首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Ecosystems worldwide are receiving increasing amounts of reactive nitrogen (N) via anthropogenic activities with the added N having potentially important impacts on microbially mediated belowground carbon dynamics. However, a comprehensive understanding of how elevated N availability affects soil microbial processes and community dynamics remains incomplete. The mechanisms responsible for the observed responses are poorly resolved and we do not know if soil microbial communities respond in a similar manner across ecosystems. We collected 28 soils from a broad range of ecosystems in North America, amended soils with inorganic N, and incubated the soils under controlled conditions for 1 year. Consistent across nearly all soils, N addition decreased microbial respiration rates, with an average decrease of 11% over the year‐long incubation, and decreased microbial biomass by 35%. High‐throughput pyrosequencing showed that N addition consistently altered bacterial community composition, increasing the relative abundance of Actinobacteria and Firmicutes, and decreasing the relative abundance of Acidobacteria and Verrucomicrobia. Further, N‐amended soils consistently had lower activities in a broad suite of extracellular enzymes and had decreased temperature sensitivity, suggesting a shift to the preferential decomposition of more labile C pools. The observed trends held across strong gradients in climate and soil characteristics, indicating that the soil microbial responses to N addition are likely controlled by similar wide‐spread mechanisms. Our results support the hypothesis that N addition depresses soil microbial activity by shifting the metabolic capabilities of soil bacterial communities, yielding communities that are less capable of decomposing more recalcitrant soil carbon pools and leading to a potential increase in soil carbon sequestration rates.  相似文献   

2.
Increasing global temperatures have been reported to accelerate soil carbon (C) cycling, but also to promote nitrogen (N) and phosphorus (P) dynamics in terrestrial ecosystems. However, warming can differentially affect ecosystem C, N and P dynamics, potentially intensifying elemental imbalances between soil resources, plants and soil microorganisms. Here, we investigated the effect of long-term soil warming on microbial resource limitation, based on measurements of microbial growth (18O incorporation into DNA) and respiration after C, N and P amendments. Soil samples were taken from two soil depths (0–10, 10–20 cm) in control and warmed (>14 years warming, +4°C) plots in the Achenkirch soil warming experiment. Soils were amended with combinations of glucose-C, inorganic/organic N and inorganic/organic P in a full factorial design, followed by incubation at their respective mean field temperatures for 24 h. Soil microbes were generally C-limited, exhibiting 1.8-fold to 8.8-fold increases in microbial growth upon C addition. Warming consistently caused soil microorganisms to shift from being predominately C limited to become C-P co-limited. This P limitation possibly was due to increased abiotic P immobilization in warmed soils. Microbes further showed stronger growth stimulation under combined glucose and inorganic nutrient amendments compared to organic nutrient additions. This may be related to a prolonged lag phase in organic N (glucosamine) mineralization and utilization compared to glucose. Soil respiration strongly positively responded to all kinds of glucose-C amendments, while responses of microbial growth were less pronounced in many of these treatments. This highlights that respiration–though easy and cheap to measure—is not a good substitute of growth when assessing microbial element limitation. Overall, we demonstrate a significant shift in microbial element limitation in warmed soils, from C to C-P co-limitation, with strong repercussions on the linkage between soil C, N and P cycles under long-term warming.  相似文献   

3.
Petroleum pollution is a global problem that requires effective and accessible remediation strategies that takes ecosystem functioning into serious consideration. Bioremediation can be an effective tool to address the challenge. In this study, we used a mesocosm experiment to evaluate the effects of locally sourced and community produced biochar and compost amendments on diesel-contaminated soil. At the end of the 90-day experiment, we quantified the effects of the amendments on total petroleum hydrocarbons (C9-C40) (TPH) and soil pH, organic matter, aggregate stability, soil respiration, extractable phosphorus, extractable potassium, and micronutrients (Mg, Fe, Mn, and Zn). We observed significantly higher TPH degradation in compost-amended soils than in controls and soils amended with biochar. We propose that the addition of compost improved TPH biodegradation by augmenting soil nutrient content and microbial activity. Our results suggest that community-accessible compost can improve TPH biodegradation, and that implementation is possible at the community level.  相似文献   

