首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The present study was conducted to investigate the cell wall properties in two wheat (Triticum aestivum L.) cultivars differing in their sensitivity to Al stress. Seedlings of Al-resistant, Inia66 and Al-sensitive, Kalyansona cultivars were grown in complete nutrient solutions for 4 days and then subjected to treatment solutions containing Al (0, 50 microM) in a 0.5 mM CaCl(2) solution at pH 4.5 for 24 h. Root elongation was inhibited greatly by the Al treatment in the Al-sensitive cultivar compared to the Al-resistant cultivar. The Al-resistant cultivar accumulated less amount of Al in the root apex than in the Al-sensitive cultivar. The contents of pectin and hemicellulose in roots were increased with Al stress, and this increase was more conspicuous in the Al-sensitive cultivar. The molecular mass of hemicellulosic polysaccharides was increased by the Al treatment in the Al-sensitive cultivar. The increase in the content of hemicellulose was attributed to increase in the contents of glucose, arabinose and xylose in neutral sugars. Aluminum treatment increased the contents of ferulic acid and p-coumaric acid especially in the Al-sensitive cultivar by increasing the activity of phenylalanine ammonia lyase (PAL, EC 4.3.1.5). Aluminum treatment markedly decreased the beta-glucanase activity in the Al-sensitive cultivar, but did not exert any effect in the Al-resistant cultivar. These results suggest that the modulation of the activity of beta-glucanase with Al stress may be involved in part in the alteration of the molecular mass of hemicellulosic polysaccharides in the Al-sensitive cultivar. The increase in the molecular mass of hemicellulosic polysaccharides and ferulic acid synthesis in the Al-sensitive cultivar with Al stress may induce the mechanical rigidity of the cell wall and inhibit the elongation of wheat roots.  相似文献   

2.
Aluminum resistance of cowpea as affected by phosphorus-deficiency stress   总被引:2,自引:0,他引:2  
Plants growing in acid soils suffer both phosphorus (P) deficiency and aluminum (Al) toxicity stresses. Selection of genotypes for adaptation to either P deficiency or Al toxicity has sometimes been unsuccessful because these two soil factors often interact. Two experiments were conducted to evaluate eight cowpea genotypes for Al resistance and to study the combined effect of P deficiency and Al toxicity stress on growth, P uptake, and organic acid anion exudation of two genotypes of contrasting Al resistance selected from the first experiment. Relative root inhibition by 30 μM Al ranged from 14% to 60% and differed significantly among the genotypes. Al significantly induced callose formation, particularly in Al-sensitive genotypes. P accumulation was significantly reduced (28% and 95%) by Al application for both the Al-resistant and the Al-sensitive genotypes. Al supply significantly enhanced malate release of root apices of both genotypes. However, the exudation rate was significantly higher in the Al-resistant genotype. P deprivation induced an enhanced malate exudation in the presence of Al only in the Al-resistant genotype IT89KD-391. Citrate exudation rate of the root apices was lower than malate exudation by a factor of about 10, and was primarily enhanced by P deficiency in both genotypes. Al treatment further enhanced citrate exudation in P-sufficient, but not in P-deficient plants. The level of citrate exudation was consistently higher in the Al-resistant genotype IT89KD-391 particularly in presence of Al.It is concluded that the Al-resistant genotype is better adapted to acid Al-toxic and P-deficient soils than the Al-sensitive genotype since both malate and citrate exudation were more enhanced by combined Al and P-deficiency stresses.  相似文献   

