首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The European common lizard (Lacerta vivipara) is widely distributed throughout Eurasia and is one of the few Palaearctic reptiles occurring above the Arctic Circle. We investigated the cold-hardiness of L. vivipara from France which routinely encounter subzero temperatures within their shallow hibernation burrows. In the laboratory, cold-acclimated lizards exposed to subfreezing temperatures as low as -3.5°C could remain unfrozen (supercooled) for at least 3 weeks so long as their microenvironment was dry. In contrast, specimens cooled in contact with ambient ice crystals began to freeze within several hours. However, such susceptibility to inoculative freezing was not necessarily deleterious since L. vivipara readily tolerated the freezing of its tissues, with body surface temperatures as low as -3.0°C during trials lasting up to 3 days. Freezing survival was promoted by relatively low post-nucleation cooling rates (0.1°C·h-1) and apparently was associated with an accumulation of the putative cryoprotectant, glucose. The cold-hardiness strategy of L. vivipara may depend on both supercooling and freeze tolerance capacities, since this combination would afford the greatest likelihood of surviving winter in its dynamic thermal and hydric microenvironment.Abbreviations bm body mass - SVL snout-vent length - Tb body surface temperature - T c crystallization temperature  相似文献   

2.
Summary A special temperature control system has been developed and applied to continuous measuring of the heat evolved during a fermentation process. In this system, the fermentation broth was overcooled by a given constant cooling water flow. The excess heat removed from the fermentor was then made up by an immersion electrical heater. The action of the temperature controller was precisely monitored as it varied in response to the amount of heat produced by the microbial activities.The technique was used for determining the heat evolution byEscherichia coli grown on glucose. The ratio between quantities of total heat release and total oxygen consumption has been determined to be 0.556 MJ/mol O2.The newly developed technique can be employed as an online sensor to monitor the microbial activities of either aerobic or anaerobic fermentation systems.Symbols Cc Heat capacity of cooling water (MJ/kg · °C) - Cp Heat capacity (MJ/kg · °C) - I Current of immersion heater (A) - K Constant in Equation (2) (h) - K Constant in Equation (13) (m3 · h · °C/MJ) - Qc Flow rate of cooling water (m3/h) - Heat of agitation (MJ/m3 · h) - Heat dissipated by the bubbling gas (MJ/m3 · h) - Heat removal by the action of controller (MJ/m3 · h) - Heat of fermentation (MJ/m3 · h) - Heat loss to the surroundings (MJ/m3 · h) - Qpass Constant average power dissipated by the immersion heater (MJ/m3 · h) - Fluctuating power dissipated by the immersion heater (MJ/m3 · h) - Power dissipated by the immersion heater (MJ/m3 · h) - T Temperature of fermentation broth (°C) - Constant average temperature of fermentation broth (°C) - Fluctuating temperature of fermentation broth (°C) - Ta Temperature of the ambient air (°C) - Tc Inlet temperature of cooling water (°C) - U1A1 Specific heat transfer coefficient for determination of heat loss to the surroundings (MJ/m3 · h · °C) - U2A2 Specific heat transfer coefficient for cooling surfaces (MJ/m3 · h · °C) - U3A3 Constant in Equation (16) (MJ/m3 · h · °C) - V Voltage of immersion heater (V) - VL Liquid volume (m3) - OUR Oxygen uptake rate (mol O2/m3 · h) Greek Letters Hfo The ratio between the total heat release and the total oxygen uptake (MJ/mol O2) - c Density of cooling water (kg/m3) - Time constant defined in Equation (6) (h) - iMiCpi Heat capacity of system components (fermentation broth + fermentor jar + stainless steel) (MJ/m3 · °C)  相似文献   