4.
Amino sugar dynamics represent an important but under-investigated component of the carbon (C) and nitrogen (N) cycles in old-growth Douglas-fir forest soils. Because fungal biomass is high in these soils, particularly in areas colonized by rhizomorphic ectomycorrhizal fungal mats, organic matter derived from chitinous cell wall material (or the monomeric building block of chitin, N-acetylglucosamine (NAG)) could be a significant source of C or N to the soil microbiota, and thus an important driver of microbial C and N processing. This paper reports the results of incubation experiments initiated to measure chitin degradation, NAG utilization, and the contribution of these substrates to soil respiration and N mineralization rates in mat-colonized and non-mat soil organic horizons. Amendments of chitin and NAG stimulated respiration, N mineralization, and biomass accumulation in mat and non-mat soils, and responses to NAG amendment were stronger than to chitin amendment. NAG-induced respiration was consistently two-fold higher in mat soils than non-mat soils, but induced N mineralization was similar between the two soil patch types. Assimilation of both C and N into microbial biomass was apparent, biomass C:N ratio decreased in all treatments, and microbial N use efficiency (treatment means 0.25 ± 0.06–0.50 ± 0.05) was greater than C use efficiency (treatment means 0.12 ± 0.04–0.32 ± 0.02). NAGase enzyme response was non-linear and showed the same pattern in chitin and NAG amendments. Responses to NAG and chitin amendment differed between mat and non-mat soils, indicating different mechanisms driving NAG and chitin utilization or differences in saprotrophic community composition between the two soil patch types. Net chitin and NAG processing rates were 0.08–3.4 times the basal respiration rates and 0.07–14 times the ambient net N mineralization rates, high enough for the turnover of total soil amino sugars to potentially occur in days to weeks. The results support the hypotheses that amino sugars are important microbial C and N sources and drivers of C and N cycling in these soils.  相似文献   

5.
AIMS: To study the comparative effect of diesel addition and simulated bioremediation on the microbial community in three different soil types.METHODS AND RESULTS: Three different soils were amended with diesel and bioremediation treatment simulated by addition of nutrients. The progress of bioremediation, and the effect on the indigenous microbial communities, was monitored using microbiological techniques. These included basal respiration, sole carbon source utilization patterns using both a commercially-available substrate set and a set designed to highlight changes in hydrocarbon-utilizing bacteria, and phospholipid fatty acid (PLFA) profiling. The development of active hydrocarbon-degrading communities was indicated by the disappearance of diesel, increases in soil respiration and biomass, and large changes in the sole carbon source utilization patterns and PLFA profiles compared with control soils. However, comparison of the relative community structure of the three soils using PLFA profiling showed that there was no tendency for the community structure of the three different soil types to converge as a result of contamination. In fact, they became more dissimilar as a result. Changes in the sole carbon source utilization patterns using the commercially-available set of carbon sources indicated the same result as shown by PLFA profiling. The specially selected set of carbon sources yielded no additional information compared with the commercially-available set.CONCLUSIONS: Diesel contamination does not result in the development of similar community profiles in different soil types.SIGNIFICANCE AND IMPACT OF THE STUDY: The results suggest that different soils have different inherent microbial potential to degrade hydrocarbons, a finding that should be taken into account in impact and risk assessments. Following the development of the microbial community and its recovery is a useful and sensitive way of monitoring the impact and recovery of oil-contaminated soils.  相似文献   

