首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High rates of vascular smooth muscle cell (SMC) replication are observed, at least transiently, after injury to the arterial wall and contribute to the formation of a neointima. Neutralizing antibodies designed to inhibit growth of SMC have only been variably successful in inhibiting neointima formation, raising the possibility that neointimal cell proliferation involves unique growth mechanisms. This study examined the possibility that SMC isolated from injured rat carotid arteries would express an autonomous, mitogen-independent growth phenotype similar to that utilized by embryonic vascular SMC during periods of rapid growth. We found that primary cultures of SMC isolated 7 and 14 days after injury, times at which high in vivo replication rates were observed, demonstrated high intrinsic DNA synthetic rates compared to SMC isolated from uninjured arteries or at 2, 4, 21, and 28 days after injury where in vivo replication rates were far less. Subcultured SMC isolated from 7-day injured vessels (Neo7 SMC) exhibited a stable, autonomous growth phenotype, did not secrete detectable mitogenic activity, and had decreased alpha-actin and myosin expression compared to mitogen-dependent SMC. Heterokaryons constructed between autonomous Neo7 SMC and mitogen-dependent SMC exhibited a mitogen-dependent growth phenotype suggesting that nonautonomous SMC produce factors that actively inhibit autonomous growth. In contrast, heterokaryons constructed between Neo7 SMC and autonomous embryonic SMC retained an autonomous growth phenotype. We examined the expression of known tumor suppressors to determine if any of these factors played a role in inhibiting SMC autonomous growth. p27, p53, pRb, and PTEN were abundantly expressed by Neo7 SMC and e17 SMC under both basal and serum stimulated conditions. The data suggest that the mechanisms driving SMC replication during neointimal formation are self-driven and self-regulated, and that at specific times after injury, SMC escape normal growth suppressive mechanisms through the loss of intracellular growth suppressor activity.  相似文献   

2.
Although TAK1 has been implicated in inflammation and oxidative stress, its roles in vascular smooth muscle cells (VSMCs) and in response to vascular injury have not been investigated. The present study aimed to investigate the role of TAK1 in modulating oxidative stress in VSMCs and its involvement in neointima formation after vascular injury. Double immunostaining reveals that vascular injury induces a robust phosphorylation of TAK1 (Thr187) in the medial VSMCs of injured arteries in wildtype mice, but this effect is blocked in CD40-deficient mice. Upregulation of TAK1 in VSMCs is functionally important, as it is critically involved in pro-oxidative and pro-inflammatory effects on VSMCs and eventual neointima formation. In vivo, pharmacological inhibition of TAK1 with 5Z-7-oxozeaenol blocked the injury-induced phosphorylation of both TAK1 (Thr187) and NF-kB/p65 (Ser536), associated with marked inhibition of superoxide production, 3-nitrotyrosine, and MCP-1 in the injured arteries. Cell culture experiments demonstrated that either siRNA knockdown or 5Z-7-oxozeaenol inhibition of TAK1 significantly attenuated NADPH oxidase activation and superoxide production induced by CD40L/CD40 stimulation. Co-immunoprecipitation experiments indicate that blockade of TAK1 disrupted the CD40L-induced complex formation of p22phox with p47phox, p67phox, or Nox4. Blockade of TAK1 also inhibited CD40L-induced NF-kB activation by modulating IKKα/β and NF-kB p65 phosphorylation and this was related to reduced expression of proinflammatory genes (IL-6, MCP-1 and ICAM-1) in VSMCs. Lastly, treatment with 5Z-7-oxozeaenol attenuated neointimal formation in wire-injured femoral arteries. Our findings demonstrate previously uncharacterized roles of TAK1 in vascular oxidative stress and the contribution to neointima formation after vascular injury.  相似文献   