3.
Summary Basal oxygen consumption, ventilatory frequency, and heart rate were recorded at four different times during the unusually protracted 15–16-month spawning run of the Southern Hemisphere lamprey Geotria australis. At 15°C, the mean basal oxygen consumption of G. australis caught immediately after they had left the sea and embarked on the spawning run (45 l · g-1 · h-1) was less than in young adults about to commence their marine feeding phase (64 l · g-1 · h-1), but greater than in large ammocoetes (26.5 l · g-1 · h-1). Basal oxygen consumption fell progressively during the spawning-run of to 33 l · g-1 · h-1 after 5 months and 25 l · g-1 · h-1 after 10 months, before rising to 35 l · g-1 · h-1 after 15 months when the animals were approaching sexual maturity. The downwards trend in basal oxygen consumption contrasts with that recorded during the spawning run of Lampetra fluviatilis. Furthermore, these values for spawning-run of G. australis are far lower than those measured at any time during the upstream migration of L. fluviatilis or during the parasitic phase of landlocked Petromyzon marinus. A low and declining metabolic rate during much of the spawning run of G. australis would facilitate the conservation of energy reserves during this very long non-feeding period. Trends shown by ventilatory frequency and heart rate essentially parallel those of basal oxygen consumption. The Q10s for basal oxygen consumption, ventilatory frequency and heart rate over the temperature range 5–25°C were 1.6, 1.6, and 1.7, respectively. The trends shown by basal oxygen consumption during metamorphosis and the upstream migration did not parallel those exhibited by circulating thyroid hormones.  相似文献   

4.
Body temperature, oxygen consumption, respiratory and cardiac activity and body mass loss were measured in six females and four males of the subterranean Zambian mole rat Cryptomys sp. (karyotype 2 n=68), at ambient temperatures between 10 and 35°C. Mean body temperature ranged between 36.1 and 33.2°C at ambient temperatures of 32.5–10°C and was lower in females (32.7°C) than in males (33.9°C) at ambient temperatures of 10°C but dit not differ at thermoneutrality (32.5°C). Except for body temperature, mean values of all other parameters were lowest at thermoneutrality. Mean basal oxygen consumption of 0.76 ml O2·g-1· h-1 was significantly lower than expected according to allometric equations and was different in the two sexes (females: 0.82 ml O2·g-1·h-1, males: 0.68 ml O2·g1·h-1) but was not correlated with body mass within the sexes. Basal respiratory rate of 74·min-1 (females: 66·min1, males: 87·min-1) and basal heart rate of 200·min-1 (females: 190·min-1, males: 216·min-1) were almost 30% lower than predicted, and the calculated thermal conductance of 0.144 ml O2·g-1·h1·°C-1 (females; 0.153 ml O2·g-1·h-1·°C-1, males: 0.131 ml O2·g-1·h-1·°C-1) was significantly higher than expected. The body mass loss in resting mole rats of 8.6–14.1%·day-1 was high and in percentages higher in females than in males. Oxygen consumption and body mass loss as well as respiratory and cardiac activity increased at higher and lower than thermoneutral temperatures. The regulatory increase in O2 demand below thermoneutrality was mainly saturated by increasing tidal volume but at ambient temperatures <15°C, the additional oxygen consumption was regulated by increasing frequency with slightly decreasing tidal volume. Likewise, the additional blood transport capacity was mainly effected by an increasing stroke volume while there was only a slight increase of heart frequency. In an additional field study, temperatures and humidity in different burrow systems have been determined and compared to environmental conditions above ground. Constant temperatures in the nest area 70 cm below ground between 26 and 28°C facilitate low resting metabolic rates, and high relative humidity minimizes evaporative water loss but both cause thermoregulatory problems such as overheating while digging. In 13–16 cm deep foraging tunnels, temperature fluctuations were higher following the above ground fluctuations with a time lag. Dominant breeding females had remarkably low body temperatures of 31.5–32.3°C at ambient temperatures of 20°C and appeared to be torpid. This reversible hypothermy and particular social structure involving division of labour are discussed as a strategy reducing energy expenditure in these eusocial subterranean animals with high foraging costs.Abbreviations BMR basal metabolic rate - br breath - C thermal conductance - HR neart rate - LD light/dark - M b body mass - MR metabolic rate - OP oxygen pulse - PCO2 partial pressure of carbon dioxide - PO2 partial pressure of oxygen - RMR resting metabolic rate - RR respiratory rate - T a ambient temperature - T b body temperature - TNZ thermal neural zone - O2 oxygen consumption  相似文献   

