首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In the geological past, changes in climate and tectonic activity are thought to have spurred the tempo of evolutionary change among major taxonomic groups of plants and animals. However, the extent to which these historical contingencies increased the risk of extinction of microbial plankton species remains largely unknown. Here, I analyse fossil records of marine planktonic diatoms and calcareous nannoplankton over the past 65 million years from the world oceans and show that the probability of species' extinction is not correlated with secular changes in climatic instability. Further supporting these results, analyses of genera survivorship curves based on fossil data concurred with the predictions of a birth-death model that simulates the extinction of genera through time assuming stochastically constant rates of speciation and extinction. However, my results also show that these marine microbes responded to exceptional climatic contingencies in a manner that appears to have promoted net diversification. These results highlight the ability of marine planktonic microbes to survive climatic instabilities in the geological past, and point to different mechanisms underlying the processes of speciation and extinction in these micro-organisms.  相似文献   

2.
Species co-occur with different sets of other species across their geographical distribution, which can be either closely or distantly related. Such co-occurrence patterns and their phylogenetic structure within individual species ranges represent what we call the species phylogenetic fields (PFs). These PFs allow investigation of the role of historical processes—speciation, extinction and dispersal—in shaping species co-occurrence patterns, in both extinct and extant species. Here, we investigate PFs of large mammalian species during the last 3 Myr, and how these correlate with trends in diversification rates. Using the fossil record, we evaluate species'' distributional and co-occurrence patterns along with their phylogenetic structure. We apply a novel Bayesian framework on fossil occurrences to estimate diversification rates through time. Our findings highlight the effect of evolutionary processes and past climatic changes on species'' distributions and co-occurrences. From the Late Pliocene to the Recent, mammal species seem to have responded in an individualistic manner to climate changes and diversification dynamics, co-occurring with different sets of species from different lineages across their geographical ranges. These findings stress the difficulty of forecasting potential effects of future climate changes on biodiversity.  相似文献   

3.
Battenizyga, a new Early Triassic gastropod genus from the Moenkopi Formation of Utah, is described and the speciesAnoptychia eotriassica Batten & Stokes, 1986 is placed in it. The new genus has an axially ribbed planktonic larval shell and a teleoconch with an angulated periphery. This character combination is unknown from the Palaeozoic. Therefore,Battenizyga represents additional evidence that recovery from the end-Permian mass extinction was connected with a faunal turnover. Additionally, the extinction of diverse Palaeozoic groups of the Caenogastropoda in the Permian (e.g., the Pseudozygopleuridae) suggest a turnover. All caenogastropod genera that hold Early Triassic species, have post-Palaeozoic type species and most were not reported from the Palaeozoic. This corroborates the view that there was an intense faunal turnover within the Caenogastropoda.Battenizyga is probably a caenogastropod that is closely related to the superfamily Zygopleuroidea which is abundant in the late Palaeozoic and early Mesozoic.   相似文献   

4.
A lineage of 12 arid land shrubby species in the gymnosperm genus Ephedra (Gnetales) from North America is used to evaluate the influence of climate on speciation. With a long evolutionary history, and a well documented fossil record this lineage is an ideal model for understanding the process of speciation under a niche conservatism scenario. Using seven DNA molecular markers, Bayesian inference is carried out to uncover sister species and to estimate time of divergence of the lineages. Ecological niche models are generated for four parapatric and sympatric sister species and two analyses of niche evolution are performed, one based on ecological niche models and another using raw data and multivariate analysis. As previous analyses suggest, the diversification of North America Ephedra species may be the result of a recent secondary radiation. Both parapatric and sympatric species diverged mostly in a scenario of climatic niche conservatism. However, we also found strong evidence for niche divergence for one of the sister species pairs (E. californica-E. trifurca). Moreover, the multivariate analysis found environmental differences for some variables between sister species. The estimated divergence time of three pairs of sister species distributed in southwestern North America (E. cutleri-E. aspera, E. californica-E. trifurca and E. torreyana-E. viridis) is inferred to have occurred in the Late Miocene to Pliocene and for the sister species pair E. antisyphilitica-E. coryi distributed in the southern United States and northeastern Mexico, it was inferred from the Pliocene to Pleistocene. The orogenetic and climatic changes documented for these regions related to expansion of arid lands, may have contributed to the diversification in North American Ephedra, rather than adaptations to new climatic conditions.  相似文献   

