首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wohlfahrt G  Pellikka T  Boer H  Teeri TT  Koivula A 《Biochemistry》2003,42(34):10095-10103
Two carboxylic acid side chains can, depending on their geometry and environment, share a proton in a hydrogen bond and form a carboxyl-carboxylate pair. In the Trichoderma reesei cellobiohydrolase Cel6A structure, five carboxyl-carboxylate pairs are observed. One of these pairs (D175-D221) is involved in catalysis, and three other pairs are found in, or close to the two surface loops covering the active site tunnel of the catalytic domain. To stabilize Cel6A at alkaline pH values, where deprotonation of the carboxylic acids leads to repulsion of their side chains, we designed two mutant enzymes. In the first mutant, one carboxyl-carboxylate pair (E107-E399) was replaced by a corresponding amide-carboxylate pair (Q107-E399), and in the second mutant, all three carboxyl-carboxylate pairs (E107-E399, D170-E184, and D366-D419) were mutated in a similar manner. The unfolding studies using both intrinsic tryptophan fluorescence and far-ultraviolet circular dichroism spectroscopy at different pH values demonstrate that the unfolding temperature (T(m)) of both mutants has changed, resulting in destabilization of the mutant enzymes at acidic pH and stabilization at alkaline pH. The effect of stabilization seems additive, as a Cel6A triple mutant is the most stable enzyme variant. This increased stability is also reflected in the 2- or 4-fold increased half-life of the two mutants at alkaline pH, while the catalytic rate on cellotetraose (at t = 0) has not changed. Increased operational stability at alkaline pH was also observed on insoluble cellulosic substrates. Local conformational changes are suggested to take place in the active site loops of Cel6A wild-type enzyme at elevated pHs (pH 7), affecting to the end-product spectrum on insoluble cellulose. The triple mutant does not show such pH-dependent behavior. Overall, our results demonstrate that carboxyl-carboxylate pair engineering is a useful tool to alter pH-dependent protein behavior.  相似文献   

2.
Heterologous expression of T. reesei cellobiohydrolase Cel7A in a methylotrophic yeast Pichia pastoris was tested both under the P. pastoris alcohol oxidase (AOX1) promoter and the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter in a fermentor. Production of Cel7A with the AOX1 promoter gave a better yield, although part of the enzyme expressed was apparently not correctly folded. Cel7A expressed in P. pastoris is overglycosylated at its N-glycosylation sites as compared to the native T. reesei protein, but less extensive than Cel7A expressed in Saccharomyces cerevisiae. The k(cat) and K(m) values for the purified protein on soluble substrates are similar to the values found for the native Trichoderma Cel7A, whereas the degradation rate on crystalline substrate (BMCC) is somewhat reduced. The measured pH optimum also closely resembles that of purified T. reesei Cel7A. Furthermore, the hyperglycosylation does not affect the thermostability of the enzyme monitored with tryptophane fluorescence and activity measurements. On the other hand, CD measurements indicate that the formation of disulfide bridges is an important step in the correct folding of Cel7A and might explain the difficulties encountered in heterologous expression of T. reesei Cel7A. The constitutive GAP promoter expression system of P. pastoris is nevertheless well suited for activity screening of cellulase activities in microtiter plates. With this type of screening method a faster selection of site-directed and random mutants with, for instance, an altered optimum pH is possible, in contrast to the homologous T. reesei expression system.  相似文献   