3.
Interventional procedures, including percutaneous transluminal coronary angioplasty (PTCA) and coronary artery bypass surgery (CABG) to re-vascularize occluded coronary arteries, injure the vascular wall and cause endothelial denudation and medial vascular smooth muscle cell (VSMCs) metaplasia. Proliferation of the phenotypically altered SMCs is the key event in the pathogenesis of intimal hyperplasia (IH). Several kinases and phosphatases regulate cell cycle in SMC proliferation. It is our hypothesis that increased expression and activity of polo-like kinase-1 (PLK1) in SMCs, following PTCA and CABG, contributes to greater SMC proliferation in the injured than uninjured blood vessels. Using immunofluorescence (IF), we assessed the expression of PLK1 and phosphorylated-PLK1 (pPLK1) in post-PTCA coronary arteries, and superficial epigastric vein grafts (SEV) and compared it with those in the corresponding uninjured vessels. We also compared the expressions of mitotic marker phospho-histone, synthetic-SMC marker, contractile SMC marker, IFN-γ and phosphorylated STAT-3 in the post-PTCA arteries, SEV-grafts, and the uninjured vessels. Immunostaining demonstrated an increase in the number of cells expressing PLK1 and pPLK1 in the neointima of post PTCA-coronary arteries and SEV-grafts compared to their uninjured counterparts. VSMCs in the neointima showed an increased expression of phospho-histone, synthetic and contractile SMC markers, IFN-γ and phosphorylated STAT-3. However, VSMCs of uninjured coronaries and SEV had no significant expression of the aforementioned proteins. These data suggest that PLK1 might play a critical role in VSMC mitosis in hyperplastic intima of the injured vessels. Thus, novel therapies to inhibit PLK1 could be developed to inhibit the mitogenesis of VSMCs and control neointimal hyperplasia.  相似文献   

4.
5.
Leukotriene-C4 synthase (LTC4S) generates LTC4 from arachidonic acid metabolism. LTC4 is a proinflammatory factor that acts on plasma membrane cysteinyl leukotriene receptors. Recently, however, we showed that LTC4 was also a cytosolic second messenger that activated store-independent LTC4-regulated Ca2+ (LRC) channels encoded by Orai1/Orai3 heteromultimers in vascular smooth muscle cells (VSMCs). We showed that Orai3 and LRC currents were up-regulated in medial and neointimal VSMCs after vascular injury and that Orai3 knockdown inhibited LRC currents and neointimal hyperplasia. However, the role of LTC4S in neointima formation remains unknown. Here we show that LTC4S knockdown inhibited LRC currents in VSMCs. We performed in vivo experiments where rat left carotid arteries were injured using balloon angioplasty to cause neointimal hyperplasia. Neointima formation was associated with up-regulation of LTC4S protein expression in VSMCs. Inhibition of LTC4S expression in injured carotids by lentiviral particles encoding shRNA inhibited neointima formation and inward and outward vessel remodeling. LRC current activation did not cause nuclear factor for activated T cells (NFAT) nuclear translocation in VSMCs. Surprisingly, knockdown of either LTC4S or Orai3 yielded more robust and sustained Akt1 and Akt2 phosphorylation on Ser-473/Ser-474 upon serum stimulation. LTC4S and Orai3 knockdown inhibited VSMC migration in vitro with no effect on proliferation. Akt activity was suppressed in neointimal and medial VSMCs from injured vessels at 2 weeks postinjury but was restored when the up-regulation of either LTC4S or Orai3 was prevented by shRNA. We conclude that LTC4S and Orai3 altered Akt signaling to promote VSMC migration and neointima formation.  相似文献   

6.
Inflammation plays a major role in vascular disease. We have shown that leukocyte infiltration and inflammatory mediator expression contribute to vascular remodeling after endoluminal injury. This study tested whether increasing protein O-linked-N-acetylglucosamine (O-GlcNAc) levels with glucosamine (GlcN) and O-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino-N-phenylcarbamate (PUGNAc) inhibits acute inflammatory and neointimal responses to endoluminal arterial injury. Ovariectomized rats were treated with a single injection of GlcN (0.3 mg/g ip), PUGNAc (7 nmol/g ip) or vehicle (V) 2 h before balloon injury of the right carotid artery. O-GlcNAc-modified protein levels decreased markedly in injured arteries of V-treated rats at 30 min, 2 h, and 24 h after injury but returned to control (contralateral uninjured) levels after 14 days. Both GlcN and PUGNAc increased O-GlcNAc-modified protein levels in injured arteries compared with V controls at 30 min postinjury; the GlcN-mediated increase persisted at 24 h but was not evident at 14 days. Proinflammatory mediator expression increased markedly after injury and was reduced significantly (30-50%) by GlcN and PUGNAc. GlcN and PUGNAc also inhibited infiltration of neutrophils and monocytes in injured arteries. Chronic (14 days) treatment with GlcN reduced neointima formation in injured arteries by 50% compared with V controls. Acute GlcN and PUGNAc treatment increases O-GlcNAc-modified protein levels and inhibits acute inflammatory responses in balloon-injured rat carotid arteries; 14 day GlcN treatment inhibits neointima formation in these vessels. Augmenting O-GlcNAc modification of proteins in the vasculature may represent a novel anti-inflammatory and vasoprotective mechanism.  相似文献   

