首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesenchymal stem cells (MSCs) have an ability to migrate in the organism to injured tissue to exert influence on inflammation and reparation in these regions. The aim of this study was to determine the optimal time of MSCs transplantation for myocardial reparation in rat experimental heart failure. The experiments were carried out on inbred line Wistar-Kyoto rats. Myocardial experimental infarction (EI) was induced by ligation of the left descending coronary artery. MSCs were isolated from bone marrow, cultivated in vitro and injected into the tail vein on the day of experimental infarction operation. It was shown that the time of MSCs transplantation exerted an essential influence on angiogenesis in a damaged myocardium, on ventricular dilatation and morphological structure of the scar. The best time for MSCs transplantation was determined within two days before EI, and seven days after EI. As a result, the overload of the border zone of infarct region decreased, and no features of infarction relapse were shown in the border zone.  相似文献   

2.
A concentration gradient of stromal-cell-derived factor-1alpha (SDF-1alpha) is the major mechanism for homing of haematopoietic stem cells (HSCs) in bone marrow. We tested the hypothesis that a gene therapy using SDF-1alpha can enhance HSCs recruiting to the heart upon myocardial infarction (MI). Adult mice with surgically induced myocardial ischemia were injected intramyocardially with either saline (n=12) or SDF-1alpha plasmid (n=12) in 50 microl volume in the ischemic border zone of the infarcted heart 2 weeks after myocardial infarction. Donor Lin-c-kit+ HSCs from isogenic BalB/c mice were harvested, sorted through magnetic cell sorting (MACS) and labeled with PKH26 Red. Three days after plasmid or saline injection, 1x10(5) labeled cells were injected intravenously (i.v.) into saline mice (n=4) and SDF-1alpha plasmid mice (n=4). The hearts and other tissue were removed for Western blot assay 2 weeks after plasmid or saline treatment. The labeled Lin-c-kit+ cells were identified with immunofluoresent staining and endogenous c-kit+ cells were identified by immunohistochemical staining. In mice killed at 1 month postinfarct, Western blot showed higher levels of SDF-1alpha expression in SDF-1alpha-treated mouse ischemic hearts compared to saline-treated hearts and other tissues. In the SDF-1alpha plasmid-treated hearts, SDF-1alpha is overexpressed in the periinfarct zone. The labeled stem cells engrafted to the SDF-1alpha positive site in the myocardium. There was also evidence for endogenous stem cell recruiting. The density of c-kit+ cells in border zone, an index of endogenous stem cell mobilization, was significantly higher in the SDF-1alpha-treated group than in the saline group (14.63+/-1.068 cells/hpf vs. 11.31+/-0.65 cells/hpf, P=0.013) at 2 weeks after SDF-1alpha or saline treatment. Following myocardial infarction, treatment with SDF-1alpha recruits stem cells to damaged heart where they may have a role in repairing and regeneration. The gene therapy with an SDF-1alpha vector offers a promising therapeutic strategy for mobilizing stem cells to the ischemic myocardium.  相似文献   

3.
Beraprost sodium, an orally active prostacyclin analogue, has vasoprotective effects such as vasodilation and antiplatelet activities. We investigated the therapeutic potential of beraprost for myocardial ischemia. Immediately after coronary ligation of Sprague-Dawley rats, beraprost (200 microg/kg/day) or saline was subcutaneously administered for 28 days. Four weeks after coronary ligation, administration of beraprost increased capillary density in ischemic myocardium, decreased infarct size, and improved cardiac function in rats with myocardial infarction. Beraprost markedly increased the number of CD34-positive cells and c-kit-positive cells in plasma. Also, four weeks after coronary ligation of chimeric rats with GFP-expressing bone marrow, bone marrow-derived cells were incorporated into the infarcted region and its border zone. Treatment with beraprost increased the number of GFP/von Willebrand factor-double-positive cells in the ischemic myocardium. These results suggest that beraprost has beneficial effects on ischemic myocardium partly by its ability to enhance neovascularization in ischemic myocardium by mobilizing bone marrow cells.  相似文献   