6.
Supplementing the nutrient requirement of crops through organic manures as compost derived from agroindustrial wastes plays a key role in sustaining soil fertility, and crop productivity and reducing use of chemical fertilizers. Therefore, this work was conducted for investigating the effects of addition of oily cumin compost (CC) and oily oregano compost (OC) (these composts were derived from oily cumin and oily oregano wastes of aromatic plant factory) at rates of 40 t ha?1 to identify those potential organic amendments that might improve the quality of an Entisol. Additionally, those effects on the biochemical properties of a Typic xerofluvent soil were compared to chemical fertilization (CF) and also control (CT) during a cotton vegetation period under a Mediterranean climatic condition. Soil biological status was evaluated by measuring the soil microbial biomass carbon (MBC), basal soil respiration (BSR), N-mineralization (Nmin), soil metabolic quotient (qCO2) and soil enzymatic activities (dehydrogenase-DHG, urease-UA, protease-PRO, and alkaline phosphate-ALKPA) in soil samples that were collected on the 19th, 78th and 190th days followed by compost application to the experimental soils. The MBC, BSR and qCO2, as well as soil enzyme activities, increased significantly in the compost-treated soils compared with the CF-treated soil and nontreated soils (CT) with respect mean values. The level of microbial activity of soil applied chemical fertilizer was almost the same to those of control soil. As a result of cumin compost (CC) application 137-1810% increase of the level of microbial activity with respect to the CT and CF, followed by OC, 47-314% occurred at the end of the experiment. Because of this there were no toxic effects caused by composts observed. The application of these composts to the soil resulted in the most increase in DHG activity significantly. The application of CC with a C/N ratio of 23 resulted a more favorable soil biological properties than the application of OC (C/N ratio = 32) during cotton vegetation period (190 days). Results from this study suggest that composted aromatic plant wastes can be used to enhance the soil microbial activity, thereby promoting plant growth.  相似文献   

7.
This investigation determined the response of soil microbial communities to enhanced UV‐B radiation and disturbance in upland grassland. A factorial field experiment encompassing two levels of UV‐B supplementation (simulating ambient and a 30% increase in stratospheric ozone) and two levels of disturbance (disturbed and undisturbed) was established at Buxton Climate Change Impacts Laboratory, Derbyshire, UK, and maintained for 7 years prior to sampling. Enhanced UV‐B increased microbial utilization of carbohydrates, carboxylic acids, polymers and aromatic compounds present in Biolog® GN plates when inoculated with soils taken from disturbed plots, but did not affect carbon utilization of soil microbial communities associated with undisturbed plots (UV‐B×Disturbance interaction, P<0.05 for each substrate type). UV‐B treatment did not affect numbers of bacteria or fungi. Direct microscopic counts showed fewer bacteria in soil originating from disturbed plots than from undisturbed plots (Disturbance, P<0.001), although a greater number of culturable bacteria and fungi were isolated from disturbed than from undisturbed soils (Disturbance, P<0.001). No UV‐B‐ or disturbance‐related differences in protein, starch or urea hydrolysis were exhibited by bacterial isolates. UV‐B treatment did not affect total plant biomass within undisturbed plots or the biomass of individual groupings of grasses, forbs and mosses. Per cent root length colonized by arbuscular mycorrhizal fungi (AMF) was not affected by enhanced UV‐B radiation in the undisturbed plots. Neither AMF nor plant biomass was measured in disturbed plots. The key findings of this study show that UV‐B‐mediated alterations in carbon utilization occurred in soil microbial communities subjected to disturbance, but such changes were not observed in communities sampled from undisturbed grassland. Differences in the catabolic potential of microbial communities from disturbed grassland subjected to enhanced UV‐B are probably related to plant‐mediated changes in resource availability or quality.  相似文献   

8.
The potential impact of different types of organic (sewage sludge) or inorganic (mineral fertilizer) amendments to a basic soil was investigated under dry conditions. A soil incubation experiment was carried out over 64 days; there were two fertility treatments: sewage sludge (SS) (140 t ha(-1)), mineral fertilizer (M) and an unamended control (C). Two levels of irrigation were imposed: (1) well-watered, kept at 60% of its water holding capacity, and (2) water-deficit at 6%. Available N-NO3-, N-NH4+ and P, and electrical conductivity (EC) increased in SS and M-treated soils. Under well-watered conditions activities of some enzymes (protease-BAA, phosphatase and beta-glucosidase), and microbiological properties (microbial biomass carbon, basal respiration and dehydrogenase activity) were stimulated in SS-treated soils. Under water-deficit conditions, protease-BAA, phosphatase and beta-glucosidase activities, and basal respiration were more reduced in SS than in C and M. Results showed that under severe dry conditions, soil microbial activity always remained higher in organic amended soils than when mineral fertilizer was added.  相似文献   