7.
A variety of evidence suggests that vascular smooth muscle cells (SMC) exhibit a more immature phenotype when stimulated by injury to replicate in the adult. One growth characteristic common to immature (embryonic, fetal, and neonatal) SMC is a markedly reduced responsiveness to platelet-derived growth factor (PDGF) and other mitogenic stimuli. Here we demonstrate that SMC isolated from the 14-day neointima of experimentally injured carotid arteries exhibit a similar growth phenotype. The proliferative responses of neointimal cells to the BB homodimer of PDGF, which interacts with both forms of the PDGF receptor, were up to twenty-fold less (as assessed by BrdU immunocytochemistry) than that of adult control tunica media cells over a wide range of PDGF concentrations. Paradoxically, these cells expressed abundant mRNA for the α- and β-subunits of the PDGF receptor (by RT-PCR) and expressed abundant PDGF receptor protein (by Western blotting). Addition of PDGF-BB to neointimal SMC induced significant autophosphorylation of the PDGF receptor, suggesting that the PDGF receptors were fully functional. The chemotactic responses of neointimal SMC to PDGF, in in vitro migration assays, were identical to that of control medial cells. The data further establish the existence of vascular SMC phenotypes characterized by a refractoriness to growth stimulation by specific mitogens, and provide further evidence for the reiteration of developmentally regulated programs following vascular injury in vivo. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Epidemiological and animal studies suggest a role for cytomegalovirus (CMV) in restenosis. Previously, we demonstrated that proliferating smooth muscle cells (SMCs) in the injured arterial wall are particularly susceptible to CMV-induced effects. Therefore, we hypothesised that, depending on the time point of infection after vascular injury, CMV infection may affect cell proliferation either in the media or in the neointima, thereby aggravating the process of restenosis. In the present study, we focused on the individual layers of the arterial wall by evaluating, besides the neointima-to-media ratio, the medial and neointimal area and cellularity in the rat femoral artery. Vascular injury was photochemically induced in rat femoral arteries. Immediately or 14 days thereafter, rats were infected with rat CMV (RCMV) or mock infected. The presence of RCMV in the vascular wall was determined at 3, 5, 14 and 35 days after infection by quantitative real-time PCR. When rats were infected immediately after injury, a significant increase was seen only in the medial but not in the neointimal cross-sectional area. On the other hand, when rats were infected 14 days after the initial injury, a significant increase was only seen in the neointimal area, thereby confirming our hypothesis that RCMV infection primary affects proliferating SMCs. As the mean number of SMCs per microm2 in both cell layers was unchanged despite an increase in cross-sectional area, this implies that RCMV stimulated SMC proliferation. Furthermore, these vascular effects were observed without the virus being abundantly present in the vascular wall, suggesting that inflammatory and immune-mediated responses to RCMV infection are more important in aggravating the response to vascular injury than the virus itself.  相似文献   