5.
Temperature-dependent feedback inhibition of photosynthesis in peanut   总被引:7,自引:0,他引:7  
Arachis hypogaea L. is a tropical crop that is slow-growing at temperatures below 25°C. Unadapted CO2-assimilation rate (A) showed insufficient variation between 15 and 30°C in the short term (hours) to explain this marked reduction in growth. However, at longer periods (12 d), A was depressed as were growth rate and leafproduction rate. To examine the possible relationship between growth, A and sink demand plants were transferred from 30°C, which is near the optimum for growth, to a suboptimal temperature (19°C). In the first 2 d of cooling, A decreased by 50–70%, the stomata stayed open, and the intercellular CO2 concentration (ci) rose, i.e. the decrease in A of the cooled plants was the result of non-stomatal factors. Changes in dark respiration did not account for the decline in A.Clear evidence was obtained of sink control of A by independently manipulating the temperature of different leaves on the plant. Cooling (to 19°C) most of the plant (the sink) led to a 70% decline in A of the remaining leaves at 30°C after 3 d, whereas the converse treatments (30°C sink, 19°C source) resulted in small changes (17%). In plants at 19°C which were exposed to low CO2 concentration to prevent photosynthesis, A was not reduced when measured at normal CO2 concentrations, indicating that carbohydrate accumulation was responsible for the decline in A. Dry-matter build-up at suboptimal temperature was also consistent with end-product inhibition of photosynthesis.Abbreviations and symbols A (mol·m-2·s-1) rate of net CO2 assimilation - Ci (l·l-1) substomatal CO2 concentration - DW (g) dry weight - g (mol·m-2·s-1) stomatal conductance to diffusion of water vapour - PFD (mol·m-2·s-1) photon flux density  相似文献   

6.
Summary The decreasing effect of -adrenergic blockade on skin resistance to vapor diffusion and the onset of cutaneous water evaporation in the pigeon (Columba livia) was investigated. Oral administration of 1, 2.3 and 5 mg propranolol to pigeons (268±53 g) initiated intensive trans-cutaneous water evaporation (CWE) up to 29.1 mg H2O·cm–2·h–1 in resting birds at 30°C air temperature (Ta), but had only a slight effect on CWE of birds exposed to 50 °C Ta.After 7 h of effective -adrenergic blockade (oral administration of 5 mg propranolol), skin and body temperature stabilized at 39.0±0.5 °C and 41.0±0.7 °C, compared to 40.2±0.8 °C and 41.9±0.6 °C in the control group, respectively. A slight hypothermia was accompanied by feather fluffing.Intradermal injection of 0.001, 0.01 and 0.12 mg propranolol also caused intensive CWE. Local -adrenergic blockade in relatively low blocker doses (0.001 and 0.01 mg propranolol) decreased skin resistance from a high value of 44.5 s·cm–1 to about 6.0 s·cm–1, and caused a sharp increase in CWE from a control value of about 4 to a high of 26.4 mg H2O·cm–2·h–1 during the first two hours of exposure to 30°C Ta.The possible role of -adrenergic blockade in regulation of trans-cutaneous water evaporation of latent heat dissipation is discussed.  相似文献   

