首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Wnt signaling pathways are tightly regulated by ubiquitination, and dysregulation of these pathways promotes tumorigenesis. It has been reported that the ubiquitin ligase RNF43 plays an important role in frizzled-dependent regulation of the Wnt/β-catenin pathway. Here, we show that RNF43 suppresses both Wnt/β-catenin signaling and noncanonical Wnt signaling by distinct mechanisms. The suppression of Wnt/β-catenin signaling requires interaction between the extracellular protease-associated (PA) domain and the cysteine-rich domain (CRD) of frizzled and the intracellular RING finger domain of RNF43. In contrast, these N-terminal domains of RNF43 are not required for inhibition of noncanonical Wnt signaling, but interaction between the C-terminal cytoplasmic region of RNF43 and the PDZ domain of dishevelled is essential for this suppression. We further show the mechanism by which missense mutations in the extracellular portion of RNF43 identified in patients with tumors activate Wnt/β-catenin signaling. Missense mutations of RNF43 change their localization from the endosome to the endoplasmic reticulum (ER), resulting in the failure of frizzled-dependent suppression of Wnt/β-catenin signaling. However, these mutants retain the ability to suppress noncanonical Wnt signaling, probably due to interaction with dishevelled. RNF43 is also one of the potential target genes of Wnt/β-catenin signaling. Our results reveal the molecular role of RNF43 and provide an insight into tumorigenesis.  相似文献   

2.
While Wnt and Hgf signaling pathways are known to regulate epithelial cell responses during injury and repair, whether they exhibit functional cross-talk is not well defined. Canonical Wnt signaling is initiated by the phosphorylation of the Lrp5/6 co-receptors. In the current study we demonstrate that Hgf stimulates Met and Gsk3-dependent and Wnt-independent phosphorylation of Lrp5/6 at three separate activation motifs in subconfluent, de-differentiated renal epithelial cells. Hgf treatment stimulates the selective association of active Gsk3 with Lrp5/6. In contrast, Akt-phosphorylated inactive Gsk3 is excluded from this association. Hgf stimulates β-catenin stabilization and nuclear accumulation and protects against epithelial cell apoptosis in an Lrp5/6-dependent fashion. In vivo, the increase in Lrp5/6 phosphorylation and β-catenin stabilization in the first 6–24 h after renal ischemic injury was significantly reduced in mice lacking Met receptor in the renal proximal tubule. Our results thus identify Hgf as an important transactivator of canonical Wnt signaling that is mediated by Met-stimulated, Gsk3-dependent Lrp5/6 phosphorylation.  相似文献   

3.
4.
5.
β-Arrestin is a scaffold protein that regulates signal transduction by seven transmembrane-spanning receptors. Among other functions it is also critically required for Wnt/β-catenin signal transduction. In the present study we provide for the first time a mechanistic basis for the β-arrestin function in Wnt/β-catenin signaling. We demonstrate that β-arrestin is required for efficient Wnt3a-induced Lrp6 phosphorylation, a key event in downstream signaling. β-Arrestin regulates Lrp6 phosphorylation via a novel interaction with phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)-binding protein Amer1/WTX/Fam123b. Amer1 has been shown very recently to bridge Wnt-induced and Dishevelled-associated PtdIns(4,5)P2 production to the phosphorylation of Lrp6. Using fluorescence recovery after photobleaching we show here that β-arrestin is required for the Wnt3a-induced Amer1 membrane dynamics and downstream signaling. Finally, we show that β-arrestin interacts with PtdIns kinases PI4KIIα and PIP5KIβ. Importantly, cells lacking β-arrestin showed higher steady-state levels of the relevant PtdInsP and were unable to increase levels of these PtdInsP in response to Wnt3a. In summary, our data show that β-arrestins regulate Wnt3a-induced Lrp6 phosphorylation by the regulation of the membrane dynamics of Amer1. We propose that β-arrestins via their scaffolding function facilitate Amer1 interaction with PtdIns(4,5)P2, which is produced locally upon Wnt3a stimulation by β-arrestin- and Dishevelled-associated kinases.  相似文献   

6.
7.
In the canonical Wnt signaling pathway, the translocation of β-catenin is important for the activation of target genes in the nucleus. However, the molecular mechanisms underlying its nuclear localization remain unclear. In the present study, we found IQGAP1 to be a regulator of β-catenin function via importin-β5. In Xenopus embryos, depletion of IQGAP1 reduced Wnt-induced nuclear accumulation of β-catenin and expression of Wnt target genes during early embryogenesis. Depletion of endogenous importin-β5 associated with IQGAP1 also reduced expression of Wnt target genes and the nuclear localization of IQGAP1 and β-catenin. Moreover, a small GTPase, Ran1, contributes to the nuclear translocation of β-catenin and the activation of Wnt target genes. These results suggest that IQGAP1 functions as a regulator of translocation of β-catenin in the canonical Wnt signaling pathway.  相似文献   

