首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Genetic diversity and differentiation were analyzed in 11 populations of Magnolia stellata (Sieb. and Zucc.) Maxim. (Magnoliaceae) in the Tokai district, Japan. Variation at four nuclear microsatellite (nSSR) loci was examined, three chloroplast microsatellite (cpSSR) markers were developed and 13 haplotypes identified. The 11 populations were divided into three groups (A, B and C). Each population within the group was separated less than 40 km. Group B harbored the highest gene diversity (H) and allelic richness (Ar) for nSSR (H=0.74 and Ar=8.02). Group C had the highest diversity of chloroplast haplotypes (H=0.79 and Ar=6.8): 2.5 times more haplotypes than the other groups. Each population contributed differently to the total diversity, with respect to nSSR and cpSSR. AMOVA revealed that 58% of haplotypic and 15% of nSSR variation was partitioned among populations within groups. A Mantel test revealed significant correlations between population pairwise geographic ln(distance) and FST/(1−FST) for both nSSR (r=0.479; P=0.001) and cpSSR (r=0.230; P=0.040). Dendrograms of populations for nSSR, based on Nei’s genetic distance, were constructed using UPGMA and the neighbor-joining method. These results suggest that populations in group C have diverged from the other populations, while those in group B are similar to each other. For group B, fragmentation between populations should be avoided in order to maintain gene flow. For group C, the uniqueness of each population should be given the highest priority when planning genetic conservation measures for the species.  相似文献   

2.
Berchemiella wilsonii var. pubipetiolata (Rhamnaceae) is an endangered tree in eastern China. Habitat destruction has resulted in fragmentation of remnant populations and extinction of local populations. AFLP and cpDNA markers were used to determine the population structure of remnant populations of B. wilsonii var. pubipetiolata. Moderate nuclear genomic diversity was found within each of the four remnant populations (H S = 0.141–0.172), while the cpDNA haplotype diversity in each population ranged from 0.356 to 0.681. Six haplotypes were identified by a combined cpRFLP and cpSSR analysis in a total of 89 individuals. AMOVA revealed significantly AFLP genetic differentiation within and between regions (ΦSC = 0.196, ΦCT = 0.396, respectively), and a high cpDNA haplotype differentiation between regions (ΦCT = 0.849). The results suggest low gene flow between populations of B. wilsonii var. pubipetiolata. Strong genetic divergence between two regional populations as revealed by both AFLP and cpDNA markers provided convincing evidence that two distinct evolutionary lineages existed, and should be recognized as ‘evolutionary significant units’ (ESUs) for conservation concerns.  相似文献   

3.
Picea omorika (Pan?.) Purk. is a relict from the Arcto-Tertiary flora with its entire current natural range confined to an area of only 10,000 km2 within the Balkans, a region well known as a Quaternary refugium. We have amplified the second intron of the mitochondrial NADH dehydrogenase subunit1 gene in 200 trees originating from ten natural populations to assess the phylogeographic structure and history of this conifer. Five haplotypes harbouring different numbers of 34-bp minisatellites were detected, revealing haplotypic richness of 3.007 and gene diversities H S = 0.075 and H T = 0.225. More interestingly, despite the very small distribution range of P. omorika and its dispersal by wind, non-random distribution of haplotypes was observed, resulting in an unexpectedly high estimate of population differentiation (G ST = 0.668), and 56.8% of molecular variation assigned to variation among populations. Those findings suggest substantial isolation of populations and their partitioning into two gene pools characterized by different history and levels of genetic diversity, and very limited seed flow in this species (Nm = 0.25). They support the hypothesised early arrival of P. omorika in the Balkan region, and residence within this refugium during several ice ages at least. We demonstrate that the assessment of genetic diversity and structuring are not straightforward in species confined to refugial regions, and that past microvicariance might bias formal phylogeographic (G ST = N ST = 0.668) and isolation-by-distance analysis (r = 0.028, P > 0.05).  相似文献   