5.
Understanding speciation and biodiversity patterns in plants requires knowledge of the general role of climate in allowing polyploids to escape competition and persist with their diploid progenitors. This is a particularly interesting issue in widespread species that present multiple ploidy levels and occur across a heterogeneous environment. Chrysolaena (Vernonieae, Asteraceae) is a cytogenetically very diverse genus, with significant interspecific and intraspecific ploidy level variation and with continuous distribution across South America. No previous studies have summarized chromosome count data of Chrysolaena or addressed the cytogeography of the genus. Ploidy level of Chrysolaena species was determined by chromosome counting during mitosis and/or meiosis; the geographic distribution of cytotypes was examined and the correlations between the distribution of particular cytotypes and current ecological conditions were evaluated. A total of 43 new chromosome counts and five ploidy levels (2x, 4x, 6x, 7x, 8x) were reported. The chromosome number of C. cordifolia (2n = 7x = 70) and a new cytotype for C. propinqua var. canescens (2n = 4x = 40) are reported for the first time. Three geographic areas with high diversity of cytotypes and species were detected. The results obtained do not suggest a clear distribution pattern that depends on climatic factors for Chrysolaena populations. However, a geographic pattern was identified in the distribution of ploidy levels, with diploid species presenting a more restricted distribution than polyploid species.  相似文献   

6.
D.W. Cameron   《HOMO》2003,54(1):1-28
Over the last half-decade or so, there has been an explosion in the recognition of hominin genera and species. We now have the late Miocene genera Orrorin and Sahelanthropus, the mid Pliocene genus Kenyanthropus, three new Pliocene species of Australopithecus (A. anamensis, A. garhi and A. bahrelghazali) and a sub species of Ardipithecus (Ar. r. kadabba) to contend with. Excepting also the more traditional species allocated to Paranthropus, Australopithecus and early Homo we are approaching around 15 species over 5 million years (excluding hominin evolution over the last one million years). Can such a large number of hominin species be justified? An examination of extant hominid (Gorilla gorilla, Pan troglodytes, and Pan paniscus) anatomical variability indicates that the range of fossil hominin variability supports the recognition of this large number of fossil species. It is also shown that not all hominins are directly related to the emergence of early Homo and as such have become extinct. Indeed the traditional australopithecine species 'A'. anamensis, 'A'. afarensis and 'A'. garhi are considered here to belong to a distinct genus Praeanthropus. They are also argued not be hominins, but rather an as yet undefined hominid group from which the more derived hominins evolved. The first hominin is represented by A. africanus or a hominin very much like it. The Paranthropus clade is defined by a derived heterochronic condition of peramorphosis, associated with sequential progenesis (contraction of successive growth stages) in brain and dental development, but a mixture of peramorphic and paedomorphic features in its craniofacial anatomy. Conversely, Kenyanthropus and Homo both share a pattern of peramorphosis, associated with sequential hypermorphosis (prolongation of successive growth stages) in brain development, and paedomorphosis processes in cranial, facial and dental development. This suggests, that these two clades share an important synapomorphy not recognised in the parsimony analyses, suggesting that they may form a sister group relationship to the exclusion of Paranthropus. This highlights the need to re-interpret phylogenetic results in terms of function and development. The rapid speciation and extinction as argued here is in keeping with other fossil groups in Africa at the Plio/Pleistocene transition. This emphasises that we must approach the pre-australopithecines and hominins as part of the endemic African fauna, and not in isolation to the evolutionary and climatic processes that were operating all around them.  相似文献   

7.
A new fossil species of Corylopsis (Hamamelidaceae), C. grisea Quirk & Hermsen sp. nov, based on seeds from the early Pliocene Gray Fossil Site (GFS), eastern Tennessee, USA, is described. The assignment of the seeds to Hamamelidaceae, subfamily Hamamelidoideae, is based on the overall size of the seeds, smooth testa, lack of a seed wing, and the presence of a terminal hilar scar. The assignment to the genus Corylopsis is based on seed size as well as the presence of a hilar facet, in addition to the hilar scar. Although Corylopsis persists only in East Asia today, its fossil record indicates that the genus was widespread across the Northern Hemisphere in the past. Prior to its discovery at GFS, Corylopsis was only known from the Paleogene in North America. The presence of C. grisea at GFS extends the fossil record of Corylopsis in North America to the Neogene and reinforces the interpretation of GFS as a forested refugium that provided a relatively moist, equable environment where subtropical to warm temperate plants could persist during a time of cooling and drying in the continental interior of North America. Its presence provides additional evidence for the biogeographic connection between the GFS paleoflora and the modern flora of eastern Asia.  相似文献   