8.
The canonical Wnt/β-catenin pathway plays a key role in the regulation of bone remodeling in mice and humans. Two transmembrane proteins that are involved in decreasing the activity of this pathway by binding to extracellular antagonists, such as Dickkopf 1 (Dkk1), are the low-density lipoprotein receptor related protein 5 (Lrp5) and Kremen 2 (Krm2). Lrp 5 deficiency (Lrp5−/−) as well as osteoblast-specific overexpression of Krm2 in mice (Col1a1-Krm2) result in severe osteoporosis occurring at young age. In this study, we analyzed the influence of Lrp5 deficiency and osteoblast-specific overexpression of Krm2 on fracture healing in mice using flexible and semi-rigid fracture fixation. We demonstrated that fracture healing was highly impaired in both mouse genotypes, but that impairment was more severe in Col1a1-Krm2 than in Lrp5−/− mice and particularly evident in mice in which the more flexible fixation was used. Bone formation was more reduced in Col1a1-Krm2 than in Lrp5−/− mice, whereas osteoclast number was similarly increased in both genotypes in comparison with wild-type mice. Using microarray analysis we identified reduced expression of genes mainly involved in osteogenesis that seemed to be responsible for the observed stronger impairment of healing in Col1a1-Krm2 mice. In line with these findings, we detected decreased expression of sphingomyelin phosphodiesterase 3 (Smpd3) and less active β-catenin in the calli of Col1a1-Krm2 mice. Since Krm2 seems to play a significant role in regulating bone formation during fracture healing, antagonizing KRM2 might be a therapeutic option to improve fracture healing under compromised conditions, such as osteoporosis.  相似文献   

9.
10.
Deviation from proper muscle development or homeostasis results in various myopathic conditions. Employing genetic as well as chemical intervention, we provide evidence that a tight regulation of Wnt/β-catenin signaling is essential for muscle fiber growth and maintenance. In zebrafish embryos, gain-of-Wnt/β-catenin function results in unscheduled muscle progenitor proliferation, leading to slow and fast muscle hypertrophy accompanied by fast muscle degeneration. The effects of Wnt/β-catenin signaling on fast muscle hypertrophy were rescued by misexpression of Myostatin or p21CIP/WAF, establishing an in vivo regulation of myofibrillogenesis by Wnt/β-catenin signaling and Myostatin. Epistatic analyses suggest a possible genetic interaction between Wnt/β-catenin and Myostatin in regulation of slow and fast twitch muscle myofibrillogenesis.  相似文献   

11.
Canonical Wnt signals are transduced through a Frizzled receptor and either the LRP5 or LRP6 co-receptor; such signals play central roles during development and in disease. We have previously shown that Lrp5 is required for ductal stem cell activity and that loss of Lrp5 delays normal mammary development and Wnt1-induced tumorigenesis. Here we show that canonical Wnt signals through the Lrp6 co-receptor are also required for normal mouse mammary gland development. Loss of Lrp6 compromises Wnt/β-catenin signaling and interferes with mammary placode, fat pad, and branching development during embryogenesis. Heterozygosity for an inactivating mutation in Lrp6 is associated with a reduced number of terminal end buds and branches during postnatal development. While Lrp6 is expressed in both the basal and luminal mammary epithelium during embryogenesis, Lrp6 expression later becomes restricted to cells residing in the basal epithelial layer. Interestingly, these cells also express mammary stem cell markers. In humans, increased Lrp6 expression is associated with basal-like breast cancer. Taken together, our results suggest both overlapping and specific functions for Lrp5 and Lrp6 in the mammary gland.  相似文献   