7.
Summary Photosynthetic recovery (PR) in a southwest Texas, USA population of Selaginella lepidophylla (Hook and Grev.) (Selaginellaceae), a poikilohydric spikemoss, was examined in the laboratory. Infrared CO2 gas analysis and ribulose 1,5-bisphosphate (RuBP) carboxylase activity measurements indicated that optimal temperature for PR was near 25°C in terms of: (1) rapidity of net CO2 uptake after hydration (5.4 h), (2) maximum net photosynthetic rate at 2000 E·m-2·s-1 (2.44 mg CO2·g(DWT)-1·h-1), and (3) maximum net CO2 assimilation per 30 h hydration event (43.8 mg CO2·g(DWT)-1·30 h-1). The PR was much slower at both 15° and 35° C, with lower photosynthetic rates and net carbon gains per hydration event. High respiratory costs were incurred at 45°C and no net photosynthesis was observed. Increases in RuBP carboxylase activity and chlorophyll content during 24 h hydration were also greatest near 25°C. Dry plants had 60% of the enzyme activity of fully recovered (24 h hydration) plants, indicating enzyme conservation. Actinomycin D and cycloheximide did not appear to inhibit PR, but chloramphenicol appeared to totally inhibit RuBP carboxylase activity increases over levels conserved in dry plants. Therefore, rapid PR in S. lepidophylla was achieved by both rapid increase in RuBP carboxylase activity, possibly via de novo synthesis, and conservation of the photosynthetic enzyme. Both mechanisms are essential to maximize assimilation in S. lepidophylla in an environment where hydrated periods are rare and of short duration.  相似文献   

8.
Summary In late February, seven box turtles were collected with body temperatures between 7 and 9°C. Ventilation, gas exchange and end-tidal and were recorded at 5, 10, 15 and 25°C, the animals being at each temperature for 2 to 3 weeks. There was a pronounced diurnal rhythm of breathing frequency at all temperatures. At 5°C the mean 24-h frequency was only 3.7 breaths h–1. At 15°C the frequency was 16 times higher with a 17-fold increase of ventilation. Oxygen uptake only changed from 3.4 to 12.7 ml·kg–1·h–1. Consequently, the ratio (ventilation, ml BTPS/O2 uptake, ml STPD) increased from 12.5 at 5°C to 48 at 15°C, but decreased to 24 at 25°C. The decrease of this ratio during cold exposure contrasts with an increase of the ratio during cooling earlier reported for fresh water turtles,Pseudemys. Cutaneous CO2 elimination was important at low temperature. This caused a decrease of the pulmonary gas exchange ratio so that end-tidal remained low at 5°C in spite of an end-tidal of only 54 Torr.  相似文献   

9.
Summary The triggering of cryoprotectant synthesis was examined in the freeze tolerant wood frog,Rana sylvatica. A slow decrease in ambient temperature (1°C every 2 days) from 3° to –2.1 °C was used to search for a specific trigger temperature. None was found. Instead it was found that, despite subzero temperature, animals which remained in a supercooled unfrozen state had low blood glucose (1.66±0.44 mol/ml) while those which had frozen had high blood glucose (181±16 mol/ml). These results indicate that it is the initiation of ice nucleation, rather than a specific subzero temperature, which triggers cryoprotectant glucose synthesis. This was confirmed by monitoring the freezing curves for individual frogs with sampling of blood and tissues at various times relative to the initiation of nucleation (detected as an instantaneous temperature jump from –3 to –1°C). Animals sampled before nucleation had low blood and liver glucose contents and a low percentage of liver phosphorylase in thea form. Within 4 min of the initiation of freezing, however, blood glucose had jumped to 16 mol/ml and liver glucose to 39.5 mol/g wet weight. Glucose in both compartments continued to increase as the time of freezing increased correlated with an increase in liver phosphorylasea content from 47% before nucleation to 100% after 50 min of freezing. The results clearly demonstrate that freeze tolerant frogs have no anticipatory synthesis of cryoprotectant as a preparation for winter but rather can translate the initiation of extracellular ice formation into a signal which rapidly activates cryoprotectant production by liver.  相似文献   