4.
Yu H  Ge S  Hong DY 《Biochemical genetics》2000,38(5-6):138-146
We investigated the levels and patterns of genetic diversity of Pinus densata Master in Yunnan. Horizontal starch-gel electrophoresis was performed on macrogametophytes collected from nine populations in northwestern Yunnan, China. Compared with other gymnosperm species, P. densata has higher mean values for all measures of genetic diversity. Allozyme polymorphism (0.99 criterion) was 97.0% and 71.4% at the species and population levels, respectively. The average number of alleles per locus was 3.1 and 2.0 at the species and population levels. Mean expected heterozygosity was substantially higher in P. densata than average values investigated for other gymnosperms both at the population (H ep = 0.174±0.031) and at the species (H es = 0.190) levels. Of the total genetic variation, less than 12% was partitioned among populations (G ST = 0.112). Our allozyme survey supports the suggestion that the observed higher diversity in P. densata may be attributed partly to its hybrid origin between two genetically distinct species, P. yunnanensis and P. tabulaeformis. In addition, we suggest that introgression would give rise to the increase in genetic diversity occurring in P. densata.  相似文献   

5.
Aim To characterize the genetic structure and diversity of Pinus cembra L. populations native to two disjunct geographical areas, the Alps and the Carpathians, and to evaluate the rate of genetic differentiation among populations. Location The Swiss Alps and the Carpathians. Methods We screened 28 populations at three paternally inherited chloroplast simple sequence repeats (cpSSRs) for length variation in their mononucleotide repeats. Statistical analysis assessed haplotypic variation and fixation indices. Hierarchical analysis of molecular variance (AMOVA), Mantel test, spatial analysis of molecular variance (SAMOVA) and barrier analyses were applied to evaluate the geographical partitioning of genetic diversity across the species’ range. Results Haplotypic diversity was generally high throughout the natural range of P. cembra, with the mean value substantially higher in the Carpathians (H = 0.53) than in the Alps (H = 0.35). The isolated Carpathian populations showed the highest haplotype diversity among the populations originating from the High Tatras (Velka Studena Dolina) and South Carpathians (Retezat Mountains). AMOVA revealed that only 3% of the total genetic variation derived from genetic differentiation between the two mountain ranges. Differentiation among Carpathian populations was higher (FST = 0.19) than among Alpine populations (FST = 0.04). Low, but significant, correlation was found between the geographical and genetic distances among pairs of populations (r = 0.286, P < 0.001). SAMOVA results revealed no evident geographical structure of populations. barrier analysis showed the strongest differentiation in the eastern part of the species’ range, i.e. in the Carpathians. Main conclusions The populations of P. cembra within the two parts of the species’ range still share many cpDNA haplotypes, suggesting a common gene pool conserved from a previously large, continuous distribution range. Carpathian populations have maintained high haplotypic variation, even higher than Alpine populations, despite their small population sizes and spatial isolation. Based on our results, we emphasize the importance of the Carpathian populations of Swiss stone pine for conservation. These populations comprise private haplotypes and they may represent a particular legacy of the species’ evolutionary history.  相似文献   