3.
Accumulation of some proteins isolated from the cell wall of roots of the Al-sensitive (Alfor) and the Al-resistant (Bavaria) barley cultivars were followed during treatment with different Al3+ concentrations, pH changes of the root medium, and several heavy metals (Cu2+, Cd2+, Co2+). SDS-PAGE analysis revealed an Al-induced accumulation of polypeptides with molecular mass of 14, and 16 kDa and a group of polypeptides around 27 kDa. The accumulation pattern of Al-induced polypeptides was very similar in both cultivars but in the Al-resistant Bavaria it was induced at lower Al concentration and earlier than it was in the Al-sensitive cultivar Alfor. Changes in pH values of root medium (pH 3.5–6.5) did not show any effect on the accumulation of Al-induced cell wall polypeptides either in Al-sensitive or in Al-tolerant barley cultivar. Heavy metals (Cu, Cd, and Co) at concentration of 10 μM resulted in similar accumulation of individual polypeptides as we found after Al treatment. In comparison to Al, quantitative differences in polypeptides accumulation induced by Cu, Cd and Co were less expressed that of Al treatment. More pronounced accumulation and earlier induction of individual cell wall polypeptides in roots of Al-resistant barley cultivar than in Al-sensitive, might indicate some possible role of these polypeptides in plant resistance to Al stress.  相似文献   

4.
Summary Two barley cultivars differing in Al tolerance, Kearney (Al-sensitive) and Dayton (Al-tolerant) were exposed to Al stress with varied Ca and Mg concentrations in the nutrient solution. Increase in calcium and magnesium supply protected root meristems and root growth from Al toxicity more effectively in the Al-tolerant cultivar than in the Al-sensitive one. Lateral roots were much more sensitive to Al than adventitious roots. Exposure to 0.33 mM Al with low concentrations of Ca (1.3 mM) and Mg (0.3 mM) caused damage to root tips in both cultivars. Increasing the Ca concentration to 4.3 and 6.3 mM prevented root tip damage in Dayton but not in Kearney. In the Al-tolerant cultivar Dayton, however, the root tips regenerated even at the low Ca concentration of 1.3 mM, whereas 6.3 mM Ca was necessary for this to occur in Kearney. This difference was due to the fact that Dayton's root meristem cells were more resistant to damage. Magnesium responses also varied between the two cultivars. At the lowest Ca concentration an increase in Mg to 6.3 mM permitted regeneration of damaged Kearney root tips and completely prevented any damage in Dayton. It is to be assumed that the different responses of the two cultivars are due to differences in plasma membrane properties.  相似文献   

5.
Phytotoxicity of aluminum (Al) is the major limiting factor for the crops grown in acid soils rapidly inhibiting root elongation. In this study, changes in root growth, total activity and isozyme patterns of antioxidant enzymes such as peroxidase, ascorbate peroxidase, catalase and glutathione reductase by Al stress were investigated in the roots of naked barley (Hordeum vulgare L. cv. Kwangwhalssalbori). As Al concentration increased up to 500 M, the rooting rate and root elongation substantially decreased. Growth results suggested that this cultivar is an Al-sensitive species. Total activities of antioxidant enzymes generally increased at lower Al concentrations and then gradually decreased at higher Al concentrations. They also increased when the exposure time to Al was extended up to 48 hr. Changes in the isozyme patterns of antioxidant enzymes were investigated byin situ enzyme activity staining on a non-denaturing PAGE gel. They generally coincided with the changes in the total activity in parallel. Changes in the total activity of antioxidant enzymes also coincided with the changes of the root growth. Since growth reduction in the roots by Al stress could be related with the changes in the activities of antioxidant enzymes, these results suggested that Al might cause the oxidative stress in the roots of this cultivar of naked barley.  相似文献   

6.
铝胁迫对不同小麦SOD、CAT、POD活性和MDA含量的影响   总被引:16,自引:0,他引:16  
方法:采用室内水培试验法,研究了不同浓度铝胁迫对耐性不同的几种基因型小麦叶片和根系内SOD、CAT、POD活性和MDA含量的影响。结果:表明铝胁迫条件下导致小麦叶片和根系的3种酶活性在一定范围内随胁迫强度的增加而上升,重度胁迫下会有所下降。这说明SOD、POD、CAT活性的提高与维持是植物耐铝胁迫的重要生理基础。另外,耐铝品种变化不显著,始终维持在比较稳定的活性水平,这可能与铝诱导的有机酸分泌有关,敏感性品种的酶活性在胁迫下会有所下降。而MDA含量在轻度胁迫下变化不明显,在重度胁迫下才会有明显变化,其含量的变化与小麦的耐铝性也有着密切的关系。  相似文献   