3.
As part of a program to discover improved glycoside hydrolase family 12 (GH 12) endoglucanases, we have studied the biochemical diversity of several GH 12 homologs. The H. schweinitzii Cel12A enzyme differs from the T. reesei Cel12A enzyme by only 14 amino acids (93% sequence identity), but is much less thermally stable. The bacterial Cel12A enzyme from S. sp. 11AG8 shares only 28% sequence identity to the T. reesei enzyme, and is much more thermally stable. Each of the 14 sequence differences from H. schweinitzii Cel12A were introduced in T. reesei Cel12A to determine the effect of these amino acid substitutions on enzyme stability. Several of the T. reesei Cel12A variants were found to have increased stability, and the differences in apparent midpoint of thermal denaturation (T(m)) ranged from a 2.5 degrees C increase to a 4.0 degrees C decrease. The least stable recruitment from H. schweinitzii Cel12A was A35S. Consequently, the A35V substitution was recruited from the more stable S. sp. 11AG8 Cel12A and this T. reesei Cel12A variant was found to have a T(m) 7.7 degrees C higher than wild type. Thus, the buried residue at position 35 was shown to be of critical importance for thermal stability in this structural family. There was a ninefold range in the specific activities of the Cel12 homologs on o-NPC. The most and least stable T. reesei Cel12A variants, A35V and A35S, respectively, were fully active. Because of their thermal tolerance, S. sp. 11AG8 Cel12A and T. reesei Cel12A variant A35V showed a continual increase in activity over the temperature range of 25 degrees C to 60 degrees C, whereas the less stable enzymes T. reesei Cel12A wild type and the destabilized A35S variant, and H. schweinitzii Cel12A showed a decrease in activity at the highest temperatures. The crystal structures of the H. schweinitzii, S. sp. 11AG8, and T. reesei A35V Cel12A enzymes have been determined and compared with the wild-type T. reesei Cel12A enzyme. All of the structures have similar Calpha traces, but provide detailed insight into the nature of the stability differences. These results are an example of the power of homolog recruitment as a method for identifying residues important for stability.  相似文献   

4.
As part of the effort to find better cellulases for bioethanol production processes, we were looking for novel GH-7 family cellobiohydrolases, which would be particularly active on insoluble polymeric substrates and participate in the rate-limiting step in the hydrolysis of cellulose. The enzymatic properties were studied and are reported here for family 7 cellobiohydrolases from the thermophilic fungi Acremonium thermophilum, Thermoascus aurantiacus, and Chaetomium thermophilum. The Trichoderma reesei Cel7A enzyme was used as a reference in the experiments. As the native T. aurantiacus Cel7A has no carbohydrate-binding module (CBM), recombinant proteins having the CBM from either the C. thermophilum Cel7A or the T. reesei Cel7A were also constructed. All these novel acidic cellobiohydrolases were more thermostable (by 4-10 degrees C) and more active (two- to fourfold) in hydrolysis of microcrystalline cellulose (Avicel) at 45 degrees C than T. reesei Cel7A. The C. thermophilum Cel7A showed the highest specific activity and temperature optimum when measured on soluble substrates. The most effective enzyme for Avicel hydrolysis at 70 degrees C, however, was the 2-module version of the T. aurantiacus Cel7A, which was also relatively weakly inhibited by cellobiose. These results are discussed from the structural point of view based on the three-dimensional homology models of these enzymes.  相似文献   

5.
Glucose sensitivity and pH and thermal stabilities of Trichoderma reesei Cel1A (Bgl II) were improved by site-directed mutagenesis of only two amino acid residues (L167W or P172L) at the entrance of the active site. The Cel1A mutant showed high glucose tolerance (50% of inhibitory concentration = 650 mM), glucose stimulation (2.0 fold at 50 mM glucose), and enhanced specific activity (2.4-fold) compared with those of the wild-type Cel1A. Furthermore, the mutant enzyme showed stability at a wide pH range of 4.5–9.0 and possessed high thermal stability up to 50°C with 80% of the residual activities compared with the stability seen at the pH range of 6.5–7.0 and temperatures of up to 40°C in the wild-type Cel1A. Kinetic studies for hydrolysis revealed that the Cel1A mutant was competitively inhibited by glucose at similar levels as the wild-type enzyme. Additionally, the mutant enzyme exhibited substrate inhibition, which gradually disappeared with an increasing glucose concentration. These data suggest that the glucose stimulation was caused by relieve the substrate inhibition in the presence of glucose. To conclude, all the properties improved by the mutagenesis would be great advantages in degradation of cellulosic biomass together with cellulases.  相似文献   

6.
As part of a program to discover improved glycoside hydrolase family 12 (GH 12) endoglucanases, we have extended our previous work on the structural and biochemical diversity of GH 12 homologs to include the most stable fungal GH 12 found, Humicola grisea Cel12A. The H. grisea enzyme was much more stable to irreversible thermal denaturation than the Trichoderma reesei enzyme. It had an apparent denaturation midpoint (T(m)) of 68.7 degrees C, 14.3 degrees C higher than the T. reesei enzyme. There are an additional three cysteines found in the H. grisea Cel12A enzyme. To determine their importance for thermal stability, we constructed three H. grisea Cel12A single mutants in which these cysteines were exchanged with the corresponding residues in the T. reesei enzyme. We also introduced these cysteine residues into the T. reesei enzyme. The thermal stability of these variants was determined. Substitutions at any of the three positions affected stability, with the largest effect seen in H. grisea C206P, which has a T(m) 9.1 degrees C lower than that of the wild type. The T. reesei cysteine variant that gave the largest increase in stability, with a T(m) 3.9 degrees C higher than wild type, was the P201C mutation, the converse of the destabilizing C206P mutation in H. grisea. To help rationalize the results, we have determined the crystal structure of the H. grisea enzyme and of the most stable T. reesei cysteine variant, P201C. The three cysteines in H. grisea Cel12A play an important role in the thermal stability of this protein, although they are not involved in a disulfide bond.  相似文献   