12.
Flavonoids are plant-derived polyphenolic molecules that have potential biological effects including anti-oxidative, anti-inflammatory, anti-viral, and anti-tumoral effects. These effects are related to the ability of flavonoids to modulate signaling pathways, such as the canonical Wnt signaling pathway. This pathway controls many aspects of embryonic development and tissue maintenance and has been found to be deregulated in a range of human cancers. We performed several in vivo assays in Xenopus embryos, a functional model of canonical Wnt signaling studies, and also used in vitro models, to investigate whether isoquercitrin affects Wnt/β-catenin signaling. Our data provide strong support for an inhibitory effect of isoquercitrin on Wnt/β-catenin, where the flavonoid acts downstream of β-catenin translocation to the nuclei. Isoquercitrin affects Xenopus axis establishment, reverses double axes and the LiCl hyperdorsalization phenotype, and reduces Xnr3 expression. In addition, this flavonoid shows anti-tumoral effects on colon cancer cells (SW480, DLD-1, and HCT116), whereas exerting no significant effect on non-tumor colon cell (IEC-18), suggesting a specific effect in tumor cells in vitro. Taken together, our data indicate that isoquercitrin is an inhibitor of Wnt/β-catenin and should be further investigated as a potential novel anti-tumoral agent.  相似文献   

13.
Wnt signaling plays a pivotal role in embryogenesis and tissue homeostasis. Dishevelled (Dvl) is a central mediator for both Wnt/β-catenin and Wnt/planar cell polarity pathways. NEDD4L, an E3 ubiquitin ligase, has been shown to regulate ion channel activity, cell signaling, and cell polarity. Here, we report a novel role of NEDD4L in the regulation of Wnt signaling. NEDD4L induces Dvl2 polyubiquitination and targets Dvl2 for proteasomal degradation. Interestingly, the NEDD4L-mediated ubiquitination of Dvl2 is Lys-6, Lys-27, and Lys-29 linked but not typical Lys-48-linked ubiquitination. Consistent with the role of Dvl in both Wnt/β-catenin and Wnt/planar cell polarity signaling, NEDD4L regulates the cellular β-catenin level and Rac1, RhoA, and JNK activities. We have further identified a hierarchical regulation that Wnt5a induces JNK-mediated phosphorylation of NEDD4L, which in turn promotes its ability to degrade Dvl2. Finally, we show that NEDD4L inhibits Dvl2-induced axis duplication in Xenopus embryos. Our work thus demonstrates that NEDD4L is a negative feedback regulator of Wnt signaling.  相似文献   

14.
Lrp5 and Lrp6 redundantly control skeletal development in the mouse embryo   总被引:1,自引:0,他引:1  
The role of Wnt signaling in osteoblastogenesis in the embryo remains to be fully established. Although β-catenin, a multifunctional protein also mediating canonical Wnt signaling, is indispensable for embryonic osteoblast differentiation, the roles of the key Wnt co-receptors Lrp5 and Lrp6 are unclear. Indeed, global deletion of either Lrp5 or Lrp6 did not overtly affect osteoblast differentiation in the mouse embryo. Here, we generated mice lacking both receptors specifically in the embryonic mesenchyme and observed an absence of osteoblasts in the embryo. In addition, the double-deficient embryos developed supernumerary cartilage elements in the zeugopod, revealing an important role for mesenchymal Lrp5/6 signaling in limb patterning. Importantly, the phenotypes of the Lrp5/6 mutant closely resembled those of the β-catenin-deficient embryos. These phenotypes are likely independent of any effect on the adherens junction, as deletion of α-catenin, another component of the complex, did not cause similar defects. Thus, Lrp5 and 6 redundantly control embryonic skeletal development, likely through β-catenin signaling.  相似文献   

15.
Kremen1 and Kremen2 (Krm1 and Krm2) are transmembrane coreceptors for Dickkopf1 (Dkk1), an antagonist of Wnt/β-catenin signaling. The physiological relevance of Kremen proteins in mammals as Wnt modulators is unresolved. We generated and characterized Krm mutant mice and found that double mutants show enhanced Wnt signaling accompanied by ectopic postaxial forelimb digits and expanded apical ectodermal ridges. Triple mutant Krm1−/ Krm2−/ Dkk1+/ mice show enhanced growth of ectopic digits, indicating that Dkk1 and Krm genes genetically interact during limb development. Wnt/β-catenin signaling also plays a critical role in bone formation. Single Krm mutants show normal bone formation and bone mass, while double mutants show increased bone volume and bone formation parameters. Our study provides the first genetic evidence for a functional interaction of Kremen proteins with Dkk1 as negative regulators of Wnt/β-catenin signaling and reveals that Kremen proteins are not universally required for Dkk1 function.  相似文献   