9.
Studies on soil quality of mangrove forests would be of immense use in minimizing soil degradation and in adopting strategies for soil management at degraded sites. Among the various parameters of soil quality, biological and biochemical soil properties are very sensitive to environmental stress and provide rapid and accurate estimates on changes in quality of soils subjected to degradation. In this study, we determined the general and specific biochemical characteristics of soils (0-30 cm) of inter-tidal areas of 10 undisturbed mangrove forest sites of S. Andaman, India. In order to determine the effects of disturbance, soils from the inter-tidal areas of 10 disturbed mangrove forest sites were also included in the study. The general biochemical properties included all the variables directly related to microbial activity and the specific biochemical parameters included the activities of extracellular hydrolytic enzymes that are involved in the carbon, nitrogen, sulfur and phosphorus cycles in soil. The pH, clay, cation exchange capacity, Al2O3 and Fe2O3 levels exhibited minimum variation between the disturbed and undisturbed sites. In contrast, organic C, total N, Bray P and K levels exhibited marked variation between the sites and were considerably lower at the disturbed sites. The study also revealed marked reductions in microbial biomass and activity at the disturbed sites. In comparison to the undisturbed sites, the levels of all the general biochemical parameters viz., microbial biomass C, microbial biomass N, N flush, basal respiration, metabolic quotient (qCO2), ATP, N mineralization rates and the activities of dehydrogenase and catalase were considerably lower at the disturbed sites. Similarly, drastic reductions in the activities of phosphomonoesterase, phosphodiesterase, ß-g1ucosidase, urease, BAA-protease, casein-protease, arylsulfatase, invertase and carboxymethylcellulase occurred at the disturbed sites due mainly to significant reductions in organic matter/substrate levels. The data on CO2 evolution, qCO2 and ATP indicated the dominance of active individuals in the microbial communities of undisturbed soils and the ratios of biomass C:N, ATP:biomass C and ergosterol:biomass C ratios indicated low N availability and the possibility of fungi dominating over bacteria at both the mangrove sites. Significant and positive correlations between soil variables and biochemical properties suggested that the number and activity of soil microorganisms depend mainly on the quantity of mineralizable substrate and the availability of nutrients in these mangrove soils.  相似文献   

10.
Field studies were conducted over three growing seasons during 2 years to assess the relative effect of market crop waste (MCW)‐derived soil fertility amendments and conventional fertiliser (NPK) on tritrophic relations as well as yield performance of white cabbage. A randomised complete block design with four treatments and a control replicated four times was used. Treatments were (a) MCW compost incorporated in the soil, (b) uncomposted MCW incorporated in the soil, (c) uncomposted MCW applied as surface mulch, (d) a conventional chemical fertiliser (NPK) incorporated in the soil and (e) the untreated control. Results indicated that relative to NPK‐amended plants, MCW‐amended cabbage performed better in plant growth parameters as well as yield, despite having sustained aphid and Plutella xylostella infestations that could be as much as double as those in the NPK treatment. Natural enemy occurrence followed the trend of host insect infestations. The average yield performance and net financial benefits from MCW‐compost‐amended plants were three‐fold as that of NPK‐amended plants. Soil analysis results indicated an advantage in soil quality accruing from the MCW amendments. This study, therefore, provides documentation for the utilisation of MCW, previously handled as garbage to be disposed of, as a key component in integrated management of insect pests and depleted soils in crop production in sub‐Saharan Africa and beyond.  相似文献   