9.
Expansive vascular remodeling is considered a feature of vulnerable plaques. Although inflammation is upregulated in the media and adventitia of atherosclerotic lesions, its contribution to expansive remodeling is unclear. We investigated this issue in injured femoral arteries of normo- and hyperlipidemic rabbits fed with a conventional (CD group; n=20) or a 0.5% cholesterol (ChD group; n=20) diet. Four weeks after balloon injury of the femoral arteries, we examined vascular wall alterations, localization of macrophages and matrix metalloproteases (MMP)-1, -2, -9, and extracellular matrix. Neointimal formation with luminal stenosis was evident in both groups, while expansive remodeling was observed only in the ChD group. Areas immunopositive for macrophages, MMP-1, -2 and -9 were larger not only in the neointima, but also in the media and/or adventitia in the injured arterial walls of the ChD, than in the CD group. Areas containing smooth muscle cells (SMCs), elastin and collagen were smaller in the injured arterial walls of the ChD group. MMP-1, -2 and -9 were mainly localized in infiltrating macrophages. MMP-2 was also found in SMCs and adventitial fibroblasts. Vasa vasorum density was significantly increased in injured arteries of ChD group than in those of CD group. These results suggest that macrophages in the media and adventitia play an important role in expansive atherosclerotic remodeling via extracellular matrix degradation and SMC reduction.  相似文献   

10.
Objective of this study was to develop a novel in vitro artery culture system to study vascular smooth muscle cell (SMC) proliferation of porcine carotid arteries in response to injury, basic fibroblast growth factor (FGF2), and FGF2 conjugated with cytotoxin saporin (SAP). Perfusion-cultured porcine carotid arteries remained contractile in response to norepinephrine and relaxant to acetylcholine for up to 96 h. SMC proliferation of cultured arteries was detected by bromodeoxyuridine incorporation in both non-injured and balloon-injured arteries. In the inner layer of the vessel wall near the lumen, SMC proliferation were less than 10% in uninjured vessels, 66% in injured vessels, 80% in injured vessels with FGF2 treatment, and 5% in injured vessels with treatment of FGF2-SAP. Thus, the cultured porcine carotid arteries were viable; and the injury stimulated SMC proliferation, which was significantly enhanced by FGF2 and inhibited by FGF2-SAP.  相似文献   

11.
Celastrol has been reported to possess anticancer effects in various cancers; however, the precise mechanism underlying ROS-mediated mitochondria-dependent apoptotic cell death triggered by celastrol treatment in melanoma cells remains unknown. We showed that celastrol effectively induced apoptotic cell death and inhibited tumor growth using tissue culture and in vivo models of B16 melanoma. In addition to apoptotic cell death in B16 cells, several apoptotic events such as PARP cleavage and activation of caspase were confirmed. Pretreatment with caspase inhibitor modestly attenuated the celastrol-induced increase in PARP cleavage and sub-G1 cell population, implying that caspases play a partial role in celastrol-induced apoptosis. Moreover, ROS generation was detected following celastrol treatment. Blocking of ROS accumulation with ROS scavengers resulted in inhibition of celastrol-induced Bcl-2 family-mediated apoptosis, indicating that celastrol-induced apoptosis involves ROS generation as well as an increase in the Bax/Bcl-2 ratio leading to release of cytochrome c and AIF. Importantly, silencing of AIF by transfection of siAIF into cells remarkably attenuated celastrol-induced apoptotic cell death. Moreover, celastrol inhibited the activation of PI3K/AKT/mTOR signaling cascade in B16 cells. Our data reveal that celastrol inhibits growth and induces apoptosis in melanoma cells via the activation of ROS-mediated caspase-dependent and -independent pathways and the suppression of PI3K/AKT signaling.  相似文献   

12.
13.
14.
15.
OBJECTIVE AND BACKGROUND: Inflammation plays a critical role in all stages of atherogenesis. Proliferating vascular smooth muscle cells (SMC) and endothelial cells (EC) enhancing the inflammatory response, both contribute to the progression of atherosclerosis. Anti-proliferative, anti-inflammatory and anti-oxidative therapy seems to be a promising therapeutic strategy. The aim of this study was to assess the anti-proliferative and anti-inflammatory effect of the beta-blocker nebivolol in comparison to metoprolol in vitro and to find out whether nebivolol inhibits neointima formation in vivo. METHODS AND RESULTS: Real-time-RT-PCR revealed a decrease in VCAM-1, ICAM-1, PDGF-B, E-selectin and P-selectin mRNA expression in human coronary artery EC and SMC incubated with nebivolol for 72 hours while metoprolol did not have this effect. Nebivolol reduced MCP-1 and PDGF-BB protein in the culture supernatant of SMC and EC, respectively. Sprague-Dawley rats were treated with nebivolol for 0 or 35 days before and 28 days after carotid balloon injury. Immunohistological analyses showed that pre-treatment with nebivolol was associated with a decreased number of SMC layers and macrophages and an increased lumen area at the site of the arterial injury. The intima area was reduced by 43% after pre-treatment. CONCLUSION: We found that nebivolol reduced the expression of proinflammatory genes in endothelial cells and vascular smooth muscle cells in vitro whereas metoprolol did not. In vivo, nebivolol inhibited neointima formation by reducing SMC proliferation and macrophage accumulation.  相似文献   