4.
Mesenchymal stem cells (MSCs) are pluripotent cells that differentiate into a variety of cells, including cardiomyocytes and endothelial cells. However, little information is available regarding the therapeutic potency of systemically delivered MSCs for myocardial infarction. Accordingly, we investigated whether intravenously transplanted MSCs induce angiogenesis and myogenesis and improve cardiac function in rats with acute myocardial infarction. MSCs were isolated from bone marrow aspirates of isogenic adult rats and expanded ex vivo. At 3 h after coronary ligation, 5 x 10(6) MSCs (MSC group, n=12) or vehicle (control group, n=12) was intravenously administered to Lewis rats. Transplanted MSCs were preferentially attracted to the infarcted, but not the noninfarcted, myocardium. The engrafted MSCs were positive for cardiac markers: desmin, cardiac troponin T, and connexin43. On the other hand, some of the transplanted MSCs were positive for von Willebrand factor and formed vascular structures. Capillary density was markedly increased after MSC transplantation. Cardiac infarct size was significantly smaller in the MSC than in the control group (24 +/- 2 vs. 33 +/- 2%, P <0.05). MSC transplantation decreased left ventricular end-diastolic pressure and increased left ventricular maximum dP/dt (both P <0.05 vs. control). These results suggest that intravenous administration of MSCs improves cardiac function after acute myocardial infarction through enhancement of angiogenesis and myogenesis in the ischemic myocardium.  相似文献   

5.
Mesenchymal stem cells (MSC) are resident pluripotent cells of bone marrow stroma. MSC are able to differentiate into chondroblasts, adipocytes, neurons, glia, cardiomyocytes, or osteoblasts. The problem of MSC usage in cell therapy of bone defects is widely discussed at present. The experiments were carried out using rats of inbred line Wistar-Kyoto. MSC were isolated from bone marrow and cultivated in vitro. Demineralized bone matrices (DBM) were obtained from parietal bones of rats and hens. Part of DBM was loaded with MSC. Bone defects were made in cranium parietal regions. DBM with or without MSC or metal plates were transplanted in these regions. It was shown that the application of MSC increased angiogenesis and osteogenesis in the damaged bone. The implantation of rat's DBM with MSC led to the formation of a full value bone. MSC suppressed inflammation, when transplantation of hen's DBM was carried out. The application of MSC always improved bone tissue regeneration.  相似文献   

6.
The purpose of this study was to investigate the fate of transplanted cells in the central zone of myocardial infarction (MI), and to clarify the relationship between the injection-site impact and the efficacy of cell therapy. MI was created by coronary ligation in female rats. Three weeks later, 3-million labelled male bone marrow mesenchymal stem cells (BMSCs) were directly injected into the border (BZC group) or central zone (CZC group) of MI area. As a control, culture medium was injected into the same sites. Cell survival was evaluated by quantitative real-time polymerase chain reaction, and apoptosis was assayed with TUNEL and caspase-3 staining. Four weeks after transplantation, heart function and cardiac morphometry were evaluated by echocardiography and Masson's Trichrome staining, respectively. Angiogenesis and myogenesis were detected by immunofluorescence staining. After cell transplantation into the border or central zone, there was no cell migration between the different zones of MI. BMSCs in the CZC group exhibited no difference in apoptotic percentage, in the long-term survival, when compared with those in the BZC group. However, they did effectively promote angiogenesis and cellular myogenic differentiation. Although cell delivery in the central zone of MI had no effect on the recovery of heart function compared with the BZC group, the retained BMSCs could still increase the scar thickness, and subsequently exhibit a trend in the reverse remodelling of ventricular dilation. Hence, we concluded that the central zone of MI should not be ignored during cell-based therapy. Multiple site injection (border+central zone) is strongly recommended during the procedure of cell transplantation.  相似文献   