7.
采用水培试验,研究了铝胁迫下两个胡枝子品种根尖产生胼胝质的变化规律及影响因素。结果表明,两个品种的根尖铝吸收量与胼胝质形成量呈正比例关系。品种间差异主要是在根尖0—0.5 cm处。敏感品种胼胝质形成量同铝吸收量的变化趋势相一致,而耐性品种则在铝处理6 h时出现一个高峰值后下降。去除铝胁迫后,耐性品种胼胝质形成量并不显著减少。与单独铝处理相比,阴离子通道抑制剂苯甲酰甲醛加铝处理对两个品种胼胝质形成无影响;尼氟灭酸加铝处理抑制敏感品种胼胝质的形成,对耐性品种无影响;蒽-9-羧酸加铝处理显著抑制两个品种的胼胝质形成。另外,抑制剂2-去氧-D-葡萄糖加铝共同处理与单独铝处理相比,敏感品种的胼胝质形成量显著降低,耐性品种无影响。甘露醇对两个品种胼胝质形成的影响无显著差别。镧处理下胼胝质的形成量是耐性品种显著高于敏感品种,铝、镧同时处理胼胝质的形成量最高。敏感品种胼胝质形成处理间无差别。总之,耐性品种在铝胁迫下胼胝质形成与有机酸分泌可能存在一定的协调关系;铝胁迫下胼胝质形成是敏感指标;在一定条件下,特别是有机酸分泌前胼胝质的形成可能具有一定抗性意义;铝诱导胼胝质的形成受多种外界因素(浓度、时间、有机酸分泌,渗透压等)的影响。  相似文献   

8.
Seedlings of two cultivars of wheat (Triticum aestivum L.) differing in tolerance to aluminium (Al) were grown using a split-root sand/soil culture technique. Each culture tube was divided horizontally into a surface (0–150 mm) compartment and a subsurface (150–250 mm) compartment separated by a root-permeable paraffin wax barrier. Thus phosphorus (P) supplied to surface roots could not percolate or diffuse into the soil in the subsurface compartment. The soil in the subsurface compartment was divided into ‘rhizosphere’ and ‘non-rhizosphere’ zones using a porous (5 μm) membrane. Root growth of both cultivars into the subsurface zone was enhanced by increased P supply to surface roots, but did not conform to known relationships between root growth and soil pH, extractable-Al, or pH, Al or P concentrations in soil solution. Concentrations of Al in soil solution in the rhizosphere were greater than those in solution in the bulk soil. Concentrations of Al reactive with pyrocatechol violet (30s-RRAI) in the rhizosphere soil solution were generally greater than those in non-rhizosphere soil. With the Al-sensitive cultivar, root dry weight and length increased as concentrations of RRAl in the rhizosphere soil solution increased. Increased concentrations of Al in rhizosphere soil solutions were not related to the presence of organic ligands in solution. The effect of P in promoting root penetration into the acidic subsurface stratum was not related to differential attainment of maturity by the plant shoots, but appeared to be related to the effect of P in enhancing the rate of root growth. Thus, suboptimal supply of P to the surface roots of a plant, even at levels sufficient to preclude development of nutritional (P) stress symptoms, may seriously reduce tolerance to Al, and hence diminish the ability of roots to penetrate into acidic subsoils.  相似文献   

9.
The effects of Al, Cd and pH on growth, photosynthesis, malondialdehyde (MDA) content, and some antioxidant enzyme activities of the two soybean cultivars with different Al tolerance were determined using a hydroponic culture. There were six treatments as follows: pH 6.5; pH 4.0; pH 6.5 + 1.0 μM Cd; pH 4.0 + 1.0 μM Cd; pH 4.0 + 150 μM Al; pH 4.0 + 1.0 μM Cd + 150 μM Al. The results showed that the low pH (4.0) and Al treatments caused marked reduction in the growth (root and shoot length and dry mass), chlorophyll content (SPAD value) and net photosynthetic rate. Higher malondialdehyde content, superoxide dismutase (SOD) and peroxidase (POD) activities were detected in the plants exposed to both Al and Cd than in those exposed to Al treatment alone. An expressive enhancement of SOD and POD was observed in the plants exposed to 150 μM Al in the comparison with the control plants, especially in Al-sensitive cv. Zhechun 2 which had also significantly higher Al and Cd content than Al tolerant cv. Liao-1. Cd addition increased Al content in the plants exposed to Al + Cd stress, and cv. Zhechun 2 had relatively lower Al content. The present research indicated that Al and Cd are synergistic in their effects on plant growth and some physiological traits.  相似文献   