10.
Body temperature and oxygen consumption were measured in the eastern hedgehog,Erinaceus concolor Martin 1838, during summer at ambient temperatures (T a) between-6.0 and 35.6°C.E. concolor has a relatively low basal metabolic rate (0.422 ml O2·g-1·h-1), amounting to 80% of that predicted from its body mass (822.7 g). Between 26.5 and 1.2°C, the resting metabolic rate increases with decreasing ambient temperature according to the equation: RMR=1.980-0.057T a. The minimal heat transfer coefficient (0.057 ml O2·g-1·h-1·°C-1) is higher than expected in other eutherian mammals, which may result from partial conversion of hair into spines. At lower ambient temperature (from-4.6 to-6.0° C) there is a drop in body temperature (from 35.2 to 31.4° C) and a decrease in oxygen consumption (1.530 ml O2·g-1·h-1) even though the potential thermoregulation capabilities of this species are significantly higher. This is evidenced by the high maximum noradrenaline-induced non-shivering thermogenesis (2.370 ml O2·g-1·h-1), amounting to 124% of the value predicted. The active metabolic rate at ambient temperatures between 31.0 and 14.5° C averages 1.064 ml O2·g-1·h-1; at ambient temperatures between 14.5 and 2.0° C AMR=3.228-0.140T a.Abbreviations AMR active metabolic rate - bm body mass - BMR basal metabolic rate - h heat transfer coefficient - NA noradrenaline - NST non-shivering thermogenesis - NSTmax maximum rate of NA-induced non-shivering thermogenesis - RMR resting metabolic rate - RQ respiratory quotient - STPD standard temperature and pressure (25°C, 1 ATM) - T a ambient temperature - T b body temperature  相似文献   

11.
Mechanisms involved in cold hardiness of cocoons of the lumbricid earthworm Dendrobaena octaedra were elucidated by osmometric and calorimetric studies of water relations in cocoons exposed to subzero temperatures. Fully hydrated cocoons contained ca. 3 g water · g dry weight-1; about 15% of this water (0.5 g·g dry weight-1) was osmotically inactive or bound. The melting point of the cocoon fluids in fully hydrated cocoons was-0.20°C. Exposure to frozen surroundings initially resulted in supercooling of the cocoons dehydrated (as a result of the vapour pressure difference at a given temperature between supercooled water and ice) to an extent where the vapour pressure of water in the body fluids was in equilibrium with the surrounding ice. This resulted in a profound dehydration of the cocoons, even at mild freezing exposures, and a concomitant slight reduction in the amount of osmotically inactive water. At temperatures around-8°C, which cocoons readily survive, almost all (>97%) osmotically active water had been withdrawn from the cocoons. It is suggested that cold injuries in D. octaedra cocoons observed at still lower temperatures may be related to the degree of dehydration, and possibly to the loss of all osmotically active water. The study indicates that ice formation in the tissues is prevented by equilibrating the body fluid melting point with the exposure temperature. This winter survival mechanism does not conform with the freeze tolerance/freeze avoidance classification generally applied to cold-hardy poikilotherms. Implications of this cold hardiness mechanism for other semi-terrestrial invertebrates are discussed.Abbreviations DSC differential scanning calorimetry - dw dry weight - MP melting point(s) - II water potential - R universal gas constant - T absolute temperature - V specific volume of water  相似文献   

12.
Wood frogs (Rana sylvatica) exhibit marked geographic variation in freeze tolerance, with subarctic populations tolerating experimental freezing to temperatures at least 10-13 degrees Celsius below the lethal limits for conspecifics from more temperate locales. We determined how seasonal responses enhance the cryoprotectant system in these northern frogs, and also investigated their physiological responses to somatic freezing at extreme temperatures. Alaskan frogs collected in late summer had plasma urea levels near 10 μmol ml-1, but this level rose during preparation for winter to 85.5 ± 2.9 μmol ml-1 (mean ± SEM) in frogs that remained fully hydrated, and to 186.9 ± 12.4 μmol ml-1 in frogs held under a restricted moisture regime. An osmolality gap indicated that the plasma of winter-conditioned frogs contained an as yet unidentified osmolyte(s) that contributed about 75 mOsmol kg-1 to total osmotic pressure. Experimental freezing to –8°C, either directly or following three cycles of freezing/thawing between –4 and 0°C, or –16°C increased the liver’s synthesis of glucose and, to a lesser extent, urea. Concomitantly, organs shed up to one-half (skeletal muscle) or two-thirds (liver) of their water, with cryoprotectant in the remaining fluid reaching concentrations as high as 0.2 and 2.1 M, respectively. Freeze/thaw cycling, which was readily survived by winter-conditioned frogs, greatly increased hepatic glycogenolysis and delivery of glucose (but not urea) to skeletal muscle. We conclude that cryoprotectant accrual in anticipation of and in response to freezing have been greatly enhanced and contribute to extreme freeze tolerance in northern R. sylvatica.  相似文献   