8.
Dispersal capabilities are crucial in how speciation patterns are determined in marine invertebrates. Species possessing a long-living planktonic larva apparently have a dispersal advantage over those with non-planktotrophic development, and their distant populations may exchange genetic material, maintaining a broad geographical range for the species. Recent species of the gastropod genus Bathytoma (Conoidea) are all characterized by non-planktotrophic development, having most probably lost a free-swimming larva in the pre-Pliocene, as Miocene fossils have protoconchs indicating planktotrophic larval development. All have a bathyal distribution (100–1500 m), which implies that their capability for direct expansion on the bottom is restricted by both deep-sea basins and shallow-water areas, especially in insular West and South-West Indo-Pacific. Therefore, it can be hypothesized that Bathytoma populations should represent numerous, mostly allopatric taxa restricted to a single or contiguous island groups. We tested this hypothesis using molecular and morphological characters independently. One hundred and thirty-eight specimens from the Philippines, Solomons, Vanuatu, and the Coral Sea were sequenced for one mitochondrial (COI) and one nuclear (ITS2) gene, and 14 operational molecular units were recognized. When these molecular units are overlaid over shell characters, 13 species (11 unnamed) and one form of uncertain status are recognized: three occur in the Philippines, six in the Solomons and one in New Caledonia. Broad distributions (inter-archipelagic) are uncommon (three species). On the whole, the phylogeographic pattern of the diversity in the genus is rather complex and probably also reflects processes of sympatric and fine-scale allopatric speciation, and local extinctions. The eleven new species are described and named.  相似文献   

9.
Computational methods for estimating diversification rates from extant species phylogenetic trees have become abundant in evolutionary research. However, little evidence exists about how their outcome compares to a complementary and direct source of information: the fossil record. Furthermore, there is virtually no direct test for the congruence of evolutionary rates based on these two sources. This task is only achievable in clades with both a well‐known fossil record and a complete phylogenetic tree. Here, we compare the evolutionary rates of ruminant mammals as estimated from their vast paleontological record—over 1200 species spanning 50 myr—and their living‐species phylogeny. Significantly, our results revealed that the ruminant's fossil record and phylogeny reflect congruent evolutionary processes. The concordance is especially strong for the last 25 myr, when living groups became a dominant part of ruminant diversity. We found empirical support for previous hypotheses based on simulations and neontological data: The pattern captured by the tree depends on how clade specific the processes are and which clades are involved. Also, we report fossil evidence for a postradiation speciation slowdown coupled with constant, moderate extinction in the Miocene. The recent deceleration in phylogenetic rates is connected to rapid extinction triggered by recent climatic fluctuations.  相似文献   

10.
对棒束孢属Isaria及近缘属物种开展5基因(nrSSU、nrLSUtef-1αrpb1 rpb2)测序并联合分析,结合GenBank相关类群序列,探讨棒束孢属系统发育关系,最终获得95个菌株、58个明确分类群的2-5基因序列。利用MEGA和MrBayes软件进行多基因聚类分析,结果表明棒束孢属多系起源于虫草菌科中,分3个不同分支。A支主要由Isaria cicadaeI. teniupesI. coleopterorumI. fumosoroseaI. cateniannulata等组成;B支包括I. poprawkiiI. locusticaI. javanicaI. amoeneroseaI. cateniobliqua;C支仅有I. farinosa。分支间被Cordyceps militarisC. ninchukisporaC. pruinosa等隔开。棒束孢在形态上,主要以瓶梗基部膨大、尖端变细及孢子呈链状等特征与其他类群分开,但同时也发现有棒状分生孢子梗和单孢子类型。基于节点的分歧时间预测分析,推测棒束孢属首次分化于70Mya,但棒束孢属主要物种形成却在60-55Mya,且3个分支的棒束孢物种为快速同时形成,而后大多数类群表现遗传稳定。同时发现,与Isaria Clade A较近一支有粉被玛利亚霉Mariannaea pruinosaC. pruinosa无性型)和蛹草蚧霉Lecanicillium militarisC. militaris无性型);与粉棒束孢距离最近一支有Akanthomyces aculeatusC. tuberculata无性型)和L. attenuatumC. confragosa无性型),是两个不同的属征分类群,且相互间遗传距离较近。根据棒束孢属及其近缘种属形态特征的复杂性推测,棒束孢属在快速物种形成中,其近缘类群存在一定程度的丢失和选择性演化。  相似文献   