10.
The role of Al interactions with root-cell plasma membrane (PM) Ca2+ channels in Al toxicity and resistance was studied. The experimental approach involved the imposition of a transmembrane electrical potential (via K+ diffusion) in right-side-out PM vesicles derived from roots of two wheat (Triticum aestivum L.) cultivars (Al-sensitive Scout 66 and Al-resistant Atlas 66). We previously used this technique to characterize a voltage-dependent Ca2+ channel in the wheat root PM (J.W. Huang, D.L. Grunes, L.V. Kochian [1994] Proc Natl Acad Sci USA 91: 3473-3477). We found that Al3+ effectively blocked this PM Ca2+ channel; however, Al3+ blocked this Ca2+ channel equally well in both the Al-sensitive and -resistant cultivars. It was found that the differential genotypic sensitivity of this Ca2+ transport system to Al in intact roots versus isolated PM vesicles was due to Al-induced malate exudation localized to the root apex in Al-resistant Atlas but not in Al-sensitive Scout. Because malate can effectively chelate Al3+ in the rhizosphere and exclude it from the root apex, the differential sensitivity of Ca2+ influx to Al in intact roots of Al-resistant versus Al-sensitive wheat cultivars is probably due to the maintenance of lower Al3+ activities in the root apical rhizosphere of the resistant cultivar.  相似文献   

11.
The objective of this study was to determine whether a series of Kenyan bread wheat cultivars differed in tolerance to aluminum toxicity. Fourteen Kenyan wheat cultivars representing current and former widely grown cultivars of diverse pedigree origin, and two control cultivars, Maringa (Al-tolerant) and Siete Cerros (Al-susceptible), were tested in solution cultures with 0 (control), 148, 593, and 2370 M Al at pH 4.6. Highly significant (p0.01) differences in seedling growth were observed among cultivars for root mass, root length and root tolerance index (RTI). Significant (p0.05) cultivar × treatment interactions were observed for root mass and RTI. All characters were negatively affected by increased Al concentration, with root length and root mass being affected the most. RTI is a commonly used index which measures the relative performance of individual cultivars with and without aluminum stress. High levels of tolerance to Al were identified in the Kenyan cultivars by evaluating RTI with this simple nutrient solution technique. Romany and Kenya Nyumbu had RTI values approaching those of the Al tolerant Brazilian cultivar Maringa, a spring wheat standard that has been used for high Al tolerance.  相似文献   

12.
Ryan PR  Kochian LV 《Plant physiology》1993,102(3):975-982
Aluminum (Al) is toxic to plants at pH < 5.0 and can begin to inhibit root growth within 3 h in solution experiments. The mechanism by which this occurs is unclear. Disruption of calcium (Ca) uptake by Al has long been considered a possible cause of toxicity, and recent work with wheat (Triticum aestivum L. Thell) has demonstrated that Ca uptake at the root apex in an Al-sensitive cultivar (Scout 66) was inhibited more than in a tolerant cultivar (Atlas 66) (J.W. Huang, J.E. Shaff, D.L. Grunes, L.V. Kochian [1992] Plant Physiol 98: 230-237). We investigated this interaction further in wheat by measuring root growth and Ca uptake in three separate pairs of near-isogenic lines within which plants exhibit differential sensitivity to Al. The vibrating calcium-selective microelectrode technique was used to estimate net Ca uptake at the root apex of 6-d-old seedlings. Following the addition of 20 or 50 [mu]M AlCl3, exchange of Ca for Al in the root apoplasm caused a net Ca efflux from the root for up to 10 min. After 40 min of exposure to 50 [mu]M Al, cell wall exchange had ceased, and Ca uptake in the Al-sensitive plants of the near-isogenic lines was inhibited, whereas in the tolerant plants it was either unaffected or stimulated. This provides a general correlation between the inhibition of growth by Al and the reduction in Ca influx and adds some support to the hypothesis that a Ca/Al interaction may be involved in the primary mechanism of Al toxicity in roots. In some treatments, however, Al was able to inhibit root growth significantly without affecting net Ca influx. This suggests that the correlation between inhibition of Ca uptake and the reduction in root growth may not be a mechanistic association. The inhibition of Ca uptake by Al is discussed, and we speculate about possible mechanisms of tolerance.  相似文献   