7.
骨髓间充质干细胞移植对心衰大鼠心肌结构和功能的影响   总被引:11,自引:0,他引:11  
研究骨髓间充质干细胞(MSC)移植对心力衰竭(简称心衰)大鼠心肌结构和功能的影响以及在病损心肌体内分化为心肌细胞的情况。将96只Wistar大鼠,用阿霉素成功诱导了54只心衰模型,随机分成3组,移植组为左室前壁注射MSC,对照组注射培养基,心衰组不给予任何干预措施。由彩色超声心动图(TTE)监测左室心功能参数。8周检测完成后取出心脏标本,做冰冻切片脏染色观察病损心肌结构的变化及免疫荧光检查植入MSC心肌肌球蛋白重链(MHC)及心肌特有的连接蛋白(Cx43)表达情况。结果表明植入的MSC存活并表达了MHC及Cx43,其周围宿主心肌细胞肿胀明显减轻。在移植MSC2周后,心功能开始改善,至8周时,心功改善能更明显。由此得出结论:MSC在病损心肌体内不仅能存活、分化为心肌细胞,使病损心肌组织病变减轻。而且可显著改善心衰大鼠的心功能。  相似文献   

8.
We evaluated the impact of donor age on the efficacy of myocardial cellular therapy for ischemic cardiomyopathy. Characteristics of smooth muscle cells (SMC), bone marrow stromal cells (MSCs), and skeletal muscle cells (SKMCs) from young, adult, and old rats were compared in vitro. Three weeks after coronary ligation, 3.5 million SMCs (n = 11) or MSCs (n = 9) from old syngenic rats or culture medium (n = 6) were injected into the ischemic region. Five weeks after implantation, cardiac function was assessed by echocardiography and the Langendorff apparatus. In the in vitro study, the numbers and proliferation of MSCs from fresh bone marrow and SKMCs from fresh tissue but not SMCs were markedly diminished in old animals (P < 0.05 both groups). SKMCs from old animals did not reach confluence. After treatment with 5-azacytidine (azacitidine), the myogenic potential of old MSCs was decreased compared with young MSCs. In the in vivo study, both SMC and MSC transplantation induced significant angiogenesis compared with media injections (P < 0.05 both groups). Transplantation of SMCs but not MSCs prevented scar thinning (P = 0.03) and improved ejection fraction and fractional shortening (P < 0.05). Load-independent indices of cardiac function in a Langendorff preparation confirmed improved function in the aged SMC group (P = 0.01) but not in the MSC group compared with the control group. In conclusion, donor age adversely impacts the efficacy of cellular therapy for myocardial regeneration and is cell-type dependent. SMCs from old donors retain their ability to improve cardiac function after implantation into ischemic myocardium.  相似文献   

9.
The review discusses cell therapy; one of the most promising approaches to myocardial infarction treatment. The possibility to use cell material of various origins is analyzed. The review sums up data on the application of fetal and neonatal cardiomyocytes, myoblasts, bone marrow mononuclear fraction, hematopoietic and mesenchymal stem cells (MSX) as cell therapy agents. The conclusion is made that MSC are promising cell material for myocardial infarction therapy. MSC are able to migrate to the injured area, differentiate into myocardial lineage. They produce a wide range of factors that stimulate angiogenesis and increase viability of cells, including cardiomyocytes.  相似文献   

10.
目的:比较骨髓间充质细胞(Bone Marrow Mesenchymal Stem Cells,BM/MSC)和骨髓源内皮祖细胞(Bone Marrow Endothelialprogenitor cells,BM/EPC)移植促进血流重建的效果,为进一步优化骨髓干细胞移植治疗肢体缺血提供理论基础。方法:获取Lewis大鼠骨髓单个核细胞,在体外培养分化为MSC和EPC。采用Lewis大鼠建立单侧后肢缺血模型。在模型建立后3天,将0.8mlD-Hanks液注入大鼠缺血侧后肢,为对照组(n=6);将8×106个骨髓MSC植入大鼠缺血侧后肢,为MSC组(n=6);将体外培养的8×106个EPC植入大鼠缺血侧后肢,为EPC组(n=6)。细胞移植后3周行缺血大鼠后肢动脉造影,检测缺血侧后肢侧支血管数;获取缺血侧后肢腓肠肌,分别行CD31和α-SMA免疫组化染色,计算毛细血管密度和小动脉密度。结果:MSC组与EPC组侧支血管数无显著性差异,二者均高于对照组;EPC组毛细血管密度明显高于MSC组,二者均高于对照组;MSC组与EPC组小动脉密度无显著性差异,二者均高于对照组。结论:骨髓间充质干细胞移植和内皮祖细胞移植均能够明显促进血流重建,而且骨髓间充质干细胞在治疗肢体缺血性疾病中的优势应该受到重视。  相似文献   