11.
Past climatic shifts have played a major role in generating and shaping biodiversity. Quaternary glacial cycles are the better known examples of dramatic climatic changes endured by ecosystems in temperate regions. Although still a matter of debate, some authors suggest that glaciations promoted speciation. Here we investigate the effect of past climatic changes on the diversification of the ground‐dwelling spider genus Harpactocrates, distributed across the major mountain ranges of the western Mediterranean. Concatenated and species‐tree analyses of multiple mitochondrial and nuclear loci, combined with the use of fossil and biogeographic calibration points, reveal a Miocene origin of most nominal species, but also unravel several cryptic lineages tracing back to the Pleistocene. We hypothesize that the Miocene Climatic Transition triggered major extinction events in the genus but also promoted its subsequent diversification. Under this scenario, the Iberian mountains acted as an island‐like system, providing shelter to Harpactocrates lineages during the climate shifts and favouring isolation between mountain ranges. Quaternary glacial cycles contributed further to the diversification of the group by isolating lineages in peripheral refugia within mountain ranges. In addition, we recovered some unique biogeographic patterns, such as the colonization of the Alps and the Apennines from the Iberian Peninsula.  相似文献   

12.
Most lichens of the family Teloschistaceae (Ascomycota) produce yellow-orange-red anthraquinone pigments. However, the genus Pyrenodesmia encompasses species in which anthraquinones are absent and replaced by a gray pigment Sedifolia-gray. It was shown recently that these species are related to taxa with both anthraquinones and Sedifolia-gray (Caloplaca xerica group, C. haematites group, and C. cretensis) and to species with a brown pigment instead of both anthraquinones and Sedifolia-gray (C. demissa, C. obscurella, and C. reptans). Nevertheless, relationships between mentioned anthraquinone-containing and anthraquinone-lacking species remained unclear. In total, 8 DNA loci from 41 species were used here to resolve these uncertainties. We concluded that C. demissa, C. obscurella, and C. reptans are rather distant from the core of Pyrenodesmia, and we place them outside of Pyrenodesmia sensu lato. Within Pyrenodesmia sensu lato, three lineages were revealed and recognized on a generic level: the genus Pyrenodesmia sensu stricto (21 species), the genus Kuettlingeria (14 species), which is resurrected here, and the genus Sanguineodiscus (4 species), which is newly described here. The genus Pyrenodesmia includes taxa that never contain anthraquinones, but Sedifolia-gray. It matches with the former C. variabilis group. Taxa of the genera Kuettlingeria and Sanguineodiscus have anthraquinones in their apothecia and Sedifolia-gray in their thalli. The genus Kuettlingeria includes the former C. xerica group plus C. cretensis and C. diphyodes. The genus Sanguineodiscus includes the former C. haematites group and C. bicolor. The identity of Kuettlingeria (Caloplaca) diphyodes was clarified and the name Pyrenodesmia helygeoides was resurrected. Twenty-four new combinations were proposed.  相似文献   

13.
Foote M 《Biology letters》2012,8(1):135-138
The distribution of species among genera and higher taxa has largely untapped potential to reveal among-clade variation in rates of origination and extinction. The probability distribution of the number of species within a genus is modelled with a stochastic, time-homogeneous birth-death model having two parameters: the rate of species extinction, μ, and the rate of genus origination, γ, each scaled as a multiple of the rate of within-genus speciation, λ. The distribution is more sensitive to γ than to μ, although μ affects the size of the largest genera. The species : genus ratio depends strongly on both γ and μ, and so is not a good diagnostic of evolutionary dynamics. The proportion of monotypic genera, however, depends mainly on γ, and so may provide an index of the genus origination rate. Application to living marine molluscs of New Zealand shows that bivalves have a higher relative rate of genus origination than gastropods. This is supported by the analysis of palaeontological data. This concordance suggests that analysis of living taxonomic distributions may allow inference of macroevolutionary dynamics even without a fossil record.  相似文献   

