at present of their impact on individuals and host colony fitness. In conclusion, we argue that Myrmica ants serve as remarkable resource for the evolution of a wide variety of associated organisms.  相似文献   

15.
The remarkable ability of slave-making ants to integrate chemically in the colonies of their host species makes them useful model systems for investigating the role of cuticular hydrocarbons in chemical recognition. The purpose of our study was to examine the influence of the rearing host species on the cuticular hydrocarbon profile and on the mating behaviour of sexuals of the slave-making ant Chalepoxenus muellerianus. Sexuals from a population parasitizing exclusively the host species Temnothorax unifasciatus were reared in the laboratory either with their natural host or another potential host species, Temnothorax recedens. C. muellerianus males reared with T. unifasciatus investigated and mounted female sexuals reared with the same host significantly more often than female sexuals reared with T. recedens. Similarly, C. muellerianus males reared with T. unifasciatus discriminated against female sexuals from natural T. recedens colonies. Males experimentally or naturally reared with T. recedens did not clearly discriminate between female sexuals reared by the two host species and only rarely engaged in mating attempts with either type of female sexuals. Chemical analyses showed that host species affect the chemical profile of C. muellerianus sexuals and vice versa. Our findings indicate that cuticular hydrocarbons might be important in the mating success of this ant species. Received 21 June 2006; revised 20 February 2007; accepted 1 March 2007.  相似文献   

16.
Abstract. The relationship between behavioural tests and relative proportions of cuticular components were studied in the slave-making species Polyergus rufescens and the slave and Formica rufibarbis living in either monospecific or mixed colonies. A correlation between the relative proportions of the cuticular products and interindividual recognition exists in each of the two species Polyergus and Formica: Polyergus are fiercely aggressive towards individuals which have different cuticular spectra and originate from a geographically isolated nest. This seems to be true also in the case of Formica living in monospecific colonies. A similar correlation also exists between the two species, which have different cuticular spectra: encounters arranged between them show that free-living Formica are always fiercely aggressive towards Polyergus. The reason why no such correlation seems to exist, however, between Polyergus and Formica when the latter are enslaved and the two species coexist peacefully at the same nest is discussed.  相似文献   

17.
Slave-making ants exploit the labour of their own or another species. Temnothorax ambiguus and T. longispinosus are both ant species that serve as hosts of the obligatory slave-making ant Protomognathus americanus and are facultative slave-makers themselves. We offered laboratory colonies of T. ambiguus and T. longispinosus a series of choices among different larval types to better understand their brood discrimination abilities. Workers of both species preferentially accepted nestmate over non-nestmate larvae. Both species preferentially retrieved unrelated conspecific larvae over congeneric allospecific larvae, and T. ambiguus workers consumed more allospecifics than conspecifics. When presented with conspecific versus P. americanus larvae, both species manifested a clear bias towards conspecific larvae in terms of earlier retrieval and reduced cannibalism. That workers did not prefer P. americanus larvae over conspecific larvae as documented in previous research likely reflects the fact that in the present study, subject workers had access to the entirety of their colony as a referent during rearing and at the time of testing, as they would in nature. Moreover, reciprocal contact between P. americanus and conspecific larvae increased acceptance of the slave-maker larvae, but did not appear to lessen the acceptability of conspecific larvae. This suggests that transfer of cues through contact may be sufficient to alter the recognition signature of P. americanus larvae increasing acceptability by their hosts.  相似文献   

18.
Slave-making ants exploit the societies of host ant species and are typically rare and patchily distributed. IUCN considers almost all slave-making ants as vulnerable, but solid data on their actual abundance are uncommon. Here we examine the genetic structure of populations of two species of the socially parasitic genus Myrmoxenus, which differ strongly in dispersal behavior and the occurrence of slave-raids. Microsatellite genotypes suggest strong differentiation even among neighboring populations of both species. FST-, G″ST-, and D-values were considerably higher in the “degenerate slave-maker” M. kraussei from Northern Italy than in the active slavemaker M. ravouxi from Southern Germany. This matches observations that sexuals of M. kraussei mate in their natal nest and queens disperse on foot while sexuals of M. ravouxi engage in mating and dispersal flights. Allelic richness was surprisingly high in both species and did not suggest recent bottlenecks, indicating that populations are larger and less vulnerable than expected from the difficulties of locating nests. Despite of considerable inbreeding, only very few diploid males were detected, supporting the view that at least in M. kraussei sex is not determined by single locus complementary sex determination unlike most other social Hymenoptera. The mismatch between the genetic and social structure of M. ravouxi colonies indicates occasionally fusion of slave-maker colonies in the field, mutual raids, or queen replacement. Complementary analyses of the host species of the two social parasites, Temnothorax unifasciatus and T. recedens, revealed low levels of population differentiation and confirmed the colony structure with a single, singly-mated queen.  相似文献   

19.
The richness of the parasitic community associated with social insect colonies has rarely been investigated. Moreover, understanding how hosts and pathogens interact in nature is important to interpret results from laboratory experiments. Here, we assessed the diversity, prevalence and virulence of fungal entomopathogens present around and within colonies of the ant Formica selysi. We detected eight fungal species known to be entomopathogenic in soil sampled from the habitat of ants. Six of these entomopathogens were found in active nests, abandoned nests, and corpses from dump piles or live ants. A systematic search for the presence of three generalist fungal entomopathogens in ant colonies revealed a large variation in their prevalence. The most common of the three pathogens, Paecilomyces lilacinus, was detected in 44% of the colonies. Beauveria bassiana occurred in 17% of the colonies, often in association with P. lilacinus, whereas we did not detect Metarhizium brunneum (formerly M. anisopliae) in active colonies. The three fungal species caused significant mortality to experimentally challenged ants, but varied in their degree of virulence. There was a high level of genetic diversity within B. bassiana isolates, which delineated three genetic strains that also differed significantly in their virulence. Overall, our study indicates that the ants encounter a diversity of fungal entomopathogens in their natural habitat. Moreover, some generalist pathogens vary greatly in their virulence and prevalence in ant colonies, which calls for further studies on the specificity of the interactions between the ant hosts and their fungal pathogens.  相似文献   

20.
In French Guiana, the arboreal nests of the swarm-founding social wasp Protopolybia emortualis (Polistinae) are generally found near those of the arboreal dolichoderine ant Dolichoderus bidens. These wasp nests are typically protected by an envelope, which in turn is covered by an additional carton ‘shelter’ with structure resembling the D. bidens nests. A few wasps constantly guard their nest to keep D. bidens workers from approaching. When alarmed by a strong disturbance, the ants invade the host tree foliage whereas the wasps retreat into their nest. Notably, there is no chemical convergence in the cuticular profiles of the wasps and ants sharing a tree. The aggressiveness of D. bidens likely protects the wasps from army ant raids, but the ants do not benefit from the presence of the wasps; therefore, this relationship corresponds to a kind of commensalism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号