首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The ovaries of aphids belonging to the families Eriosomatidae, Anoeciidae, Drepanosiphidae, Thelaxidae, Aphididae, and Lachnidae were examined at the ultrastructural level. The ovaries of these aphids are composed of several telotrophic ovarioles. The individual ovariole is differentiated into a terminal filament, tropharium, vitellarium, and pedicel (ovariolar stalk). Terminal filaments of all ovarioles join together into the suspensory ligament, which attaches the ovary to the lobe of the fat body. The tropharium houses individual trophocytes and early previtellogenic oocytes termed arrested oocytes. Trophocytes are connected with the central part of the tropharium, the trophic core, by means of broad cytoplasmic processes. One or more oocytes develop in the vitellarium. Oocytes are surrounded by a single layer of follicular cells, which do not diversify into distinct subpopulations. The general organization of the ovaries in oviparous females is similar to that of the ovaries in viviparous females, but there are significant differences in their functioning: (1) in viviparous females, all ovarioles develop, whereas in oviparous females, some of them degenerate; (2) the number of germ cells per ovariole is usually greater in females of the oviparous generation than in females of viviparous generations; (3) in oviparous females, oocytes in the vitellarium develop through three stages (previtellogenesis, vitellogenesis, and choriogenesis), whereas in viviparous females, the development of oocytes stops after previtellogenesis; and (4) in the oocyte cytoplasm of oviparous females, lipid droplets and yolk granules accumulate, whereas in viviparous females, oocytes accrue only lipid droplets. Our results indicate that a large number of germ cells per ovariole represent the ancestral state within aphids. This trait may be helpful in inferring the phylogeny of Aphidoidea.  相似文献   

2.
The paired ovaries of young larva of the 3rd instar of Orthezia urticae are filled with numerous germ cell clusters that can be regarded as ovariole anlagen. Germ cells (cystocytes) belonging to one cluster form a rosette, in the centre of which a polyfusome occurs. Staining with rhodamine-phalloidin has revealed that polyfusomes contain numerous microfilaments. The number of cystocytes per cluster is not stable and varies considerably. The ovaries of older larva become elongated with numerous young ovarioles protruding into the body cavity. The ovarioles are not subdivided into the tropharium and vitellarium. In this stage germ cells differentiate into oocytes and trophocytes (nurse cells). The ovaries of adult females are composed of about 20 (Newsteadia floccosa) or 30 (O. urticae) ovarioles. Their trophic chambers contain trophocytes and arrested oocytes. In the vitellarium, at the given moment, only one oocyte develops. It has been observed that after maturation of the first egg the arrested oocytes may develop.  相似文献   

3.
The ovaries of early embryos (40 days post coitum/p.c.) of the bat Carollia perspicillata contain numerous germ-line cysts, which are composed of 10 to 12 sister germ cells (cystocytes). Variability in the number of cystocytes within the cyst and between the cysts (defying the Giardina rule) indicates that the mitotic divisions of the cystoblast are asynchronous in this bat species. Serial section analysis showed that the cystocytes are interconnected via intercellular bridges that are atypical, strongly elongated, short-lived, and rich in microtubule bundles and microfilaments. During slightly later stages of embryonic development (44-46 days p.c.), somatic cells penetrate the cyst, and their cytoplasmic projections separate individual oocytes. Separated oocytes surrounded by a single layer of somatic cells constitute the primordial ovarian follicles. The oocytes of C. perspicillata are similar to mouse oocytes and are asymmetric. In both species, this asymmetry is clearly recognizable in the localization of the Golgi complexes. The presence of germ-line cysts and intercellular bridges (although noncanonical) in the fetal ovaries of C. perspicillata suggest that the formation of germ-line cysts is an evolutionarily conserved phase in the development of the female gametes in a substantial part of the animal kingdom.  相似文献   