13.
A solution culture experiment was carried out to study the effects of interactions between aluminium (Al) and phosphorus (P) on Al-toxicity under conditions of suboptimal P supply. The experiment was conducted in a growth chamber with seedlings of the Al-sensitive sorghum genotype TAM428 (Sorghum bicolor (L.) Moench). Phosphorus deficiency differed from Al toxicity in its effect on shoot/root ratio and root morphological charateristics. Results indicated that there were positive effects of Al on the uptake and assimilation of P. Therefore, it was unlikely that an Al-induced P deficiency could account for the observed reduction in plant biomass. Plants suffered more from Al toxicity at very low P supply. Moreover, decreasing P supply resulted in increased root H-ion efflux density. In the soil, where a rhizosphere can be formed, this would make the plant even more susceptible to Al. Dry matter yield of the plants was affected more severely by Al at the first harvest (14 days) than at the second (35 days), but the opposite was true for P. Aluminium-inhibited root development and reduced uptake of N, K and Mg (but not Ca) may be partly responsible for the growth depression. Increasing the P supply exerted certain roles in eliminating Al phytotoxicity, possibly through improved root development and nutrient uptake. The detrimental influence of Al on biomass could be overcome by doubling the P supply.  相似文献   

14.
The activities of inorganic, monomeric aluminium (Al) species in the root environment are important in the toxicity of Al to plant roots, which may be ameliorated by increased activities of basic cations. Additionally, it has been suggested that electro-chemical processes in walls of root cells play a role in Al tolerance. Empirical models were proposed to accomodate genetic and calcium (Ca) and magnesium (Mg) ameliorative effects on Al toxicity. The models were tested using data from a solution culture study (with ionic strength 1.6 to 8.6 mM) in which wheat (Triticum aestivum L.) cvv. Warigal (Al-sensitive) and Waalt (Al-tolerant) were grown for 28 d at 0, 10 and 20 M Al, in factorial combination with 200, 400, 800 and 1600 M Ca and 100, 200, 400 and 800 M Mg. There was a poor relationship between relative total dry mass (TDM) (calculated as a percentage of the average TDM of each cultivar in the absence of added Al) and the activity of Al3+ or the sum of the activities of the monomeric Al species in solution. A model based on the ratios of activities of cations in solution, taking valency into consideration, was more successful, accounting for ca 85% of the observed variation in relative TDM. There were no systematic variations between observed values and those estimated by the model.  相似文献   

15.
In this study, the role of root organic acid synthesis and exudation in the mechanism of aluminum tolerance was examined in Al-tolerant (South American 3) and Al-sensitive (Tuxpeño and South American 5) maize genotypes. In a growth solution containing 6 M Al3+, Tuxpeño and South American 5 were found to be two- and threefold more sensitive to Al than South American 3. Root organic acid content and organic acid exudation from the entire root system into the bulk solution were investigated via high-performance liquid chromatographic analysis while exudates collected separately from the root apex or a mature root region (using a dividedroot-chamber technique) were analyzed with a more-sensitive ion chromatography system. In both the Al-tolerant and Al-sensitive lines, Al treatment significantly increased the total root content of organic acids, which was likely the result of Al stress and not the cause of the observed differential Al tolerance. In the absence of Al, small amounts of citrate were exuded into the solution bathing the roots. Aluminum exposure triggered a stimulation of citrate release in the Al-tolerant but not in the Al-sensitive genotypes; this response was localized to the root apex of the Al-tolerant genotype. Additionally, Al exposure triggered the release of phosphate from the root apex of the Al-tolerant genotype. The same solution Al3+ activity that elicited the maximum difference in Al sensitivity between Al-tolerant and Al-sensitive genotypes also triggered maximal citrate release from the root apex of the Al-tolerant line. The significance of citrate as a potential detoxifier for aluminum is discussed. It is concluded that organic acid release by the root apex could be an important aspect of Al tolerance in maize.Abbreviations SA3 South American 3, an Al-tolerant maize cultivar - SA5 South American 5, an Al-sensitive maize cultivar The authors would like to express their appreciation to Drs. John Thompson, Ross Welch and Mr. Stephen Schaefer for their training and guidance in the use of the chromatography systems. This work was supported by a Swiss National Science Foundation Fellowship to Didier Pellet, and U.S. Department of Agriculture/National Research Initiative Competitive Grant 93-37100-8874 to Leon Kochian. We would also like to thank Drs. S. Pandey and E. Ceballos from the CIMMYT Regional office at CIAT Cali, Colombia for providing seed for the maize varieties and inbred line.  相似文献   