14.
Aim The genus Abies exemplifies plant diversification related to long‐term climatic, geological and evolutionary changes. Today, the Mediterranean firs comprise nine species, one natural hybrid and several varieties. Here I summarize current knowledge concerning the origin and evolution of the genus Abies in the Mediterranean Basin and propose a comprehensive hypothesis to explain the isolation and speciation pattern of Mediterranean firs. Location The Mediterranean Basin. Methods The literature on Abies was reviewed, focusing on the morphology, fossil records, molecular ecology, phytosociology and biogeography of the genus in the Mediterranean Basin. Results Abies fossils from the western Mediterranean indicate a wide Tertiary circum‐Mediterranean distribution of the Abies ancestor. Palaeogeographical data also suggest a single eastern Mediterranean Tertiary ancestor. Following the Miocene to Pliocene climate crisis and marine transgressions, the ancestor of the northern Mediterranean firs is hypothesized to have separated into two eastern groups, one on the Balkan Peninsula and the other in Asia Minor. However, land bridges may have permitted gene flow at times. A southward migration of A. alba to refugia, where older fir species may have remained isolated since the Miocene, could explain recent findings indicating that morphologically distant species are more closely related than expected based on such morphological classification. Main conclusions The Abies genus appears to have undergone significant morphological differentiation that does not necessarily imply reproductive isolation. That is, long‐term Mediterranean Basin dryness along a south‐eastern to north‐western gradient may have caused an initial Miocene–Pliocene speciation sequence. Pleistocene glacial cycles probably forced migrations to occur, leading to repeated contact between fir species in glacial refugia.  相似文献   

15.
Aim Montane tropics are areas of high endemism, and mechanisms driving this endemism have been receiving increasing attention at a global scale. A general trend is that climatic factors do not explain the species richness of species with small to medium‐sized geographic ranges, suggesting that geological and evolutionary processes must be considered. On the African continent, several hypotheses including both refugial and geographic uplift models have been advanced to explain avian speciation and diversity in the lowland forest and montane regions of central and eastern Africa; montane regions in particular are recognized as hotspots of vertebrate endemism. Here, we examine the possible role of these models in driving speciation in a clade of African forest robins. Location Africa. Methods We constructed the first robustly supported molecular phylogenetic hypothesis of forest robins. On this phylogeny, we reconstructed habitat‐based distributions and geographic distributions relative to the Albertine Rift. We also estimated the timing of lineage divergences via a molecular clock. Results Robust estimates of phylogenetic relationships and clock‐based divergences reject Miocene tectonic uplift and Pleistocene forest refugia as primary drivers of speciation in forest robins. Instead, our data suggest that most forest robin speciation took place in the Late Pliocene, from 3.2 to 2.2 Ma. Distributional patterns are complex, with the Albertine Rift region serving as a general east–west break across the group. Montane distributions are inferred to have evolved four times. Main conclusions Phylogenetic divergence dates coincide with a single period of lowland forest retraction in the late Pliocene, suggesting that most montane speciation resulted from the rapid isolation of populations in montane areas, rather than montane areas themselves being drivers of speciation. This conclusion provides additional evidence that Pliocene climate change was a major driver of speciation in broadly distributed African animal lineages. We further show that lowland forest robins are no older than their montane relatives, suggesting that lowland areas are not museums which house ‘ancient’ taxa; rather, for forest robins, montane areas should be viewed as living museums of a late Pliocene diversification event. A forest refugial pattern is operating in Africa, but it is not constrained to the Pleistocene.  相似文献   