11.
Human umbilical cord blood (UCB) contains an abundance of immature stem/progenitor cells and has been clinically used as an alternative to bone marrow transplantation. In addition, cord blood can be obtained non-invasively, in contrast to invasive bone marrow aspiration. We investigated the potential of human UCB CD34(+) cells to improve cardiac function following myocardial infarction. Myocardial infarction was induced in Wistar rats by ligation of the left coronary artery. Either 2x10(5) human UCB CD34(+) cells or equivalent cell-free medium was injected into the injured myocardium of the rats following induction of myocardial infarction. CD34(+) cell transplantation significantly improved ventricular function as compared to the control group. Immunofluorescence staining for human CD34, CD45, and PECAM-1 revealed surviving cells in the myocardium. Our findings suggest that transplanted human cells survived and improved cardiac function following myocardial infarction. These results may show the usefulness of UCB CD34(+) cells for myocardial infarction.  相似文献   

12.
目的:研究恒磁场对心肌梗死大鼠骨髓间充质干细胞(bone marrow-derived mesenchymal stem cells,BMSCs)移植后心脏功能的影响。方法:取180g,9-12周龄雄性SD大鼠骨髓,以密度梯度离心分离出单个核细胞(MNCs),于体外培养并传代培养出骨髓间充质干细胞(MSCs)。制作大鼠心肌梗死模型,将1.5×106BMSCs注射入梗死梗死区周围,分为磁场照射+BMSCs植入组、BMSCs植入组及空白对照组。4周后处死动物,每组5只大鼠。磁场照射组用0.4 T恒磁场置于心前区30 min,每日1次,共7天。用颈动脉插管法测定心脏功能,Masson三色染色测定梗死面积,VWF VIII染色计算血管密度。结果:与对照组相比BMSCs组以及磁场组均可以显著提高左心室收缩压(LVSP),dp/dtmax以及-dp/dtmax,减少LVEDP(P〈0.05)。但是,磁场组与BMSCs组相比LVSP,左心室内压最大上升速率(dp/dtmax)以及左心室内压最大下降速率(-dp/dtmax)增高,左心室舒张末压(LVEDP)减少(P〈0.05)。与对照组相比BMSCs组以及磁场组均可以显著提高减少心梗面积(P〈0.05)。磁场组与BMSCs组相比心梗面积减少(P〈0.05)。与对照组相比BMSCs组以及磁场组均可以显著提高增加血管密度(P〈0.05)。磁场组与BMSCs组相比血管密度增加(P〈0.05)。结论:恒磁场具有加强移植BMSCs改善心脏功能的作用。  相似文献   

13.
We used human angiopoietin-1 (hAng1)-modified mesenchymal stem cells (MSCs) to treat acute myocardial infarction (AMI) in rats. The hAng1 gene was transfected into cultured rat MSCs using an adenoviral vector. Five million hAng-transfected MSCs (MSC(Ang1)) or green fluorescent protein transfected MSCs (MSC(GFP)) or PBS only (PBS group) were injected intramyocardially into the inbred Lewis rat hearts immediately after myocardial infarction. MSC(Ang1) survived in the infarcted myocardium, and expressed hAng1 at both mRNA and protein levels. The vascular density was higher in the MSC(Ang1) and MSC(GFP) groups than in the PBS group. The measurements of infarcted ventricular wall thickness, infarction area, and left ventricular diameter indicated that heart remodeling was inhibited and heart function was improved in both the MSC(Ang1) and MSC(GFP) groups. However, in contrast to the MSC(GFP) group, the MSC(Ang1) group showed enhanced angiogenesis and arteriogenesis (by 11-35%), infarction area was reduced by 30% and the left ventricular wall was 46% thicker (P<0.05). The results indicated that hAng1-modified MSCs improved heart function, followed by angiogenic effects in salvaging ischemic myocardium and reduced cardiac remodeling.  相似文献   