13.
Dark respiration rates of guard-cell protoplasts of Commelina communis L. were measured over a temperature range (15–30° C) using a Cartesian-diver microrespirometry technique. Measurements were made using a few microliters of suspension medium containing between 400 and 3 700 protoplasts. Respiration rates were approximately linear for at least 1 h at all temperatures. Respiration rates increased rapidly between 20 and 25° C to relatively high levels (6.11·10-6 mol O2 h-1 protoplast-1=1259 mol O2 mg-1 chlorophyll h-1=22.97 mol O2 mg-1 protein h-1) with no further increases above this temperature. Respiration rates were much lower in protoplasts 15–16 h old than in freshly prepared ones indicating considerable deterioration of their viability over this time period.  相似文献   

14.
Summary Respiratory gas exchange and blood respiratory properties have been studied in the East-African tree frogChiromantis petersi. This frog is unusually xerophilous, occupies dry habitats and prefers body temperatures near 40°C and direct solar exposure. Total O2 uptake was low at 81 l O2·g–1·h–1±19.0 (SD) at 25°C increasing to 253.5 l O2·g–1·h–1±94.8 (SD) at 40°C giving aQ 10 value of 2.1. Skin O2 uptake at 25°C was 38.5% of total. The gas exchange ratio was 0.71 for whole body gas exchange, 0.61 for the lungs and 1.02 for the skin at 25°C.Blood O2 affinity was low with aP 50 of 47.5 mmHg at 25°C and pH 7.65. Then H-value at 25°C increased from 2.7 aroundP 50 to 5.0 at O2 saturations exceeding 70–80%. Surprisingly, blood O2 affinity was nearly insensitive to temperature expressed by a H value of ±1.0 kcal·mole between 25 and 40°C.The adaptive significance of the low O2 affinity, the increase ofn H with O2 saturation and the temperature insensitive O2-Hb binding is discussed in relation to the high and fluctuating body temperatures ofChiromantis.  相似文献   

15.
A small number of vertebrate species, including some frogs, are freezing tolerant and survive ice forming in their bodies under ecologically relevant conditions. Habitat use information is critical for interpreting laboratory studies of freezing tolerance, but there is often little known about the winter habitat and behaviours of the species under study. This work describes microhabitats used by the freezing‐tolerant frog Litoria ewingii Duméril and Bibron 1841 and their temperature characteristics. In winter, L. ewingii used microhabitats with wood, located further away from water than in summer. Microhabitat temperature records showed that frog microhabitats regularly fell below the temperature at which frog body fluids freeze (?1°C), and cooled substantially more slowly than did the air temperature. Temperatures were highly variable between microhabitats, seasons and years, with a minimum of ?2.4°C and a maximum cooling rate of 0.77°C h?1. Frozen frogs were observed to recover in the field, demonstrating freezing tolerance. Both the characteristics of microhabitats and their selection are important in ensuring freezing survival.  相似文献   

16.
Differential Thermal Analysis of hydrated lettuce cv. GreatLakes achenes using a rapid cooling rate (20 °C h–1)produced two exotherms per achene. Both exotherms representedthe freezing of supercooled water. The high temperature exothermoccurred at –93 °C and was produced by freezing ofwater inside the pericarp but exterior to the endosperm. Thetemperature at which it occurred could be altered by the additionof nucleating agents. The low temperature exotherm produced by freezing of the embryooccurred at –162 °C and marked the death of the seed.Its temperature was not changed by the addition of nucleatingagents but its occurrence required the structural integrityof the endosperm. At low cooling rates (1 and 2 °C h1)low temperature exotherms were not recorded and samples removedat –25 °C had high viability. Slow cooling causeda redistribution of water within the seed whereby ice formingoutside the endosperm caused desiccation of the embryo and preventedits freezing. A mechanism is proposed, in terms of established supercoolingand nucleation theory, to explain the observed results and thevalue of freeze tolerance to the species in its natural habitatis discussed. Cooling rate, differential thermal analysis, freezing avoidance, Lactuca sativa L., lettuce, seed, supercooling, water migration  相似文献   