11.
This study experimented with common restoration techniques (scarification, soil amendments, mulch, and seeding) on six closed wilderness campsites in subalpine forests in Oregon. Effectiveness in encouraging seedling establishment, growth, and survival was assessed every year for the first 7 years following treatment. Closure and restoration of the campsites increased the density of plants established from seed. Despite an original density of virtually zero, mean density of perennial plants was 55 plants/m2 7 years after closure. All the treatments, with the exception of the biodegradable mulch mat, increased plant density. Seven years after treatment, seeding had increased plant density 5‐fold, whereas scarification and soil amendments (organic matter, compost, and soil inoculum) had each increased density 3‐fold. The organic and compost amendments also had the positive benefit of increasing growth rates and shortening the time‐to‐reproductive maturity. Results suggest that restoration of the herbaceous cover on these campsites can occur rapidly using the techniques employed. All but one of the species we seeded established in substantial quantities and survived at densities exceeding their density in the naturally sparse herbaceous cover on these sites. Thirty‐six perennial species volunteered on these sites. The remaining challenge is reestablishment of the shrub species that comprise much of the ground cover in these forests. These species seldom establish from seed.  相似文献   

12.
The long-term application of excessive chemical fertilizers has resulted in the degeneration of soil quality parameters such as soil microbial biomass, communities, and nutrient content, which in turn affects crop health, productivity, and soil sustainable productivity. The objective of this study was to develop a rapid and efficient solution for rehabilitating degraded cropland soils by precisely quantifying soil quality parameters through the application of manure compost and bacteria fertilizers or its combination during maize growth. We investigated dynamic impacts on soil microbial count, biomass, basal respiration, community structure diversity, and enzyme activity using six different treatments [no fertilizer (CK), N fertilizer (N), N fertilizer + bacterial fertilizer (NB), manure compost (M), manure compost + bacterial fertilizer (MB), and bacterial fertilizer (B)] in the plowed layer (0–20 cm) of potted soil during various maize growth stages in a temperate cropland of eastern China. Denaturing gradient electrophoresis (DGGE) fingerprinting analysis showed that the structure and composition of bacterial and fungi communities in the six fertilizer treatments varied at different levels. The Shannon index of bacterial and fungi communities displayed the highest value in the MB treatments and the lowest in the N treatment at the maize mature stage. Changes in soil microorganism community structure and diversity after different fertilizer treatments resulted in different microbial properties. Adding manure compost significantly increased the amount of cultivable microorganisms and microbial biomass, thus enhancing soil respiration and enzyme activities (p<0.01), whereas N treatment showed the opposite results (p<0.01). However, B and NB treatments minimally increased the amount of cultivable microorganisms and microbial biomass, with no obvious influence on community structure and soil enzymes. Our findings indicate that the application of manure compost plus bacterial fertilizers can immediately improve the microbial community structure and diversity of degraded cropland soils.  相似文献   

13.
Forests growing on highly weathered soils are often phosphorus (P) limited and competition between geochemical and biological sinks affects their soil P dynamics. In an attempt to elucidate the factors controlling the relative importance of these two sinks, we investigated the relationship of between soil microbial growth kinetics and soil chemical properties following amendments with C, N and P in six South African forest soils. Microbial growth kinetics were determined from respiration curves derived from measurements of CO2 effluxes from soil samples in laboratory incubations. We found that microbial growth rates after C + N additions were positively related to NaOH-extractable P and decreased with soil depth, whereas the lag time (the time between substrate addition and exponential growth) was negatively related to extractable P. However, the growth rate and lag time were unrelated to the soil’s sorption properties or Al and Fe contents. Our results indicate that at least some of the NaOH-extractable inorganic P may be biologically available within a relatively short time (days to weeks) and might be more labile than previously thought. Our results also show that microbial utilization of C + N only seemed to be constrained by P in the deeper part of the soil profiles.  相似文献   

14.
We evaluate the mid-term effects of two amendments and the establishment of R. officinalis on chemical and biochemical properties in a trace element contaminated soil by a mine spill and the possible use of this plant for stabilization purposes. The experiment was carried out using containers filled with trace element polluted soil, where four treatments were established: organic treatment (biosolid compost, OAR), inorganic treatment (sugar beet lime, IAR), control with plant (NAR) and control without plant (NA). Amendment addition and plant establishment contributed to restore soil chemical (pH, total organic carbon, and water soluble carbon) and biochemical properties (microbial biomass carbon and the enzymatic activities: aryl-sulphatase and protease). The presence of rosemary did not affect soluble (0.01 M CaCl2) Cd and Zn and decreased trace element EDTA extractability in amended soils. There were no negative effects found on plant growth and nutrient content on polluted soils (NAR, OAR, and IAR). Trace element contents were within normal levels in plants. Therefore, rosemary might be a reliable option for successful phytostablization of moderate trace element contaminated soils.  相似文献   