4.
Ultrastructure and previtellogenic growth of ovaries of Peripsocus phaeopterus (Stephens) and Stenopsocus stigmaticus (Imhof and Labram) (Insecta : Psocoptera) are described. The germ cell cluster formation was analyzed in an ovariole of a nymph using ultrathin serial sectioning. Fifteen germ cell clusters were found; 13 contained 4 cystocytes each, while 2 clusters, situated in the very tip, were composed of 2 cystocytes each. A fully developed cluster rises by 2 synchronized mitotic divisions, each followed by incomplete cytokinesis. Microtubules derived from the preceding mitoses form a transient midbody within the intercellular bridge. Later on, a fusome fills each bridge, while at fusomal rims parallel oriented microtubules are tightly associated. Some of these microtubules stretch to cell membranes nearby. The fusomes fuse into a polyfusome and a rosette is thus formed by which all intercellular bridges are drawn together. All cystocytes enter the prophase of meiosis up to pachynema. One of the 2 inner cells continues meiosis and develops as an oocyte, whereas all others transform into nurse cells. After rosette formation, the polyfusome-associated microtubules vanish and some time later, when the nurse cell-oocyte differentiation becomes apparent, the polyfusome itself becomes destroyed. The intercellular bridge, joining the first nurse cell with the 3rd moves away from the other 2. During previtellogenesis, 5 phases can be distinguished, 2 of which are interpreted as logarithmical growth phases with different slopes. The whole set of characters elaborated here for the polytrophic meroistic ovary of psocopterans is fully consistent with the characters of polytrophic meroistic ovaries of Holometabola, indicating a monophyletic origin.  相似文献   

5.
Piscicola has a pair of elongated sac-shaped ovaries. Inside the ovaries are numerous small somatic cells and regularly spherical egg follicles. Each follicle is composed of three types of cells: many (average 30) germ cells (cystocytes) interconnected by intercellular bridges in clones (cysts), one intermediate cell, and three to five outer follicle cells (envelope cells). Each germ cell in a clone has one intercellular bridge connecting it to the central anucleate cytoplasmic mass, the cytophore. Each cluster of germ cells is completely embedded inside a single huge somatic follicle cell, the intermediate (interstitial) cell. The most spectacular feature of the intermediate cell is its development of a system of intracytoplasmic canals apparently formed of invaginations of its cell membrane. Initially the complex of germ cell cluster + intermediate cell is enclosed within an envelope composed of squamous cells. As oogenesis progresses the envelope cells gradually degenerate. All the germ cells that have terminated their mitotic divisions are of similar size and enter meiotic prophase, but one of the cystocytes promptly starts to grow faster and differentiates into the oocyte, whereas the remaining cystocytes withdraw from meiosis and become nurse cells (trophocytes). Numerous mitochondria, ER, and a vast amount of ribosomes are transferred from the trophocytes via the cytophore toward the oocyte. Eventually the oocyte ingests all the content of the cytophore, and the trophocytes degenerate. Little vitellogenesis takes place; the oocyte gathers nutrients in the form of small lipid droplets. At the end of oogenesis, an electron-dense fibrous vitelline envelope appears around the oocyte, among short microvilli. At the same time, electron-dense cortical granules occur in the oocyte cortical cytoplasm; at the end of oogenesis they are numerous, but after fertilization they disappear from the ooplasm. In the present article we point out many differences in the course of oogenesis in two related families of rhynchobdellids: piscicolids and glossiphoniids.  相似文献   

6.
The paired, spindle-shaped ovaries of the second instar of the Polish cochineal, Porphyrophora polonica (L.) (Hemiptera: Coccinea) are filled with cystocytes that are arranged into rosettes. In the centre of each rosette, there is a polyfusome. During the third instar, cystocytes differentiate into oocytes and trophocytes (nurse cells) and ovarioles are formed. Ovaries of adult females are composed of about 300 ovarioles of the telotrophic type. Each of them is subdivided into a tropharium (trophic chamber) and vitellarium. The tropharium consists of trophocytes and arrested oocytes that may develop. The number of germ cells in the trophic chambers varies from 11 to 18 even between the ovarioles of the same ovary. The obtained results seem to confirm the concept of a monophyletic origin of the primitive scale insects (Archaeococcoidea).  相似文献   