17.
The growth of the anaerobic acetogenic bacterium Acetobacterium woodii DSM 1030 was investigated in fructose-limited chemostat cultures. A defined medium was developed which contained fructose, mineral salts, cysteine · HCl and Ca pantothenate (1 mg · 1–1) supplied in a vitamin supplement. Growth at high dilution rates was dependent on the presence of CO2 in the gas phase. The max was found to be 0.16 h–1 and the fructose maintenance requirement was 0.1 to 0.13 mmol fructose · (g dry wt)–1 · h–1. A growth yield of 61 g dry wt · (mol fructose)–1, corrected for the cell maintenance requirement and for incorporation of fructose carbon into cell biomass, was determined from the fructose consumption. A corresponding growth yield of 69 g dry wt · (mol fructose)–1 was calculated from the acetate production assuming that fructose fermentation was homoacetogenic. A YATP of 12.2 to 13.8 g dry wt · (mol ATP)–1 was calculated from these growth yields using a value of 5 mol ATP · (mol fructose)–1 as an estimate of the amount of ATP synthesised from fructose fermentation. The addition of yeast extract (0.5 g · 1–1) to the medium did not influence the max or cell yield. After prolonged growth under fructose-limited conditions the requirement of the culture for CO2 in the gas phase was reduced.Abbreviations YE yeast extract - IC inorganic carbon - D fermenter dilution rate : h–1 - MX maintenance requirement for X: mmol X · (g dry wt)–1 · h–1 - X may be fructose (Fruct), fructose consumed in energy metabolism (Fruct [E]), acetate (Ac) - ATP CO2, NH inf4 sup+ or Pi - qX specific rate of utilisation or consumption of X: mmol X · (g dry wt)–1 · h–1 - V fermenter volume: litre - rC · Cell, fermenter cell carbon production: mmol C · h–1 - YX yield of cells on X: g dry wt · (mol X)–1 - Y infx supmax the yield corrected for cell maintenance: g dry wt · (mol X)–1 - SATP stoichiometry of ATP synthesis from fructose: mol ATP · (mol frucose)–1 - x cell concentration: g dry wt · 1–1 - specific growth rate : h–1 - max maximum specific growth rate: h–1  相似文献   

18.
Summary Submerged batch cultivation under controlled environmental conditions of pH 3.8, temperature 30°C, and KLa200 h–1 (above 180 mMO2 l –1 h–1 oxygen supply rate) produced a maximum (12.0 g·l –1) SCP (Candida utilis) yield on the deseeded nopal fruit juice medium containing C/N ratio of 7.0 (initial sugar concentration 25 g·l –1) with a yield coefficient of 0.52 g cells/g sugar. In continuous cultivation, 19.9 g·l –1 cell mass could be obtained at a dilution rate (D) of 0.36 h–1 under identical environmental conditions, showing a productivity of 7.2 g·l –1·h–1. This corresponded to a gain of 9.0 in productivity in continuous culture over batch culture. Starting with steady state values of state variables, cell mass (CX–19.9 g·l –1), limiting nutrient concentration (Cln–2.5 g·l –1) and sugar concentration (CS–1.5 g·l –1) at control variable conditions of pH 3.8, 30°C, and KLa 200 h–1 keeping D=0.36 h–1 as reference, transient response studies by step changes of these control variables also showed that this pH, temperature and KLa conditions are most suitable for SCP cultivation on nopal fruit juice. Kinetic equations obtained from experimental data were analysed and kinetic parameters determined graphically. Results of SCP production from nopal fruit juice are described.Nomenclature Cln concentration of ammonium sulfate (g·l –1) - CS concentration of total sugar (g·l –1) - CX cell concentration (g·l –1) - D dilution rate (h–1) - Kln Monod's constant (g·l –1) - m maintenance coefficient (g ammonium sulfate cell–1 h–1) - m(S) maintenance coefficient (g sugar g cell–1 h–1) - t time, h - Y yield coefficient (g cells/g ammonium sulfate) - Ym maximum of Y - YS yield coefficient based on sugar consumed (g cells · g sugar–1) - YS(m) maximum value of YS - µm maximum specific growth rate constant (h–1)  相似文献   