15.
Chronic N additions to forest ecosystems can enhance soil N availability, potentially leading to reduced C allocation to root systems. This in turn could decrease soil CO2 efflux. We measured soil respiration during the first, fifth, sixth and eighth years of simulated atmospheric NO3? deposition (3 g N m?2 yr?1) to four sugar maple‐dominated northern hardwood forests in Michigan to assess these possibilities. During the first year, soil respiration rates were slightly, but not significantly, higher in the NO3?‐amended plots. In all subsequent measurement years, soil respiration rates from NO3?‐amended soils were significantly depressed. Soil temperature and soil matric potential were measured concurrently with soil respiration and used to develop regression relationships for predicting soil respiration rates. Estimates of growing season and annual soil CO2 efflux made using these relationships indicate that these C fluxes were depressed by 15% in the eighth year of chronic NO3? additions. The decrease in soil respiration was not due to reduced C allocation to roots, as root respiration rates, root biomass, and root turnover were not significantly affected by N additions. Aboveground litter also was unchanged by the 8 years of treatment. Of the remaining potential causes for the decline in soil CO2 efflux, reduced microbial respiration appears to be the most likely possibility. Documented reductions in microbial biomass and the activities of extracellular enzymes used for litter degradation on the NO3?‐amended plots are consistent with this explanation.  相似文献   

16.
Samples of a sandy loam soil taken from a long-term liming experiment in southeast England were amended with solutions of metal sulfate salts. Soils with a range of pHs were amended to contain Cu, Cd, or Zn at concentrations around the maximum permissible values for these metals in agricultural land receiving sewage sludge. After a 3-year equilibration period, the microbial biomass was determined by the fumigation-extraction technique. These results were compared with data from substrate utilization patterns of microbial populations extracted by using a weak salt solution. There was no reduction in microbial biomass due to pH or metal treatment in any of the soils except the Cu treatment. Principal-component analysis of the respiration patterns in Biolog plates demonstrated effects of both pH and metal treatment on the extracted microbial population which were independent of gross biomass size. pH and soil amendments with Cu and Zn were found to reduce the metabolic potential of the extracted soil microbial population.  相似文献   

17.
Organic amendments, such as compost and biochar, mitigate the environmental burdens associated with wasting organic resources and close nutrient loops by capturing, transforming, and resupplying nutrients to soils. While compost or biochar application to soil can enhance an agroecosystem's capacity to store carbon and produce food, there have been few field studies investigating the agroecological impacts of amending soil with biochar co-compost, produced through the composting of nitrogen-rich organic material, such as manure, with carbon-rich biochar. Here, we examine the impact of biochar co-compost on soil properties and processes by conducting a field study in which we compare the environmental and agronomic impacts associated with the amendment of either dairy manure co-composted with biochar, dairy manure compost, or biochar to soils in a winter wheat cropping system. Organic amendments were applied at equivalent C rates (8 Mg C ha−1). We found that all three treatments significantly increased soil water holding capacity and total plant biomass relative to the no-amendment control. Soils amended with biochar or biochar co-compost resulted in significantly less greenhouse gas emissions than the compost or control soils. Biochar co-compost also resulted in a significant reduction in nutrient leaching relative to the application of biochar alone or compost alone. Our results suggest that biochar co-composting could optimize organic resource recycling for climate change mitigation and agricultural productivity while minimizing nutrient losses from agroecosystems.  相似文献   