6.
The genetic variability in 29 populations of Abies sibirica, three of A. nephrolepis, and seven of A. sachalinensis was studied using SSR markers of chloroplast DNA. Among ten primer pairs examined, pairs Pt71936 and Pt30204 gave stable amplification and polymorphic products (with nine and fourteen alleles, respectively). Totally, 70 haplotypes were found, 43 in A. sibirica, 49 in A. sachalinensis, and 31 in A. nephrolepis. The highest values of genetic diversity parameters were observed in A. sachalinensis, and the lowest in A. sibirica. The Siberian fir differs from Far East species by the uneven multimodal frequency distributions of allele length in both cpSSR loci, which is explained by the presence of few separated from each other dominating haplotypes. This fact indicates that A. sibirica and the Far East species have different demographic histories. In A. sibirica, the proportion of diversity between populations in the total genetic diversity, calculated taking into account the differences between haplotypes (R ST) was 8.34 and 4.42% without accounting for haplotypes differences (R ST > G ST, P = 0.01). The pairwise G ST correlate significantly with geographic distances between the populations A. sibirica and with genetic distances D calculated from allozyme data. No such correlations were found with the R ST parameter. The results of cpSSR variability analysis strongly support the conclusions inferred from allozyme data: several geographic groups of comparatively genetically close populations are identified, which may be explained by the history of colonization of the present-day Siberian fir range. Original Russian Text ? S.A. Semerikova, V.L. Semerikov, 2007, published in Genetika, 2007, Vol. 43, No. 12, pp. 1637–1646.  相似文献   

7.
Psilopeganum sinense is a perennial herb endemic to Three-Gorges Reservoir Area (TGRA) in China. Genetic diversity of this endangered species was assessed by using 11 nuclear microsatellites and three chloroplast microsatellite (cpSSR) markers. A total of 8 haplotypes were identified in a survey of 212 individuals sampled from nine populations encompassing most of the natural range of the species. A low level of genetic diversity was detected: HE = 0.301 for SSR and HE = 0.28 for cpSSR. Populations were highly differentiated from one another: an AMOVA analysis that showed that 56.3% and 68.2% genetic variation resided between populations based on SSR and cpSSR analysis, respectively, and FST and FSTc (0.467 for SSR and 0.644 for cpSSR, respectively) were high. Significant differences were found between estimates of haplotypic differentiation calculated by using unordered alleles (GSTc = 0.857) and ordered alleles (NSTc = 0.728), which indicated the existence of phylogeographical structure in P. sinense. The indirect ratio of pollen flow/seed flow derived from estimates of haplotypic and nuclear DNA differentiation indicated that gene flow via pollen is less efficient than via seed. Two distinct evolutionary lineages (evolutionary significant units, ESUs) were recognized for P. sinense on the basis of both the PCoA and NCA analysis. Sampling strategies for conserving this endangered plant were discussed.  相似文献   

8.
Evolutionary transitions from outcrossing to selfing can strongly affect the genetic diversity and structure of species at multiple spatial scales. We investigated the genetic consequences of mating‐system shifts in the North American, Pacific coast dune endemic plant Camissoniopsis cheiranthifolia (Onagraceae) by assaying variation at 13 nuclear (n) and six chloroplast (cp) microsatellite (SSR) loci for 38 populations across the species range. As predicted from the expected reduction in effective population size (Ne) caused by selfing, small‐flowered, predominantly selfing (SF) populations had much lower nSSR diversity (but not cpSSR) than large‐flowered, predominantly outcrossing (LF) populations. The reduction in nSSR diversity was greater than expected from the effects of selfing on Ne alone, but could not be accounted for by indirect effects of selfing on population density. Although selfing should reduce gene flow, SF populations were not more genetically differentiated than LF populations. We detected five clusters of nSSR genotypes and three groups of cpSSR haplotypes across the species range consisting of parapatric groups of populations that usually (but not always) differed in mating system, suggesting that selfing may often initiate ecogeographic isolation. However, lineage‐wide genetic variation was not lower for selfing clusters, failing to support the hypothesis that selection for reproductive assurance spurred the evolution of selfing in this species. Within three populations where LF and SF plants coexist, we detected genetic differentiation among diverged floral phenotypes suggesting that reproductive isolation (probably postzygotic) may help maintain the striking mating‐system differentiation observed across the range of this species.  相似文献   