7.
Developing ovaries of scale insects (Hemiptera : Coccinea) Nipaecoccus nipae (Pseudococcidae) and Cryptococcus fagisuga (Cryptococcidae) contain clusters of interconnected cells (cystocytes) that are arranged into rosettes; polyfusomes occur in the centres of the rosettes. Ovaries of the investigated adult scale insects are composed of numerous short telotrophic ovarioles. Tropharia (trophic chambers) of Dysmicoccus newsteadi (Pseudococcidae), Eriococcus buxi (Eriococcidae), Cryptococcus fagisuga and Pseudochermes fraxini (Cryptococcidae) comprise only trophocytes (nurse cells), whereas those of Kermes quercus (Kermesidae) and Gossyparia spuria (Eriococcidae) also contain arrested oocytes. The latter probably degenerate. It is suggested that during evolution of scale insects a gradual reduction of germ cells to 4 per cluster (3 trophocytes and 1 oocyte) took place. In light of the obtained results, anagenesis of scale insects ovarioles is discussed.  相似文献   

8.
Ovaries of phylloxerids consist of short telotrophic ovarioles. Ovaries of wingless morphs contain four ovarioles whereas those of winged morphs contain one or two ovarioles. The individual ovariole of the adult female is differentiated into a terminal filament, trophic chamber (tropharium), vitellarium and short ovariole stalk (pedicel). The number of germ cells constituting ovarioles is not stable and ranges between 49 and 64. The tropharia enclose individual trophocytes and arrested oocytes. The vitellaria contain usually two oocytes, which develop through three stages: previtellogenesis, vitellogenesis and choriogenesis. Endosymbiotic microorganisms do not occur in the germ cells. In the light of the obtained results, the phylogenetic relationships between aphid families are discussed.  相似文献   

9.
Ovaries of heteropterans consist of telotrophic meroistic ovarioles that are composed of apically located tropharium and basal vitellarium, containing developing oocytes. The tropharium (trophic chamber) houses trophocytes (nurse cells) that are connected with the centrally located trophic core. The organization of the heteropteran tropharia is highly variable and differs in representatives of primitive versus advanced families. The differences concern the mitotic activity of the apical nurse cells, organization of the trophocytes (individual cells or "syncytial lobes"), their connection with the trophic core and the development of F-actin meshwork around the trophic core. In members of primitive taxa of the Heteroptera, tropharia are composed of individual, usually mononucleate trophocytes. On the contrary, tropharia in advanced heteropterans are built of large "cytoplasmic lobes" that contain several trophocyte nuclei. Mitotic divisions of the trophocytes in the apical part of the trophic chamber are observed in most bugs (except Dipsocoridae, Miridae and Cimicidae). Tropharia of Miridae represent an entirely different organization (they are built of one type of highly polyploid trophocytes). Anagenesis of heteropteran trophic chamber is discussed in the context of presented data.  相似文献   

10.
Three-dimensional models were constructed utilizing the information gained from electron micrographs of serial sections of two clones of cystocytes undergoing their terminal divisions. In each clone a polyfusome connected all eight cystocytes together. Each of the spindles was oriented so that one pole touched the polyfusomes, while the other pointed away from it. This positioning of spindles ensures that one cell of each dividing pair retains all previously formed canals, while the other receives none. The two cells that eventually come to contain the maximum number of canals and fusomal material are the ones that differentiate as pro-oocytes, while the others become nurse cells. The orientation of each spindle suggests that the polyfusome formed at one division determines the placement of the cytoskeletal fibers that anchor the spindles formed at the next division. There is a centripetal gathering together of new canals following each cycle of cystocyte division, which is thought to result from the subsequent contraction of the polyfusomal system. Females homozygous for the otu1 mutation are characterized by ovarian tumors, which result when germarial cystocytes undergo supernumerary divisions and fail to differentiate into either nurse cells or oocytes. An analysis of electron micrographs taken of serially sectioned, mutant germaria showed that most germ cells were single or belonged to clusters of two or three interconnected cells. Therefore otu1 cystocytes are unable to undergo a sustained series of arrested cleavages. These cystocytes contain fusomal material that shows ultrastructural differences from normal polyfusomes. We conclude: 1) that a normal polyfusomal system is a necessary prerequisite for the production of a branched chain of cystocytes and for their subsequent differentiation into pro-oocytes and nurse cells; and 2) that a product encoded by the otu+ gene is essential for the construction of a functional polyfusome.  相似文献   