18.
Enhanced soil respiration in response to global warming may substantially increase atmospheric CO2 concentrations above the anthropogenic contribution, depending on the mechanisms underlying the temperature sensitivity of soil respiration. Here, we compared short‐term and seasonal responses of soil respiration to a shifting thermal environment and variable substrate availability via laboratory incubations. To analyze the data from incubations, we implemented a novel process‐based model of soil respiration in a hierarchical Bayesian framework. Our process model combined a Michaelis–Menten‐type equation of substrate availability and microbial biomass with an Arrhenius‐type nonlinear temperature response function. We tested the competing hypotheses that apparent thermal acclimation of soil respiration can be explained by depletion of labile substrates in warmed soils, or that physiological acclimation reduces respiration rates. We demonstrated that short‐term apparent acclimation can be induced by substrate depletion, but that decreasing microbial biomass carbon (MBC) is also important, and lower MBC at warmer temperatures is likely due to decreased carbon‐use efficiency (CUE). Observed seasonal acclimation of soil respiration was associated with higher CUE and lower basal respiration for summer‐ vs. winter‐collected soils. Whether the observed short‐term decrease in CUE or the seasonal acclimation of CUE with increased temperatures dominates the response to long‐term warming will have important consequences for soil organic carbon storage.  相似文献   

19.
In many tropical regions, slash‐and‐burn agriculture is considered as a driver of deforestation; the forest is converted into agricultural land by cutting and burning the trees. However, the fields are abandoned after few years because of yield decrease and weed invasion. Consequently, new surfaces are regularly cleared from the primary forest. We propose a reclamation strategy for abandoned fields allowing and sustaining re‐cultivation. In the dry region of south‐western Madagascar, we tested, according to a split‐plot design, an alternative selective slash‐and‐burn cultivation technique coupled with compost amendment on 30–year‐old abandoned fields. Corn plants (Zea mays L.) were grown on four different types of soil amendments: no amendment (control), compost, ashes (as in traditional slash‐and‐burn cultivation), and compost + ashes additions. Furthermore, two tree cover treatments were applied: 0% tree cover (as in traditional slash‐and‐burn cultivation) and 50% tree cover (selective slash‐and‐burn). Both corn growth and soil fertility parameters were monitored during the growing season 2015 up to final harvest. The amendment compost + ashes strongly increased corn yield, which was multiplied by 4–5 in comparison with ashes or compost alone, reaching 1.5 t/ha compared to 0.25 and 0.35 t/ha for ashes and compost, respectively. On control plots, yield was negligible as expected on these degraded soils. Structural equation modeling evidenced that compost and ashes were complementary fertilizing pathways promoting soil fertility through positive effects on soil moisture, pH, organic matter, and microbial activity. Concerning the tree cover treatment, yield was reduced on shaded plots (50% tree cover) compared to sunny plots (0% tree cover) for all soil amendments, except ashes. To conclude, our results provide empirical evidence on the potential of recultivating tropical degraded soils with compost and ashes. This would help mitigating deforestation of the primary forest by increasing lifespan of agricultural lands.  相似文献   

20.
Carbon (C) sequestration potential of biochar should be considered together with emission of greenhouse gases when applied to soils. In this study, we investigated CO2 and N2O emissions following the application of rice husk biochars to cultivated grassland soils and related gas emissions tos oil C and nitrogen (N) dynamics. Treatments included biochar addition (CHAR, NO CHAR) and amendment (COMPOST, UREA, NO FERT). The biochar application rate was 0.3% by weight. The temporal pattern of CO2 emissions differed according to biochar addition and amendments. CO2 emissions from the COMPOST soils were significantly higher than those from the UREA and NO FERT soils and less CO2 emission was observed when biochar and compost were applied together during the summer. Overall N2O emission was significantly influenced by the interaction between biochar and amendments. In UREA soil, biochar addition increased N2O emission by 49% compared to the control, while in the COMPOST and NO FERT soils, biochar did not have an effect on N2O emission. Two possible mechanisms were proposed to explain the higher N2O emissions upon biochar addition to UREA soil than other soils. Labile C in the biochar may have stimulated microbial N mineralization in the C-limited soil used in our study, resulting in an increase in N2O emission. Biochar may also have provided the soil with the ability to retain mineral N, leading to increased N2O emission. The overall results imply that biochar addition can increase C sequestration when applied together with compost, and might stimulate N2O emission when applied to soil amended with urea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号