16.
Sustained exposure to high glucose (HG) results in dysfunction of vascular endothelial cells. Hence, diabetic patients often suffer from secondary vascular damages, such as vascular sclerosis and thrombogenesis, which may eventually cause cardiovascular problems. Thus, elucidating how HG results in vascular endothelial cell damage and finding an approach for prevention are important to prevent and treat vascular damages in diabetic patients. In the current study, we first showed that 72-hour exposure to HG-decreased hsa-miRNA-29a and increased the expression of Bcl-2 associated X protein (Bax), which subsequently inhibited Bcl-2 and promoted the expression of apoptotic protease activating factor-1 and activation of caspase-3, thus directly triggering the mitochondrial apoptotic pathway in human umbilical vein endothelial cells (HUVECs). Study of the underlying mechanism showed that hsa-miRNA-29a/Bax plays an essential role in the decreased proliferation and increased apoptosis of HUVECs induced by HG, and overexpression of hsa-miRNA-29a effectively inhibits HG-induced apoptosis and restores the proliferation and tube formation of HUVECs exposed to HG by inhibiting its target gene Bax. In short, our study demonstrates that hsa-miRNA-29a is a promising target for the prevention and treatment of vascular injury in diabetic patients.  相似文献   

17.
Saphenous vein (SV) grafts are commonly used to bypass coronary arteries that are diseased due to atherosclerosis. However, the development of intimal hyperplasia in such grafts can lead to patency-threatening stenosis and re-occlusion of the vessel. The proliferation and migration of smooth muscle cells (SMC) play key roles in the development of intimal hyperplasia, and an agent that inhibits both of these processes therefore has therapeutic potential. A prerequisite for SMC proliferation and migration in vivo is degradation of the basement membrane, achieved by secretion of the matrix-degrading gelatinases matrix metalloproteinase-2 (MMP-2) and MMP-9. Statins are cholesterol-lowering drugs that also have direct effects on SMC function. Here we report that neointima formation in organ-cultured human SV segments is inhibited by simvastatin, an effect that is associated with reduced MMP-9 activity. Additionally, our work shows that simvastatin not only inhibits proliferation, but importantly also inhibits invasion (migration through a matrix barrier), of cultured human SV SMC. Thus simvastatin treatment appears to inhibit neointima formation as a result of combined inhibition of SMC proliferation and invasion. The potential intracellular mechanisms by which statins affect SMC proliferation and migration, and thus attenuate intimal hyperplasia, are discussed, with particular emphasis on the role of MMP-9.  相似文献   

18.
19.
20.
YC-1, a synthetic benzyl indazole derivative, is capable of stimulating endogenous vessel wall cyclic guanosine monophosphate (cGMP) production and attenuating the remodeling response to experimental arterial angioplasty. In an effort to investigate the mechanisms of this YC-1-mediated vasoprotection, we examined the influence of soluble YC-1 or YC-1 incorporated in a polyethylene glycol (PEG) hydrogel on cultured rat vascular smooth muscle cell (SMC) cGMP synthesis, SMC proliferation, and platelet function. Results demonstrate that soluble YC-1 stimulated SMC cGMP production in a dose-dependent fashion, while both soluble and hydrogel-released YC-1 inhibited vascular SMC proliferation in a dose-dependent fashion without effects on cell viability. Platelet aggregation and adherence to collagen were both significantly inhibited in a dose-dependent fashion by soluble and hydrogel-released YC-1. Arterial neointima formation following experimental balloon injury was significantly attenuated by perivascular hydrogel-released YC-1. These results suggest that YC-1 is a potent, physiologically active agent with major anti-proliferative and anti-platelet properties that may provide protection against vascular injury through cGMP-dependent mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号