9.
We examined the genetic diversity, population structure and gene flow in a dominant mangrove tree (Rhizophora stylosa) at its northern biogeographical limit in Sakishima islands of the Japanese archipelago. Simple sequence repeat (SSR) markers from chloroplast (cpSSR) and nuclear DNA were used to analyze 16 populations recovered from various river basins across the chain of three Sakishima islands—Iriomote, Ishigaki and Miyako. The average number of alleles (1.7–2.7) and observed heterozygosities (0.031–0.216) at nuclear SSR and haploid diversity (0.000–0.489) at cpSSR across the populations suggested low genetic diversity in R. stylosa in Sakishima islands. cpSSR analysis identified two haplotypes, and Bayesian clustering analysis (nuclear SSR) revealed two genetic clusters. Analysis of molecular variance (nuclear SSR) showed significant population differentiations. Pairwise tests consistently revealed significant differentiation between most of the population pairs; however, the degrees of differentiations are generally correspondent to the relative geographical distances as suggested from pairwise F ST and cpSSR genetic distances. Moreover, Mantel tests showed some signals of correlations between genetic distances (nuclear and chloroplast) and geographical distances. These results suggest that combined contribution of gene flow via pollen and propagule dispersal in R. stylosa mostly occurred between neighboring river basins. The appearances of two cpSSR haplotypes (maternal lineages) as well as two nuclear genetic clusters (putative ancestral lineages) at various river basins support the hypothesis that present-day R. stylosa populations across the Sakishima islands were established from few identical founders; however, significant differentiations among various river basins most likely resulted from the limited gene flow and high inbreeding.  相似文献   

10.
Kincaid’s lupine (Lupinus oreganus), a threatened perennial legume of western Oregon grasslands, is composed of small, fragmented populations that have consistently low natural seed set, suggesting they may have accumulated high enough levels of genetic load to be candidates for genetic rescue. We used simple sequence repeat (SSR) loci, both nuclear DNA and chloroplast DNA, to screen populations throughout the species’ range for evidence of severe inbreeding and recent genetic bottlenecks due to habitat fragmentation. After genotyping about 40% of the known populations, only one of 24 populations had strong statistical evidence for a recent genetic bottleneck (H e > H eq). Both mean nSSR fixation coefficients and genetic diversity did not statistically differ between very small, small, medium, and large lupine population size classes. Within population chloroplast DNA haplotype number was high for an animal pollinated species, ≈4.2 haplotypes/population, and within population haplotype diversity was also relatively evenly distributed. Within population patterns of nSSR and cpSSR genetic diversity suggest that genetic diversity has not been lost over the last century of habitat fragmentation. With genet lifespan thought to exceed 100 years, overlap of several to many generations, and substantial reductions in seed set from inbreeding depression that shifts cohort composition towards those generated by outcrossing events, Kincaid’s lupine is likely maintain the currently high levels of within population genetic diversity. The case of Kincaid’s lupine provides an example of how the assumptions of severe inbreeding depression with small population size and habitat fragmentation can be inaccurate.  相似文献   

11.
王爱兰  李维卫 《生态学报》2017,37(21):7251-7257
唐古特大黄(Rheum tanguticum)是中国传统的中藏药材,近几年由于生境的严重破坏,已濒临灭绝,并被列入濒危植物名单。为了探索唐古特大黄物种濒危的原因并保护其野生资源,本研究采集了9个居群87个个体的唐古特大黄样本,基于该物种的叶绿体基因trn S-G序列对其进行了遗传多样性研究。结果表明,唐古特大黄物种具有较高的遗传多样性水平(Ht=0.694),其中95.97%的遗传分化来自于居群间(G_(ST)=0.960),4.03%的遗传分化来自于居群内(Hs=0.028)。AMOVA分析也显示唐古特大黄居群间基因流较小(N_m=0.01),存在较高的遗传分化(F_(ST)=0.9631)。唐古特大黄较高的遗传多样性水平可能与该物种较长的进化史和生活史有关,居群间较高的遗传分化可能与高山地区特殊的地理环境和人类活动有关。根据研究结果,建议对唐古特大黄所有野生居群进行就地保护,同时收集种质资源开展异地繁殖工作,以保护物种的遗传多样性,维持其进化潜力。  相似文献   