7.
Cel5A (endoglucanase II) of Trichoderma reesei was expressed in Saccharomyces cerevisiae then purified. Two components (C1 and C2) of recombinant Cel5A with different glycosylation were obtained. Purified C1 had a larger molecular mass (57 kDa) than that of the native Cel5A produced by T. reesei (48 kDa) due to the different extents of asparagines-linked glycosylation. There was no significant difference in enzymatic activity between the C1 and the native Cel5A from T. reesei. C1 treated with Endoglycosidase H had a molecular mass of 54 kDa and retained about 88% of its original activity. Unpurified C2 was larger form of hyperglycosylation proteins. Its molecular mass was larger than 85 kDa till up to 200 kDa. It still retained activity regardless of its magnitude molecular mass. With increased glycosylation extent of the enzyme components (C2 >C1 >native Cel5A), the pH range of activity become wider, and thermal stability become higher.  相似文献   

8.
Three thermostable neutral cellulases from Melanocarpus albomyces, a 20-kDa endoglucanase (Cel45A), a 50-kDa endoglucanase (Cel7A), and a 50-kDa cellobiohydrolase (Cel7B) heterologously produced in a recombinant Trichoderma reesei were purified and studied in hydrolysis (50 degrees C, pH 6.0) of crystalline and amorphous cellulose. To improve their efficiency, M. albomyces cellulases naturally harboring no cellulose-binding module (CBM) were genetically modified to carry the CBM of T. reesei CBHI/Cel7A, and were studied under similar experimental conditions. Hydrolysis performance and product profiles were used to evaluate hydrolytic features of the investigated enzymes. Each cellulase proved to be active against the tested substrates; the cellobiohydrolase Cel7B had greater activity than the endoglucanases Cel45A and Cel7A against crystalline cellulose, whereas in the case of amorphous substrate the order was reversed. Evidence of synergism was observed when mixtures of the novel enzymes were applied in a constant total protein dosage. Presence of the CBM improved the hydrolytic potential of each enzyme in all experimental configurations; it had a greater effect on the endoglucanases Cel45A and Cel7A than the cellobiohydrolase Cel7B, especially against crystalline substrate. The novel cellobiohydrolase performed comparably to the major cellobiohydrolase of T. reesei (CBHI/Cel7A) under the applied experimental conditions.  相似文献   

9.
The exo-loop of Trichoderma reesei cellobiohydrolase Cel7A forms the roof of the active site tunnel at the catalytic centre. Mutants were designed to study the role of this loop in crystalline cellulose degradation. A hydrogen bond to substrate made by a tyrosine at the tip of the loop was removed by the Y247F mutation. The mobility of the loop was reduced by introducing a new disulphide bridge in the mutant D241C/D249C. The tip of the loop was deleted in mutant Delta(G245-Y252). No major structural disturbances were observed in the mutant enzymes, nor was the thermostability of the enzyme affected by the mutations.The Y247F mutation caused a slight k(cat) reduction on 4-nitrophenyl lactoside, but only a small effect on cellulose hydrolysis. Deletion of the tip of the loop increased both k(cat) and K(M) and gave reduced product inhibition. Increased activity was observed on amorphous cellulose, while only half the original activity remained on crystalline cellulose. Stabilisation of the exo-loop by the disulphide bridge enhanced the activity on both amorphous and crystalline cellulose. The ratio Glc(2)/(Glc(3)+Glc(1)) released from cellulose, which is indicative of processive action, was highest with Tr Cel7A wild-type enzyme and smallest with the deletion mutant on both substrates. Based on these data it seems that the exo-loop of Tr Cel7A has evolved to facilitate processive crystalline cellulose degradation, which does not require significant conformational changes of this loop.  相似文献   