11.
The ovaries of female lac insects, Kerria chinensis Mahd (Sternorrhyncha: Coccoidea: Kerridae), at the last nymphal stage are composed of several balloon‐like clusters of cystocytes with different sizes. Each cluster consists of several clusters of cystocytes arranging in rosette forms. At the adult stage, the pair of ovaries consists of about 600 ovarioles of the telotrophic‐meroistic type. An unusual feature when considering most scale insects is that the lateral oviducts are highly branched, each with a number of short ovarioles. Each ovariole is subdivided into an anterior trophic chamber (tropharium) containing six or seven large trophocytes and a posterior vitellarium harbouring one oocyte which is connected with the trophic chamber via a nutritive cord. No terminal filament is present. Late‐stage adult females show synchronized development of the ovarioles, while in undernourished females, a small proportion of ovarioles proceed to maturity.  相似文献   

12.
The ovaries of the common wasp, Vespula germanica are polytrophic-meroistic and consist of 2-3 (workers) or 7 (queens) ovarioles. The ovarioles are differentiated into three regions: a terminal filament, a germarium, and a vitellarium. The germaria of both castes consist of two zones: an anterior zone of germ-cell cluster formation and a posterior one of germ-cell cluster differentiation. The vitellaria comprise 4-6 (workers) or 7-10 (queens) ovarian follicles (egg chambers). Each chamber consists of an oocyte and about 60 isodiametric nurse cells (trophocytes). The egg chambers have been arbitrarily classified into four developmental categories: early and late previtellogenic, vitellogenic, and choriogenic. The process of oogenesis in workers proceeds only up to the onset of the late previtellogenesis. Neither vitellogenic nor choriogenic egg chambers were observed in this caste. During early and late previtellogenesis the envelope of the oocyte nucleus proliferates and becomes highly folded. This process leads to the formation of characteristic organelles, termed accessory nuclei (AN). Although AN arise in the oocytes of both queens and workers, their number in the latter caste is always considerably lower. At the onset of the late previtellogenesis AN start to migrate towards the periphery of the oocyte where they reside till the end of oogenesis. The physiological state of the worker ovaries is discussed in the light of the presented results.  相似文献   

13.
Drosophila ovarian cysts arise through a series of four synchronous incomplete mitotic divisions. After each round of mitosis, a membranous organelle, the fusome, grows along the cleavage furrow and the remnants of the mitotic spindle to connect all cystocytes in a cyst. The fusome is essential for the pattern and synchrony of the mitotic cyst divisions as well as oocyte differentiation. Using live cell imaging, green fluorescent protein-tagged proteins, and photobleaching techniques, we demonstrate that fusomal endomembranes are part of a single continuous endoplasmic reticulum (ER) that is shared by all cystocytes in dividing ovarian cysts. Membrane and lumenal proteins of the common ER freely and rapidly diffuse between cystocytes. The fusomal ER mediates intercellular ER connectivity by linking the cytoplasmic ER membranes of all cystocytes within a cyst. Before entry into meiosis and onset of oocyte differentiation (between region 1 and region 2A), ER continuity between cystocytes is lost. Furthermore, analyses of hts and Dhc64c mutants indicate that intercellular ER continuity within dividing ovarian cysts requires the fusome cytoskeletal component and suggest a possible role for the common ER in synchronizing mitotic cyst divisions.  相似文献   