12.
Nineteen populations of Clintonia udensis Trautv. & Mey. were examined to quantify genetic diversity and genetic structure by chloroplast DNA microsatellites (cpSSR). Significant cpSSR genetic diversity (PPB = 63.64%) was detected in this species. Tetraploid populations demonstrated approximately the same level of genetic diversity as the diploid ones. A significant differentiation, however, was found between tetraploids and diploids. Most of the sixteen chloroplast haplotypes were limited to a single population. The level of haplotype diversity was high (Hd = 0.915). AMOVA, PCA and Bayesian clustering analysis revealed that there were significant genetic differences among populations. Inter-population genetic distances among population sites correlated significantly with geographic distances. These results indicate that the mixed-mating – breeding system, limited gene flow, environmental stress, and historical factors may be the main factors causing geographical differentiation in the genetic structure of C. udensis.  相似文献   

13.
测定了淮河水系17个日本沼虾(Macrobrachium nipponense)野生群体共248个个体的线粒体细胞色素氧化酶亚基I(COI)部分序列,获得623 bp核苷酸片段,包括48个变异位点,定义了31个单倍型,共享单倍型有12个,整体单倍型多样性和平均核苷酸多样性均处于中间水平。AMOVA分析表明,17个群体间的遗传分化系数Fst=0.041 3(P0.05),群体间遗传分化较小。Kimura 2-paramter遗传距离在五河与焦岗湖、花家湖及瓦埠湖群体间最大,为0.014,在高邮和邵伯湖群体之间最小,为0.003。MP系统树与单倍型进化网络关系图具有较高的一致性,31个单倍型被分为3个进化枝,其中一个进化枝主要以下游群体为主,另外2个进化枝主要以中游群体为主。群体中性检验、错配分析表明,淮河日本沼虾近期曾经历过种群扩张。  相似文献   

14.
Wang FY  Ge XJ  Gong X  Hu CM  Hao G 《Biochemical genetics》2008,46(1-2):75-87
The East Himalaya-Hengduan Mountains region is the center of diversity of the genus Primula, and P. sikkimensis is one of the most common members of the genus in the region. In this study, the genetic diversity and structure of P. sikkimensis populations in China were assessed using inter-simple sequence repeat (ISSR) and chloroplast microsatellite markers. The 254 individuals analyzed represented 13 populations. High levels of genetic diversity were revealed by ISSR markers. At the species level, the expected heterozygosity and Shannon’s index were 0.4032 and 0.5576, respectively. AMOVA analysis showed that 50.3% of the total genetic diversity was partitioned among populations. Three pairs of chloroplast microsatellite primers tested yielded a total of 12 size variants and 15 chloroplast haplotypes. Strong cpDNA genetic differentiation (G ST = 0.697) and evidence for phylogeographic structure were detected (N ST = 0.788, significantly higher than G ST). Estimated rates of pollen-mediated gene flow are approximately 27% greater than estimated rates of seed-mediated gene flow in P. sikkimensis. Both seed and pollen dispersal, however, are limited, and gene flow among populations appears to be hindered by the patchiness of the species’ habitats and their geographic isolation. These features may have played important roles in shaping the genetic structure of P. sikkimensis. A minimum-spanning tree of chloroplast DNA haplotypes was constructed, and possible glacial refugia of P. sikkimensis were identified.  相似文献   