14.
This work aimed to evaluate cardiac morphology/function and histological changes induced by bone marrow cells (BMCs) and cultured mesenchymal stem cells (MSCs) injected at the myocardium of spontaneously hypertensive rats (SHR) submitted to surgical coronary occlusion. Female syngeneic adult SHR, submitted (MI) or not (C) to coronary occlusion, were treated 24 h later with in situ injections of normal medium (NM), or with MSCs (MSC) or BMCs (BM) from male rats. The animals were evaluated after 1 and 30 days by echocardiography, histology of heart sections and PCR for the Y chromosome. Improved ejection fraction and reduced left ventricle infarcted area were observed in MSC rats as compared to the other experimental groups. Treated groups had significantly reduced lesion tissue score, increased capillary density and normal (not-atrophied) myocytes, as compared to NM and C groups. The survival rate was higher in C, NM and MSC groups as compared to MI and BM groups. In situ injection of both MSCs and BMCs resulted in improved cardiac morphology, in a more physiological model of myocardial infarction represented by surgical coronary occlusion of spontaneously hypertensive rats. Only treatment with MSCs, however, ameliorated left ventricle dysfunction, suggesting a positive role of these cells in heart remodeling in infarcted hypertensive subjects.  相似文献   

15.
Basic and clinical studies have shown that bone marrow cell therapy can improve cardiac function following infarction. In experimental animals, reported stem cell-mediated changes range from no measurable improvement to the complete restoration of function. In the clinic, however, the average improvement in left ventricular ejection fraction is around 2% to 3%. A possible explanation for the discrepancy between basic and clinical results is that few basic studies have used the magnetic resonance (MR) imaging (MRI) methods that were used in clinical trials for measuring cardiac function. Consequently, we employed cine-MR to determine the effect of bone marrow stromal cells (BMSCs) on cardiac function in rats. Cultured rat BMSCs were characterized using flow cytometry and labeled with iron oxide particles and a fluorescent marker to allow in vivo cell tracking and ex vivo cell identification, respectively. Neither label affected in vitro cell proliferation or differentiation. Rat hearts were infarcted, and BMSCs or control media were injected into the infarct periphery (n = 34) or infused systemically (n = 30). MRI was used to measure cardiac morphology and function and to determine cell distribution for 10 wk after infarction and cell therapy. In vivo MRI, histology, and cell reisolation confirmed successful BMSC delivery and retention within the myocardium throughout the experiment. However, no significant improvement in any measure of cardiac function was observed at any time. We conclude that cultured BMSCs are not the optimal cell population to treat the infarcted heart.  相似文献   

16.
Human bone marrow derived-mesenchymal (skeletal) stem (MSC) cells are a group of non-hematopoietic stem cells residing in the perivascular niches in bone marrow. These cells have the capacity to differentiate mainly into mesoderm-type cells such as osteoblasts, chondrocytes and adipocytes and possibly but not proven to non-mesodermal cell types. Recently, there has been an increased interest in understanding the biology of MSC due to their potential use in cell-based therapy for multiple degenerative diseases. Here, we will provide an update on the current status of these novel therapeutic opportunities. J. Cell. Physiol. 218: 9-12, 2009. (c) 2008 Wiley-Liss, Inc.  相似文献   