16.
The effects of aluminum (Al) on root elongation, the mechanical extensibility of the cell wall, and the amount of cell-wall polysaccharides in the roots of Al-resistant (Atlas 66) and Al-sensitive (Scout 66) cultivars of wheat ( Triticum aestivum L.) were examined. Exposure to 10 μ M AlCl3 for 6 h inhibited root elongation in Scout 66 but not in Atlas 66. It also decreased the mechanical extensibility of the cell wall in the roots of both cultivars, but prominently only in the roots of Scout 66. The amount of hemicellulose in the 10-mm region of root apex of Scout 66 was increased by the exposure to Al, especially in the apical regions. Al did not influence the neutral sugar composition of either pectin or hemicellulose in Scout 66 roots. However, Al increased the weight-average molecular mass of hemicellulosic polysaccharides and the amounts of wall-bound ferulic and diferulic acids in Scout 66 roots. These findings suggest that Al modifies the metabolism of cell-wall components and thus makes the cell wall thick and rigid, thereby inhibiting the growth of wheat roots.  相似文献   

17.
Quantitative trait loci for aluminum resistance in wheat   总被引:4,自引:0,他引:4  
Quantitative trait loci (QTL) for wheat resistance to aluminum (Al) toxicity were analyzed using simple sequence repeats (SSRs) in a population of 192 F6 recombinant inbred lines (RILs) derived from a cross between an Al-resistant cultivar, Atlas 66 and an Al-sensitive cultivar, Chisholm. Wheat reaction to Al was measured by relative root growth and root response to hematoxylin stain in nutrient-solution culture. After screening 1,028 SSR markers for polymorphisms between the parents and bulks, we identified two QTLs for Al resistance in Atlas 66. One major QTL was mapped on chromosome 4D that co-segregated with the Al-activated malate transporter gene (ALMT1). Another minor QTL was located on chromosome 3BL. Together, these two QTLs accounted for about 57% of the phenotypic variation in hematoxylin staining score and 50% of the variation in net root growth (NRG). Expression of the minor QTL on 3BL was suppressed by the major QTL on 4DL. The two QTLs for Al resistance in Atlas 66 were also verified in an additional RIL population derived from Atlas 66/Century. Several SSR markers closely linked to the QTLs were identified and have potential to be used for marker-assisted selection (MAS) to improve Al-resistance of wheat cultivars in breeding programs.  相似文献   

18.
Aluminum (Al) toxicity is directly related to acidic soils and substantially limits maize yield. Earlier studies using hormones and other substances to treat the seeds of various crops have been carried out with the aim of inducing tolerance to abiotic stress, especially chilling, drought and salinity. However, more studies regarding the effects of seed treatments on the induction of Al tolerance are necessary. In this study, two independent experiments were performed to determine the effect of ascorbic acid (AsA) seed treatment on the tolerance response of maize to acidic soil and Al stress. In the first experiment (greenhouse), the AsA seed treatment was tested in B73 (Al-sensitive genotype). This study demonstrates the potential of AsA for use as a pre-sowing seed treatment (seed priming) because this metabolite increased root and shoot growth under acidic and Al stress conditions. In the second test, the evidence from field experiments using an Al-sensitive genotype (Mo17) and an Al-tolerant genotype (DA) suggested that prior AsA seed treatment increased the growth of both genotypes. Enhanced productivity was observed for DA under Al stress after priming the seeds. Furthermore, the AsA treatment decreased the activity of oxidative stress-related enzymes in the DA genotype. In this study, remarkable effects using AsA seed treatment in maize were observed, demonstrating the potential future use of AsA in seed priming.  相似文献   