15.
赵小丽  杨耀文  李国栋 《广西植物》2021,41(12):2004-2013
为了探索草果(Amomum tsaoko)的栽培地理起源,该文检测了草果、拟草果(A. paratsaoko)的cpDNA序列变化,并获取了单倍型多态性信息。结果表明:(1)20个草果居群272个植株、5个拟草果居群62个植株共检测到7种单倍型。其中,草果有3种单倍型(H1、H3、H6),拟草果有6种单倍型(H1、H2、H3、H4、H5、H7)。H1和H3为共享单倍型,H6为草果私有单倍型,H2、H4、H5、H7为拟草果私有单倍型。H1为普通单倍型,H2为祖先单倍型。(2)草果居群遗传多样性远小于拟草果居群,遗传变异主要来源于居群内,拟草果居群主要来源于居群间。麻栗坡铁厂(TC)、屏边玉屏(YP)居群的遗传多样性、单倍型多样性高于其他18个草果居群。(3)进一步分析表明,包含屏边、马关、西畴、麻栗坡的云南东南部前端地域和邻接的广西那坡可能共同构成草果栽培驯化起源中心,以麻栗坡为核心区域,向周边的西畴、马关、屏边、那坡扩张。因此,结果显示应对TC、YP、那坡下华(XH)居群加以保护。该研究结果为草果种质资源保护、利用提供了遗传学信息。  相似文献   

16.
Lake Biwa is an ancient freshwater lake that was formed approximately 4 Mya and harbours many coastal plants that commonly inhabit the seashore. We used chloroplast DNA haplotype analysis using two spacer sequences and simple sequence repeat (SSR) analysis using eight nuclear microsatellite markers to detect genomic signatures indicating long‐term isolation of inland populations of Calystegia soldanella in Lake Biwa from coastal populations. We used 348 samples from 63 populations for haplotype analysis and 478 samples from 27 populations for SSR analysis covering the inland and coastal distribution of the species. We detected seven haplotypes, and the distribution pattern of these haplotypes was geographically highly structured between Lake Biwa and the coast. Nuclear SSR analysis also supported genetic differentiation between Lake Biwa and coastal populations (analyses of molecular variance, 43%), and the grouping of Lake Biwa and coastal populations by a Neighbour‐joining tree. In addition, genetic diversity of the inland populations (mean HE = 0.153) was significantly lower than that of coastal populations (mean HE = 0.328). These results suggested that inland populations at Lake Biwa have been isolated from coastal populations for a very long time. The inland populations most likely experienced a bottleneck effect, resulting in sufficient in situ genetic divergence to clearly distinguish them from coastal populations. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 51–66.  相似文献   

17.
Understanding geographical pattern of genetic diversity and population structure is of great importance for formulating conservation and utilization strategies. In this study, we investigated the genetic diversity and population structure of 28 natural populations of Castanea mollissima in China using eight nuclear and six chloroplast microsatellite makers (nSSRs and cpSSRs). Populations from central China harbored the highest genetic diversity at both nSSR and cpSSR markers (nSSR: H E?=?0.705; cpSSR: H?=?0.461). The standardized measure of genetic differentiation estimated as G′ ST was 0.447 for nSSR and 0.803 for cpSSR, respectively. The GST-based pollen to seed flow ratio is 3.043, indicating that pollen flow is not extensive among C. mollissima populations. No obvious population genetic structure by geographical locations was found by STRUCTURE analysis based on nSSR data, and similarly, no signal of phylogeographic structure was detected for cpSSR analysis. Five boundaries defining zones of maximum genetic differences within the network of the C. mollissima populations were found, and the locations of those barriers were consistent with those of four mountains, i.e., Daloushan Mountain, Dabashan Mountain, Wushan Mountain, and Qingliangfeng Mountain, indicating that those mountains might act as genetic barriers obstructing the genetic exchange among natural C. mollissima populations. These results provide valuable baseline data for conservation and utilization of this species.  相似文献   