16.
True porpoises are a morphologically distinctive and evolutionarily old group of odontocete cetaceans classified as the family Phocoenidae. They are distinct from members of the family Delphinidae, with which they have sometimes been classified. Re-examination of all living and fossil species of phocoenids yields new information on the evolution of the family and indicates the need for significant taxonomic changes. Two separate lines of descent within the group are classified as the subfamilies Phocoeninae and Phocoenoidinae. The living southern hemisphere spectacled porpoise, Phocoena dioptrica , is actually more closely related to the North Pacific Dali's porpoise, Phocoenoides dalli , than to other species of Phocoena. It therefore belongs in the subfamily Phocoenoidinae with Phocoenoides but represents a separate genus, Australophocaena (new genus). The earliest unquestioned fossil phocoenids have been found only in rocks around the Pacific basin. They include latest Miocene and Pliocene species of Piscolithax and the Late Miocene Salumiphocaena stocktoni (new genus) in the Phocoenoidinae, and an undescribed latest Miocene species in the Phocoeninae. World climate has influenced past and present distributions of phocoenids, and Australopbocaena dioptrica is possibly the antitropical counterpart of Phocoenoides dalli. All species of living phocoenids show similarities caused by convergent evolution, resulting in part from the phenomenon of paedomorphosis.  相似文献   

17.
1981年在云南景东县哀牢山兽类调查过程中获得一组小兽,经鉴定为Chiropodomys属之一新种,订名为Chiropodomys jingdongensis,现报道如下。  相似文献   

18.
Estimating species ability to adapt to environmental changes is crucial to understand their past and future response to climate change. The Mediterranean Basin has experienced remarkable climatic changes since the Miocene, which have greatly influenced the evolution of the Mediterranean flora. Here, we examine the evolutionary history and biogeographic patterns of two sedge sister species (Carex, Cyperaceae) restricted to the western Mediterranean Basin, but with Pliocene fossil record in central Europe. In particular, we estimated the evolution of climatic niches through time and its influence in lineage differentiation. We carried out a dated phylogenetic–phylogeographic study based on seven DNA regions (nDNA and ptDNA) and fingerprinting data (AFLPs), and modelled ecological niches and species distributions for the Pliocene, Pleistocene and present. Phylogenetic and divergence time analyses revealed that both species form a monophyletic lineage originated in the late Pliocene–early Pleistocene. We detected clear genetic differentiation between both species with distinct genetic clusters in disjunct areas, indicating the predominant role of geographic barriers limiting gene flow. We found a remarkable shift in the climatic requirements between Pliocene and extant populations, although the niche seems to have been relatively conserved since the Pleistocene split of both species. This study highlights how an integrative approach combining different data sources and analyses, including fossils, allows solid and robust inferences about the evolutionary history of a plant group since the Pliocene.  相似文献   

19.
The ecological and evolutionary processes leading to present-day biological diversity can be inferred by reconstructing the phylogeny of living organisms, and then modelling potential processes that could have produced this genealogy. A more direct approach is to estimate past processes from the fossil record. The Carnivora (Mammalia) has both substantial extant species richness and a rich fossil record. We compiled species-level data for over 10 000 fossil occurrences of nearly 1400 carnivoran species. Using this compilation, we estimated extinction, speciation and net diversification for carnivorans through the Neogene (22–2 Ma), while simultaneously modelling sampling probability. Our analyses show that caniforms (dogs, bears and relatives) have higher speciation and extinction rates than feliforms (cats, hyenas and relatives), but lower rates of net diversification. We also find that despite continual species turnover, net carnivoran diversification through the Neogene is surprisingly stable, suggesting a saturated adaptive zone, despite restructuring of the physical environment. This result is strikingly different from analyses of carnivoran diversification estimated from extant species alone. Two intervals show elevated diversification rates (13–12 Ma and 4–3 Ma), although the precise causal factors behind the two peaks in carnivoran diversification remain open questions.  相似文献   

20.
The branching times of molecular phylogenies allow us to infer speciation and extinction dynamics even when fossils are absent. Troublingly, phylogenetic approaches usually return estimates of zero extinction, conflicting with fossil evidence. Phylogenies and fossils do agree, however, that there are often limits to diversity. Here, we present a general approach to evaluate the likelihood of a phylogeny under a model that accommodates diversity-dependence and extinction. We find, by likelihood maximization, that extinction is estimated most precisely if the rate of increase in the number of lineages in the phylogeny saturates towards the present or first decreases and then increases. We demonstrate the utility and limits of our approach by applying it to the phylogenies for two cases where a fossil record exists (Cetacea and Cenozoic macroperforate planktonic foraminifera) and to three radiations lacking fossil evidence (Dendroica, Plethodon and Heliconius). We propose that the diversity-dependence model with extinction be used as the standard model for macro-evolutionary dynamics because of its biological realism and flexibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号