19.
Aluminum effects on the morphological development of soybean (Glycine max (L.) Merr.) were characterized in greenhouse and growth chamber experiments. An Al-sensitive cultivar, ‘Ransom’, was grown in an acid soil (Aeric Paleudult) adjusted to 3 levels of exchangeable Al. Lateral shoot development at the nodes of the main stem was extensive in the limed soil containing 0.06 cmol(+) Alkg−1. However, lateral shoot length and weight were severely inhibited in the unlimed soil containing 2.19 cmol(+) Alkg−1, and in the unlimed soil amended to 2.63 cmol(+) Alkg−1 with AlCl3. This inhibition by the high Al/low pH condition was reversed by the exogenous application of a synthetic cytokinin 6-benzylaminopurine (BA). The daily application of 20 μg mL−1 BA applied locally to the lateral meristems of plants grown in the unlimed soil stimulated lateral shoot growth substantially, such that it was either comparable to or greater than that observed in the limed treatment without BA. Accumulation of K, Ca, and Mg in lateral shoot branches was also stimulated by the local application of BA. The inhibitory effects of Al on lateral shoot development were confirmed in solution culture. In addition, differential sensitivity to Al was evident among the primary root, first order lateral roots, and second order lateral roots. The length of the primary root was only slightly decreased by increasing concentrations of Al up to 30 μM. In contrast, the length of basipetally located first order lateral roots was restricted to greater extent; up to 50% by 30 μM Al. Second order lateral lengths were inhibited even more severely; up to 86% by 30 μM Al. Substantial evidence in the literature indicates that the root apex is a major site for the biosynthesis of cytokinin that is supplied to shoots, and cellular function and development in this region of the root are impaired during Al toxic conditions. This suggests that one mode of action by which Al may affect shoot growth is by inhibiting the synthesis and subsequent translocation of cytokinin to the meristematic regions of the shoot. The present observation of a reversal of Al-inhibited lateral shoot development by exogenously applied cytokinin supports this hypothesis. However, the inability of applied cytokinin to counter the restriction imposed by Al on total shoot dry matter production implies the impairment by Al toxicity of other root functions, such as ion and water transport, also played an important role in altering shoot morphology.  相似文献   

20.
Aluminum (Al) toxicity is considered as one of the primary causes of low-rice productivity in acid soils. In the present study, quantitative trait loci (QTLs) controlling Al resistance based on relative root elongation (RRE) were dissected using a complete linkage map and a recombinant inbred lines (RILs) derived from a cross of Al-tolerant japonica cultivar Asominori (Oryza sativa L.) and Al-sensitive indica cultivar IR24 (O. sativa L.). A total of three QTLs (qRRE-1, qRRE-9, and qRRE-11) were detected on chromosomes 1, 9, and 11 with LOD score ranging from 2.64 to 3.60 and the phenotypic variance explained from 13.5 to 17.7%. The Asominori alleles were all associated with Al resistance at all the three QTLs. The existence of these QTLs was confirmed using Asominori chromosome segment substitution lines (CSSLs) in IR24 genetic background (IAS). By QTL comparative analysis, the two QTLs (qRRE-1and qRRE-9) on chromosomes 1 and 9 appeared to be consistent among different rice populations while qRRE-11 was newly detected and syntenic with a major Al resistance gene on chromosome 10 of maize. This region may provide an important case for isolating genes responsible for different mechanisms of Al resistance among different cereals. These results also provide the possibilities of enhancing Al resistance in rice breeding program by marker-assisted selection (MAS) and pyramiding QTLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号