18.
This paper describes our investigation of genetic variation and clonal structure of the Mediterranean moss Pleurochaete squarrosa (Brid.) Lindb. (Pottiaceae), using inter-simple sequence repeat (ISSR) molecular markers and trnLUAA (intron of plastid gene for Leu tRNA) sequence, choosing different sampling strategies and scales on 16 European populations. Moreover, the intercontinental distribution of two trnL haplotypes, previously found over a large area and including 24 populations in three continents, was also investigated. Despite the prevalent asexual reproduction, P. squarrosa shows a high level of genetic diversity. Some site features seem to affect the clonal structure at the local scale, influencing the relocation of detached fragments and the level of intermingling, but they do not substantially affect genetic diversity. The peculiar vegetative reproduction coupled with somatic mutation could partly account for the genetic variation detected. Genetic distances highlight geographic isolation and limited gene flow among populations. We found only two trnL haplotypes in Europe due to length polymorphism, but, over an intercontinental scale, only non-delete trnL was found in Africa and the USA. ISSR analysis within each population detected a higher genetic distance between the samples with different trnL haplotypes, suggesting the presence of two different genetic lineages within this species, geographically overlapping in the Mediterranean Basin.  相似文献   

19.
In order to elucidate the factors affecting the genetic diversity of Quercus serrata in secondary forests in mountainous regions, we evaluated the level and distribution of genetic variation within and between 15 populations using seven microsatellite markers. The populations were at altitudes ranging from 140 to 1200 m in and around the Chichibu Mountains, central Japan.The expected heterozygosity (HE) ranged from 0.766 to 0.837. The two populations that exhibited the highest and the second highest values of HE are located beside a river and a lake, respectively. The two populations exhibiting the lowest and the second lowest values of HE are, in contrast, located on a summit and a ridge. The observed heterozygosity (HO) varied between 0.638 and 0.844, and the value of this variable was also higher for the populations beside water than those on summits or ridges. The soils at the waterside are wet, in contrast to those on ridges and summits, which tend to be shallow and subject to rapid desiccation. These results suggest that a lack of soil moisture is likely to inhibit the development and regeneration of Q. serrata, and that genetic diversity is reduced in arid areas. The genetic differentiation was low (FST=0.013) among the investigated populations, although all five populations in Yamanashi prefecture clustered together in an UPGMA tree. According to a multiple regression analysis, there was no significant isolation by distance among the populations along either the horizontal or vertical axes. Therefore, genetic variation within populations is affected by topography, but variation between populations is hardly affected by geographical factors. Furthermore, the results of this study suggest two conclusions. First, that altitude is not always a useful variable when estimating the genetic diversity of plant populations in mountainous regions. Second, that genetic diversity can vary even among the undifferentiated plant populations in small areas like the Chichibu Mountains.  相似文献   

20.
Zhang ZY  Chen LY  Li DZ 《Biochemical genetics》2005,43(5-6):239-249
With only 32 individuals in the northeastern corner of Yunnan Province, China, Pinus squamata is one of the most endangered conifers in the world. Using two classes of molecular markers, RAPD and ISSR, its very low genetic variation was revealed. Shannon's index of phenotypic diversity (I) was 0.030, the mean effective number of alleles per locus (Ae) was 1.032, the percentage of polymorphic loci (P) was 6.45, and the expected heterozygosity (He) was 0.019 at the species level based on RAPD markers. The results of ISSR were consistent with those detected by RAPD but somewhat higher (I = 0.048, Ae = 1.042, P = 12.3, He = 0.029). The genetic variation of the subpopulation on the southwest-facing slope was much higher than that of the subpopulation on the northeast-facing slope, which may be attributed to the more diverse environment on the southwest-facing slope. The genetic differentiation between the two subpopulations was very low. The between-subpopulation variabilities, ΦST, calculated from RAPD and ISSR data were 0.011 and 0.024. Because of the lack of fossil records and geological historical data, it was difficult to explain the extremely low genetic diversity of the species. We postulate that this ancient pine might have experienced strong bottlenecks during its long evolutionary history, which caused the loss of genetic variation. Genetic drift and inbreeding in post-bottlenecked small populations may be the major forces that contribute to low genetic diversity. Human activities such as logging may have accelerated the loss of genetic diversity in P. squamata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号