19.
Summary Investigations were made into the improvement of growth yield (Y) of Pichia pinus MH 4 growing continuously on methanol by feeding formate so as to create an increasing concentration gradient (transient state). Under particular formate supply conditions, Y could be increased from 0.37 g·g-1 on methanol alone to 0.55 and 0.47 g·g-1 in the presence of formate at dilution rates (D) of 0.045 and 0.075 h-1, respectively. These differences could be explained as being due to a limiting formate consumption rate of 50–60 nmol·min-1·g-1 dry wt., coupled to a net-energy generation independent of D. Any further formate oxidation proceeded without energy gain. Deviations from optimum conditions of biomass increase are discussed in terms of different formate oxidizing systems and uncoupling properties of formate itself. These results are compared to and confirmed by steady-state considerations.Abbreviations a steepness of the formate gradient (g·l-1·h-1) - a acceleration of change of formate concentration in the fermenter (g·l-1·h-2) - D dilution rate (h-1) - Ft formate - S1 and S2 initial and final formate concentration of the gradient (g·l-1) - Y growth yield in g·g-1 methanol  相似文献   

20.
The thermal behavior of round and wagtail dancing honeybees (Apis mellifera carnica) gathering sucrose solutions of concentrations between 0.5 and 2 mol·l-1 was investigated under field conditions by infrared thermography (30–506 m flight distance). During the stay inside the hive thoracic surface temperature ranged from 31.4 to 43.9 °C. In both round and wagtail dancing honeybees the concentration of sucrose in the food influenced dancing temperature in a non-linear way. Average dancing temperature was 37.9 °C in foragers gathering a 0.5 mol·l-1 sucrose solution, 40.1°C with a 1 mol·l-1, 40.6°C with a 1.5 mol·l-1 and 40.7°C with a 2 mol·l-1 solution. The variability of thoracic temperature was highest with the 0.5 mol·l-1 and lowest with the 1.5 and 2 mol·l-1 concentrations. Thoracic temperatures during trophallactic contact with hive bees were similar to dancing temperature at 1.5 mol·l-1 but lower at the other concentrations. During periods of distribution of food to hive bees (trophallactic contact >2.5s) the dancers' thorax cooled down by more than 0.5°C considerably more frequently with the 0.5 mol·l-1 solution (65% of cases) than with the 1.5 mol·l-1 solution (26%). By contrast, heating the thorax up by more than 0.5°C was infrequent with the 0.5 mol·l-1 solution (2%) but occurred at a maximum rate of 26% with the 1.5 mol·l-1 solution. Bees gathering the 1 or 2 mol·l-1 solutions showed intermediate behavior. Linear model analysis showed that at higher concentrations the dancers compensated better for variations of hive air temperature: per 1 °C increase of hive temperature dancing temperature increased by 0.34, 0.22, 0.12, and 0.13 °C with 0.5, 1, 1.5, and 2 mol·l-1 sucrose solutions, respectively. The results furnish evidence that dancing honeybees follow a strategy of selective heterothermy by tuning their thermal behavior to the needs of the behavior performed at the moment. Thoracic temperature is regulated to a high level and more accurately when fast exploitation of profitable food sources is recommended. Thoracic temperature is lowered when the ratio of gain to costs of foraging becomes more unfavorable.Abbreviations SD standard deviation - SD reg SD around regression line - H rel relative humidity at feeding station - T a air temperature at feeding station - T i air temperature near the dancers - T d Thoracic surface temperatures - T d dancing - T tr trophallactic contact (distribution of food) - T w walking - T stay mean temperature of total stay in the hive  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号