10.
比较了自产纤维素酶和商品纤维素酶的水解效果,并采用超滤、层析、SDS-PAGE相结合的方法分析2种纤维素酶蛋白组分的差异。里氏木霉以纸浆为C源合成的自产纤维素酶的水解得率高于商品纤维素酶,自产纤维素酶水解48h的得率为66.24%,商品纤维素酶的得率为52.19%。自产纤维素酶中存在着Cel6A酶组分和XYNⅡ酶组分,而商品纤维素酶中没有检测到这2种酶组分。自产纤维素酶和商品纤维素酶的Cel1A酶组分和Cel7A酶组分间存在着分布和含量上的差异。自产纤维素酶在相对分子质量(2.5~3.5)×104范围内存在着几条蛋白条带,而商品纤维素酶则是在相对分子质量3.5×104附近存在着几条蛋白条带。  相似文献   

11.
Endo-beta-1,4-D-mannanases (beta-mannanase; EC 3.2.1.78) are endohydrolases that participate in the degradation of hemicellulose, which is closely associated with cellulose in plant cell walls. The beta-mannanase from Trichoderma reesei (Man5A) is composed of an N-terminal catalytic module and a C-terminal carbohydrate-binding module (CBM). In order to study the properties of the CBM, a construct encoding a mutant of Man5A lacking the part encoding the CBM (Man5ADeltaCBM), was expressed in T. reesei under the regulation of the Aspergillus nidulans gpdA promoter. The wild-type enzyme was expressed in the same way and both proteins were purified to electrophoretic homogeneity using ion-exchange chromatography. Both enzymes hydrolysed mannopentaose, soluble locust bean gum galactomannan and insoluble ivory nut mannan with similar rates. With a mannan/cellulose complex, however, the deletion mutant lacking the CBM showed a significant decrease in hydrolysis. Binding experiments using activity detection of Man5A and Man5ADeltaCBM suggests that the CBM binds to cellulose but not to mannan. Moreover, the binding of Man5A to cellulose was compared with that of an endoglucanase (Cel7B) from T. reesei.  相似文献   

12.
There are currently four proteins in family 61 of the glycoside hydrolases, from Trichoderma reesei, Agaricus bisporus, Cryptococcus neoformans and Neurospora crassa. The enzymatic activity of these proteins has not been studied thoroughly. We report here the homologous expression and purification of T. reesei Cel61A [previously named endoglucanase (EG) IV]. The enzyme was expressed in high amounts with a histidine tag on the C-terminus and purified by metal affinity chromatography. This is the first time that a histidine tag has been used as a purification aid in the T. reesei expression system. The enzyme activity was studied on a series of carbohydrate polymers. The only activity exhibited by Cel61A was an endoglucanase activity observed on substrates containing beta-1,4 glycosidic bonds, e.g. carboxymethylcellulose (CMC), hydroxyethylcellulose (HEC) and beta-glucan. The endoglucanase activity on CMC and beta-glucan was determined by viscosity analysis, by measuring the production of reducing ends and by following the degradation of the polymer on a size exclusion chromatography system. The formation of soluble sugars by Cel61A from microcrystalline cellulose (Avicel; Merck), phosphoric acid swollen cellulose (PASC), and CMC were analysed on a HPLC system. Cel61A produced small amounts of oligosaccharides from these substrates. Furthermore, Cel61A showed activity against cellotetraose and cellopentaose. The activity of Cel61A was several orders of magnitude lower compared to Cel7B (previously EG I) of T. reesei on all substrates. One significant difference between Cel61A and Cel7B was that cellotriose was a poor substrate for Cel61A but was readily hydrolysed by Cel7B. The enzyme activity for Cel61A was further studied on a large number of carbohydrate substrates but the enzyme showed no activity towards any of these substrates.  相似文献   

13.
Due to its elevated cellulolytic activity, the filamentous fungus Trichoderma harzianum (T. harzianum) has considerable potential in biomass hydrolysis application. Cellulases from Trichoderma reesei have been widely used in studies of cellulose breakdown. However, cellulases from T. harzianum are less-studied enzymes that have not been characterized biophysically and biochemically as yet. Here, we examined the effects of pH and temperature on the secondary and tertiary structures, compactness, and enzymatic activity of cellobiohydrolase Cel7A from T. harzianum (Th Cel7A) using a number of biophysical and biochemical techniques. Our results show that pH and temperature perturbations affect Th Cel7A stability by two different mechanisms. Variations in pH modify protonation of the enzyme residues, directly affecting its activity, while leading to structural destabilization only at extreme pH limits. Temperature, on the other hand, has direct influence on mobility, fold, and compactness of the enzyme, causing unfolding of Th Cel7A just above the optimum temperature limit. Finally, we demonstrated that incubation with cellobiose, the product of the reaction and a competitive inhibitor, significantly increased the thermal stability of Th Cel7A. Our studies might provide insights into understanding, at a molecular level, the interplay between structure and activity of Th Cel7A at different pH and temperature conditions.  相似文献   