17.
18.
Human mesenchymal stem cells (MSC) from adult and fetal tissues are promising candidates for cell therapy but there is a need to identify the optimal source for bone regeneration. We have previously characterized MSC populations in first trimester fetal blood, liver, and bone marrow and we now evaluate their osteogenic differentiation potential in comparison to adult bone marrow MSC. Using quantitative real-time RT-PCR, we demonstrated that 16 osteogenic-specific genes (OC, ON, BSP, OP, Col1, PCE, Met2A, OPG, PHOS1, SORT, ALP, BMP2, CBFA1, OSX, NOG, IGFII) were expressed in both fetal and adult MSC under basal conditions and were up-regulated under osteogenic conditions both in vivo and during an in vitro 21-day time-course. However, under basal conditions, fetal MSC had higher levels of osteogenic gene expression than adult MSC. Upon osteogenic differentiation, fetal MSC produced more calcium in vitro and reached higher levels of osteogenic gene up-regulation in vivo and in vitro. Second, we observed a hierarchy within fetal samples, with fetal bone marrow MSC having greater osteogenic potential than fetal blood MSC, which in turn had greater osteogenic potential than fetal liver MSC. Finally, we found that the level of gene expression under basal conditions was positively correlated with both calcium secretion and gene expression after 21 days in osteogenic conditions. Our findings suggest that stem cell therapy for bone dysplasias such as osteogenesis imperfecta may benefit from preferentially using first trimester fetal blood or bone marrow MSC over fetal liver or adult bone marrow MSC.  相似文献   

19.
Animal and early clinical studies have provided evidence suggesting that intracoronary administration of autologous bone marrow-derived cells results in improved outcome following myocardial infarction. Animal studies with cultured marrow stromal cells (MSC) have provided similar data. Cells with properties that are similar to MSC have been identified in adipose tissue. Other groups have demonstrated in vivo differentiation of adipose tissue-derived cells (ADC) into cells exhibiting biochemical and functional markers of cardiac myocytes, including spontaneous beating.Based on these observations, the objective of the present study was to determine whether ADC might undergo similar differentiation in vivo in the context of myocardial injury.ADC were isolated from subcutaneous adipose tissue of Rosa26 mice (which express the beta-galactosidase transgene in almost every tissue) and injected into the intraventricular chamber of B6129S recipient mice immediately following induction of myocardial cryoinjury. Groups of recipients were euthanized at 24 hours, 7 and 14 days post surgery and examined for the presence of donor-derived cells within the heart.Beta-gal positive cells were identified in the infarcts of ADC-treated animals. No staining was observed in uninjured myocardium or in infarcts of control animals. Immunohistochemical analysis revealed co-expression of beta-gal with Myosin Heavy Chain, Nkx2.5 and with Troponin I. Co-expression of beta-galactosidase with Connexin 43, CD31, von Willebrand factor, MyoD or CD45 was not detected.Thus, these data indicate that adipose tissue contains a population of cells that has the ability to engraft injured myocardium and that this engraftment is associated with expression of cardiomyocytic markers by donor-derived cells.  相似文献   

20.
Chin SP  Poey AC  Wong CY  Chang SK  Tan CS  Ng MT  Chew KH  Lam KH  Cheong SK 《Cytotherapy》2011,13(7):814-821
Background aimsMesenchymal stromal cells (MSC) may improve cardiac function following myocardial infarction. MSC can differentiate into cardiomyocytes and endothelial cells while exerting additional paracrine effects. There is limited information regarding the efficacy of route for MSC treatment of severe dilated cardiomyopathy (DCM). The aim of this study was to demonstrate the clinical safety, feasibility and efficacy of direct intramyocardial and intracoronary administration of autologous bone marrow-derived MSC treatment for no-option patients with chronic severe refractory DCM.MethodsTen symptomatic patients with DCM and refractory cardiac function, despite maximum medical therapy, were selected. Five had ischemic DCM deemed unlikely to benefit from revascularization alone and underwent bypass operations with concurrent intramyocardial MSC injection (group A). Two patients had previous revascularization and three had non-ischemic DCM and received intracoronary MSC injection (group B).ResultsGroup A and B patients received 0.5–1.0 × 106 and 2.0–3.0 × 106 MSC/kg body weight, respectively. All patients remained alive at 1 year. There were significant improvements from baseline to 6 and 12 months in left ventricular ejection fraction and other left ventricular parameters. Scar reduction was noted in six patients by 12 months.ConclusionsAutologous bone marrow MSC treatment is safe and feasible for treating chronic severe refractory DCM effectively, via intracoronary or direct intramyocardial administration at prescribed doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号