14.
Germline cysts containing 16 interconnected cells (cystocytes) are produced at an early stage of Drosophila oogenesis by progenitor cells known as cystoblasts that undergo four synchronous rounds of incomplete division. During cyst formation, a region of specialized, spectrin-rich cytoplasm called the fusome traverses the intercellular Connections (ring canals), linking individual cystocytes. Subsequently, 15 cystocytes begin to transport specific RNAs and other components into the remaining cell, the future oocyte. We used fusome-specific antibodies to characterize the early stages of cyst formation. During the first cystoblast division, a spherical mass of fusome material (the “spectrosome”) was associated with only one pole of the mitotic spindle, revealing that this division is asymmetric. During the subsequent three divisions, the growing fusome always associated with the pole of each mitotic spindle that remained in the mother cell, and only extended through the newly formed ring canals after each division was completed. These observations suggest that fusomes help establish a system of directional transport between cystocytes that underlies oocyte determination. © 1995 Wiley-Liss, Inc.  相似文献   

15.
The structure of ovaries has been analysed in advanced aphids only. In this paper we report the results of ultrastructural studies on the ovarioles of Adelges laricis, a representative of the primitive aphid family, Adelgidae. The ovaries of the studied species are composed of five telotrophic‐meroistic ovarioles that are subdivided into a terminal filament, tropharium (= trophic chamber) and vitellarium. The tropharium houses trophocytes (= nurse cells) and arrested oocytes. The vitellarium consists of one or two ovarian follicles. The total number of germ cells (trophocytes + oocytes) in the ovarioles analysed varies from 50 to 92 and is substantially higher than in previously studied aphids. The centre of the tropharium is occupied by a cell‐free region, termed a trophic core, which is connected both with trophocytes and oocytes. Trophocytes are connected to the core by means of cytoplasmic strands, whereas oocytes by nutritive cords. Both trophic core and nutritive cords are filled with parallel arranged microtubules. In the light of obtained results the anagenesis of hemipteran ovaries is discussed.  相似文献   

16.
Glossiphonia heteroclita has paired ovaries whose shape and dimensions change as oogenesis proceeds: during early previtellogenesis they are small and club-shaped, whereas during vitellogenesis they broaden and elongate considerably. During early oogenesis (previtellogenesis), each ovary is composed of an outer envelope (ovisac) that surrounds the ovary cavity and is filled with hemocoelomic fluid, in which a single and very convoluted ovary cord is bathed. The ovary cord consists of germline cells, including nurse cells and young oocytes surrounded by a layer of elongated follicle cells. Additionally, follicle cells with long cytoplasmic projections occur inside the ovary cord, where they separate germ cells from each other. The ovary cord contains thousands of nurse cells. Each nurse cell has one intercellular bridge, connecting it to a central anucleate cytoplasmic mass, the cytophore (rachis); it in turn is connected by one intercellular bridge with each growing oocyte. Numerous mitochondria, RER cisternae, ribosomes, and Golgi complexes are transported from the nurse cells, via the intercellular bridge and cytophore, to the growing oocytes. Oogenesis in G. heteroclita is synchronous with all oocytes in the ovary in the same stage of oogenesis. The youngest observed oocytes are slightly larger than nurse cells, and usually occupy the periphery of the ovary cord. As previtellogenesis proceeds, the oocytes gather a vast amount of cell organelles and become more voluminous. As a result, in late previtellogenesis the oocytes gradually protrude into the ovary cavity. Simultaneously with oocyte growth, the follicle cells differentiate into two subpopulations. The morphology of the follicle cells surrounding the nurse cells and penetrating the ovary cord does not change, whereas those enveloping the growing oocytes become more voluminous. Their plasma membrane invaginates deeply, forming numerous broad vesicles that eventually seem to form channels or conducts through which the hemocoelomic fluid can easily access the growing oocytes.  相似文献   