16.
17.
Mutations in the adenomatous polyposis coli (APC) tumor suppressor gene are linked to both familial and sporadic human colon cancer. So far, a clear biological function for the APC gene product has not been determined. We assayed the activity of APC in the early Xenopus embryo, which has been established as a good model for the analysis of the signaling activity of the APC-associated protein β-catenin. When expressed in the future ventral side of a four-cell embryo, full-length APC induced a secondary dorsoanterior axis and the induction of the homeobox gene Siamois. This is similar to the phenotype previously observed for ectopic β-catenin expression. In fact, axis induction by APC required the availability of cytosolic β-catenin. These results indicate that APC has signaling activity in the early Xenopus embryo. Signaling activity resides in the central domain of the protein, a part of the molecule that is missing in most of the truncating APC mutations in colon cancer. Signaling by APC in Xenopus embryos is not accompanied by detectable changes in expression levels of β-catenin, indicating that it has direct positive signaling activity in addition to its role in β-catenin turnover. From these results we propose a model in which APC acts as part of the Wnt/β-catenin signaling pathway, either upstream of, or in conjunction with, β-catenin.  相似文献   

18.
Dishevelled (Dvl) proteins are intracellular effectors of Wnt signaling that have essential roles in both canonical and noncanonical Wnt pathways. It has long been known that Wnts stimulate Dvl phosphorylation, but relatively little is known about its functional significance. We have previously reported that both Wnt3a and Wnt5a induce Dvl2 phosphorylation that is associated with an electrophoretic mobility shift and loss of recognition by monoclonal antibody 10B5. In the present study, we mapped the 10B5 epitope to a 16-amino acid segment of human Dvl2 (residues 594–609) that contains four Ser/Thr residues. Alanine substitution of these residues (P4m) eliminated the mobility shift induced by either Wnt3a or Wnt5a. The Dvl2 P4m mutant showed a modest increase in canonical Wnt/β-catenin signaling activity relative to wild type. Consistent with this finding, Dvl2 4Pm preferentially localized to cytoplasmic puncta. In contrast to wild-type Dvl2, however, the P4m mutant was unable to rescue Wnt3a-dependent neurite outgrowth in TC-32 cells following suppression of endogenous Dvl2/3. Earlier work has implicated casein kinase 1δ/ϵ as responsible for the Dvl mobility shift, and a CK1δ in vitro kinase assay confirmed that Ser594, Thr595, and Ser597 of Dvl2 are CK1 targets. Alanine substitution of these three residues was sufficient to abrogate the Wnt-dependent mobility shift. Thus, we have identified a cluster of Ser/Thr residues in the C-terminal domain of Dvl2 that are Wnt-induced phosphorylation (WIP) sites. Our results indicate that phosphorylation at the WIP sites reduces Dvl accumulation in puncta and attenuates β-catenin signaling, whereas it enables noncanonical signaling that is required for neurite outgrowth.  相似文献   

19.
Both β-catenin and NF-κB have been implicated in our laboratory as candidate factors in driving proliferation in an in vivo model of Citrobacter rodentium (CR)-induced colonic crypt hyper-proliferation and hyperplasia. Herein, we test the hypothesis that β-catenin and not necessarily NF-κB regulates colonic crypt hyperplasia or tumorigenesis in response to CR infection. When C57Bl/6 wild type (WT) mice were infected with CR, sequential increases in proliferation at days 9 and 12 plateaued off at day 19 and paralleled increases in NF-κB signaling. In Tlr4−/− (KO) mice, a sequential but sustained proliferation which tapered off only marginally at day 19, was associated with TLR4-dependent and independent increases in NF-κB signaling. Similarly, increases in either activated or total β-catenin in the colonic crypts of WT mice as early as day 3 post-infection coincided with cyclinD1 and c-myc expression and associated crypt hyperplasia. In KO mice, a delayed kinetics associated predominantly with increases in non-phosphorylated (active) β-catenin coincided with increases in cyclinD1, c-myc and crypt hyperplasia. Interestingly, PKCζ-catalyzed Ser-9 phosphorylation and inactivation of GSK-3β and not loss of wild type APC protein accounted for β-catenin accumulation and nuclear translocation in either strain. In vitro studies with Wnt2b and Wnt5a further validated the interplay between the Wnt/β-catenin and NF-κB pathways, respectively. When WT or KO mice were treated with nanoparticle-encapsulated siRNA to β-catenin (si- β-Cat), almost complete loss of nuclear β-catenin coincided with concomitant decreases in CD44 and crypt hyperplasia without defects in NF-κB signaling. si-β-Cat treatment to Apc Min/+ mice attenuated CR-induced increases in β-catenin and CD44 that halted the growth of mutated crypts without affecting NF-κB signaling. The predominant β-catenin-induced crypt proliferation was further validated in a Castaneus strain (B6.CAST.11M) that exhibited significant crypt hyperplasia despite an attenuated NF-κB signaling. Thus, β-catenin and not necessarily NF-κB regulates crypt hyperplasia in response to bacterial infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号