14.
Cellobiohydrolase 58 (Cel7D) is the major cellulase produced by the white-rot fungus Phanerochaete chrysosporium, constituting approximately 10 % of the total secreted protein in liquid culture on cellulose. The enzyme is classified into family 7 of the glycosyl hydrolases, together with cellobiohydrolase I (Cel7A) and endoglucanase I (Cel7B) from Trichoderma reesei. Like those enzymes, it catalyses cellulose hydrolysis with net retention of the anomeric carbon configuration.The structure of the catalytic module (431 residues) of Cel7D was determined at 3.0 A resolution using the structure of Cel7A from T. reesei as a search model in molecular replacement, and ultimately refined at 1.32 A resolution. The core structure is a beta-sandwich composed of two large and mainly antiparallel beta-sheets packed onto each other. A long cellulose-binding groove is formed by loops on one face of the sandwich. The catalytic residues are conserved and the mechanism is expected to be the same as for other family members. The Phanerochaete Cel7D binding site is more open than that of the T. reesei cellobiohydrolase, as a result of deletions and other changes in the loop regions, which may explain observed differences in catalytic properties. The binding site is not, however, as open as the groove of the corresponding endoglucanase. A tyrosine residue at the entrance of the tunnel may be part of an additional subsite not present in the T. reesei cellobiohydrolase.The Cel7D structure was used to model the products of the five other family 7 genes found in P. chrysosporium. The results suggest that at least two of these will have differences in specificity and possibly catalytic mechanism, thus offering some explanation for the presence of Cel7 isozymes in this species, which are differentially expressed in response to various growth conditions.  相似文献   

15.
Protein-carbohydrate interactions typically rely on aromatic stacking interactions of tyrosine, phenylalanine and tryptophan side chains with the sugar rings whereas histidine residues are rarely involved. The small cellulose-binding domain of the Cel7A cellobiohydrolase (formerly CBHI) from Trichoderma reesei binds to crystalline cellulose primarily using a planar strip of three tyrosine side chains. Binding of the wild-type Cel7A CBD is practically insensitive to pH. Here we have investigated how histidine residues mediate the binding interaction and whether the protonation of a histidine side chain makes the binding sensitive to pH. Protein engineering of the Cel7A CBD was thus used to replace the tyrosine residues in two different positions with histidine residues. All of the mutants exhibited a clear pH-dependency of the binding, in clear contrast to the wild-type. Although the binding of the mutants at optimal pH was less than for the wild-type, in one case, Y31H, this binding almost reached the wild-type level.  相似文献   

16.
海栖热袍菌内切葡聚糖酶Cel12B是极耐热胞外酶,氨基酸序列分析表明不含有纤维素结合结构域(CBD),对结晶纤维素无活性,但同样菌种来源的木聚糖酶XynA有催化结构域和纤维素结合结构城。用同样极耐热酶CBD区域和Cel12B融合构建重组质粒pET-20b-Cel12B-CBD,经诱导表达后,对结晶纤维素有活性,酶学特性研究表明:最适反应温度为100℃、最适pH为5.8、在pH4.5~7.0时酶活力稳定,90℃保温2h仍有87%的酶活。  相似文献   