17.
Three different ovariole types exist in insects: panoistic, polytrophic- and telotrophic-meroistic. Their ontogenetic development is comparable to all insect orders. Each ovariole is composed of somatic tissues and germ cells.Panoistic ovarioles can be developed: (1) by totally blocking germ cell cluster division (e.g. in “primitive” insect orders; and (2) after germ cell cluster formation by final cleavage of cystocytes, which develop as oocytes (e.g. in stoneflies or thrips).Polytrophic-meroistic ovaries, showing a set of identical characters, are found among hemirnetabolous and holometabolous insects, indicating a “basic type” of common origin. One characteristic feature is the differentiation of only one oocyte, which is derived from one central cell of the cluster, whereas all other siblings are transformed into nurse cells.Telotrophic ovaries differ from polytrophic ovaries by retention of all nurse cells in the anterior trophic chamber. In addition, oocyte-nurse cell determination can be shifted towards more oocytes in a cluster, and clusters or subclusters can fuse by cell membrane reduction among nurse cells. This type of ovary developed independently 3 times from polytrophic ancestors and once in mayflies directly from panoistic ancestors.  相似文献   

18.
Telotrophic ovarioles of scale insects are subdivided into tropharia (=trophic chambers) and vitellaria that contain single developing oocytes. Tropharium encloses trophocytes (=nurse cells) and arrested oocytes. The central area of the tropharium, termed the trophic core, is devoid of cells. Both trophocytes and oocytes are connected to the trophic core: trophocytes by cytoplasmic processes, oocytes by means of nutritive cords. The trophic core, processes and nutritive cords are filled with bundles of microtubules. The trophocytes contain large lobated nuclei with giant nucleoli. Fluorescent labelling with DAPI has shown that trophocyte nuclei are characterized by high contents of DNA. In the cortical cytoplasm of trophocytes, numerous microfilaments are present. The developing oocyte is surrounded by a simple follicular epithelium. The cortical cytoplasm of follicular cells contains numerous microtubules and microfilaments.  相似文献   

19.
ABSTRACT. Topical application of a juvenile hormone (JH1) and the JH mimic, kinoprene, to short-day, ovipara-producers of Megoura viciae usually leads to the production of oviparous/viviparous intermediate forms in the progeny sequence, in place of the expected sexual females (oviparae). The ovaries of these abnormal forms may contain embryos rather than the haploid yolky eggs of oviparae; 'mixed' ovaries containing both haploid eggs and embryos are also observed. The intermediates range in form from winged (alate) to wingless (apterous). The fully alate individuals usually contain only parthenogenetic ovaries but differ from the naturally occurring alate viviparae in that they are invariably infertile, have fewer antennal sense organs and often bear pheromone releasing glands on the metathoracic tibiae. The hormonally induced production of normal viviparae is difficult in this species but has been achieved by rearing short-day aphids on kinoprene-treated bean plants.
In Aphis fabae similar oviparous/viviparous teratomorphs have been reported and, in addition, single JH1 treatments were shown to induce normal viviparae at the end of the progeny sequence. Multiple applications, beginning prenatally and continuing through the postnatal development of the gynopara (winged ovipara-producer), showed that the numbers of viviparae born were related to the earliness of the treatment and to the dosage. The results are compared with the effect of a switch in photoperiod and discussed in relation to the endocrine control of aphid polymorphism.  相似文献   

20.
In Drosophila, oogenesis is initiated when a germline stem cell produces a differentiating daughter cell called the cystoblast. The cystoblast undergoes four rounds of synchronous divisions with incomplete cytokinesis to generate a syncytial cyst of 16 interconnected cystocytes, in which one cystocyte differentiates into an oocyte. Strong mutations of the arrest (aret) gene disrupt cyst formation and cause the production of clusters of ill-differentiated germline cells that retain cellular and molecular characteristics of cystoblasts. These mutant germ cells express high levels of BAM-C and SXL proteins in the cytoplasm but do not accumulate markers for advanced cystocytes or differentiating oocytes, such as the nuclear localization of SXL or the accumulation of osk mRNA, orb mRNA, and cytoplasmic dynein. However, the mutant germ cells do not contain spectrosomes, the cytoplasmic structure that objectifies the divisional asymmetry of the cystoblast. The aret mutant germ cells undergo active mitosis with complete cytokinesis. Their mitosis is accompanied by massive necrosis, so that the number of germ cells in a stem cell-derived cluster ranges from one to greater than 70. These defects of aret mutants reveal a novel function of aret as the first gene with a defined function in the cystoblast to cyst transition during early oogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号