17.
The function of aspartic acid residue 101 in the active site of Escherichia coli alkaline phosphatase was investigated by site-specific mutagenesis. A mutant version of alkaline phosphatase was constructed with alanine in place of aspartic acid at position 101. When kinetic measurements are carried out in the presence of a phosphate acceptor, 1.0 M Tris, pH 8.0, both the kcat and the Km for the mutant enzyme increase by approximately 2-fold, resulting in almost no change in the kcat/Km ratio. Under conditions of no external phosphate acceptor and pH 8.0, both the kcat and the Km for the mutant enzyme decrease by approximately 2-fold, again resulting in almost no change in the kcat/Km ratio. The kcat for the hydrolysis of 4-methyl-umbelliferyl phosphate and p-nitrophenyl phosphate are nearly identical for both the wild-type and mutant enzymes, as is the Ki for inorganic phosphate. The replacement of aspartic acid 101 by alanine does have a significant effect on the activity of the enzyme as a function of pH, especially in the presence of a phosphate acceptor. At pH 9.4 the mutant enzyme exhibits 3-fold higher activity than the wild-type. The mutant enzyme also exhibits a substantial decrease in thermal stability: it is half inactivated by treatment at 49 degrees C for 15 min compared to 71 degrees C for the wild-type enzyme. The data reported here suggest that this amino acid substitution alters the rates of steps after the formation of the phospho-enzyme intermediate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Aims:  Vanadium chloroperoxidase and its directed evolution mutant P395D/L241V/T343A were investigated for their antibacterial and antiviral potential at slightly alkaline pH and at a H2O2 concentration that is low compared to current nonenzymatic formulations.
Methods and Results:  Two bacteria (the Gram-negative Pseudomonas aeruginosa and the Gram-positive Staphylococcus aureus ) and two viruses (the enveloped Herpes Simplex Virus and the nonenveloped Coxsackievirus B4) were incubated with the P395D/L241V/T343A mutant, 10 mmol l−1 H2O2 and 100 mmol l−1 Br at pH 8. Strong microbial reduction was observed and bactericidal and virucidal activities of the mutant were three to six orders of magnitude higher than for the wild-type enzyme.
Conclusions:  The P395D/L241V/T343A mutant of vanadium chloroperoxidase has a broad antimicrobial activity at alkaline conditions.
Significance and Impact of the Study:  For many disinfection formulations, antimicrobial activity at slightly alkaline pH values is required. To date, only the wild-type vanadium chloroperoxidase has been studied for its antibacterial activity, and only at acidic to neutral pH values. Its antiviral activity (e.g. useful for the cleaning of medical equipment) was not studied before. The observed activity for the alkalophilic P395D/L241V/T343A mutant is an important step forward in the application of this robust enzyme as a component in disinfection formulations.  相似文献   

19.
Understanding the pH effect of cellulolytic enzymes is of great technological importance. In this study, we have examined the influence of pH on activity and stability for central cellulases (Cel7A, Cel7B, Cel6A from Trichoderma reesei, and Cel7A from Rasamsonia emersonii). We systematically changed pH from 2 to 7, temperature from 20°C to 70°C, and used both soluble (4-nitrophenyl β- d -lactopyranoside [pNPL]) and insoluble (Avicel) substrates at different concentrations. Collective interpretation of these data provided new insights. An unusual tolerance to acidic conditions was observed for both investigated Cel7As, but only on real insoluble cellulose. In contrast, pH profiles on pNPL were bell-shaped with a strong loss of activity both above and below the optimal pH for all four enzymes. On a practical level, these observations call for the caution of the common practice of using soluble substrates for the general characterization of pH effects on cellulase activity. Kinetic modeling of the experimental data suggested that the nucleophile of Cel7A experiences a strong downward shift in pKa upon complexation with an insoluble substrate. This shift was less pronounced for Cel7B, Cel6A, and for Cel7A acting on the soluble substrate, and we hypothesize that these differences are related to the accessibility of water to the binding region of the Michaelis complex.  相似文献   

20.
Attempts to correlate the physical and chemical properties of biomass to its susceptibility to enzyme digestion are often inconclusive or contradictory depending on variables such as the type of substrate, the pretreatment conditions and measurement techniques. In this study, we present a direct method for measuring the key factors governing cellulose digestibility in a biomass sample by directly probing cellulase binding and activity using a purified cellobiohydrolase (Cel7A) from Trichoderma reesei. Fluorescence-labeled T. reesei Cel7A was used to assay pretreated corn stover samples and pure cellulosic substrates to identify barriers to accessibility by this important component of cellulase preparations. The results showed cellulose conversion improved when T. reesei Cel7A bound in higher concentrations, indicating that the enzyme had greater access to the substrate. Factors such as the pretreatment severity, drying after pretreatment, and cellulose crystallinity were found to directly impact enzyme accessibility. This study provides direct evidence to support the notion that the best pretreatment schemes for rendering biomass more digestible to cellobiohydrolase enzymes are those that improve access to the cellulose in biomass cell walls, as well as those able to reduce the crystallinity of cell wall cellulose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号