首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 458 毫秒
1.
The aquaporin family of integral membrane proteins is composed of channels that mediate cellular water flow. Aquaporin 4 (AQP4) is highly expressed in the glial cells of the central nervous system and facilitates the osmotically driven pathological brain swelling associated with stroke and traumatic brain injury. Here we show that AQP4 cell surface expression can be rapidly and reversibly regulated in response to changes of tonicity in primary cortical rat astrocytes and in transfected HEK293 cells. The translocation mechanism involves PKA activation, influx of extracellular calcium, and activation of calmodulin. We identify five putative PKA phosphorylation sites and use site-directed mutagenesis to show that only phosphorylation at one of these sites, serine 276, is necessary for the translocation response. We discuss our findings in the context of the identification of new therapeutic approaches to treating brain edema.  相似文献   

2.
Vasopressin controls water excretion through regulation of aquaporin-2 (AQP2) trafficking in renal collecting duct cells. Using mass spectrometry, we previously demonstrated four phosphorylated serines (Ser(256), Ser(261), Ser(264), and Ser(269)) in the carboxyl-terminal tail of rat AQP2. Here, we used phospho-specific antibodies and protein mass spectrometry to investigate the roles of vasopressin and cyclic AMP in the regulation of phosphorylation at Ser(269) and addressed the role of this site in AQP2 trafficking. The V2 receptor-specific vasopressin analog dDAVP increased Ser(P)(269)-AQP2 abundance more than 10-fold, but at a rate much slower than the corresponding increase in Ser(256) phosphorylation. Vasopressin-mediated changes in phosphorylation at both sites were mimicked by cAMP addition and inhibited by protein kinase A (PKA) antagonists. In vitro kinase assays, however, demonstrated that PKA phosphorylates Ser(256), but not Ser(269). Phosphorylation of AQP2 at Ser(269) did not occur when Ser(256) was replaced by an unphosphorylatable amino acid, as seen in both S256L-AQP2 mutant mice and in Madin-Darby canine kidney cells expressing an S256A mutant, suggesting that Ser(269) phosphorylation depends upon prior phosphorylation at Ser(256). Immunogold electron microscopy localized Ser(P)(269)-AQP2 solely in the apical plasma membrane of rat collecting duct cells, in contrast to the other three phospho-forms (found in both apical plasma membrane and intracellular vesicles). Madin-Darby canine kidney cells expressing an S269D "phosphomimic" AQP2 mutant showed constitutive localization at the plasma membrane. The data support a model in which vasopressin-mediated phosphorylation of AQP2 at Ser(269):(a) depends on prior PKA-mediated phosphorylation of Ser(256) and (b) enhances apical plasma membrane retention of AQP2.  相似文献   

3.
The aquaporins (AQP) are water channel proteins playing a major role in transcellular and transepithelial water movement. Recently, the role of AQPs in human carcinogenesis has become an area of great interest. Here, by immunohistochemistry (IHC), we have found an expression of AQP5 protein in 35.3% (IHC-score: > or = 1, 144/408) of the resected NSCLC tissue samples. Cases with AQP5-positive status (IHC-score: > or = 2) displayed a higher rate of tumor recurrence than negative ones in NSCLC (54.7% vs. 35.1%, p = 0.005) and worse disease-free survival (p = 0.033; OR = 1.52; 95%CI: 1.04-2.23). Further in vitro invasion assay using BEAS-2B and NIH3T3 cells stably transfected with overexpression constructs for full length wild-type AQP5 (AQP5) and its two mutants, N185D which blocks membrane trafficking and S156A which blocks phosphorylation on Ser156, showed that AQP5 induced cell invasions while both mutants did not. In BEAS-2B cells, the expression of AQP5 caused a spindle-like and fibroblastic morphologic change and losses of cell-cell contacts and cell polarity. Only cells with AQP5, not either of two mutants, exhibited a loss of epithelial cell markers and a gain of mesenchymal cell markers. In a human SH3-domains protein array, cellular extracts from BEAS-2B with AQP5 showed a robust binding activity to SH3-domains of the c-Src, Lyn, and Grap2 C-terminal. Furthermore, in immunoprecipitation assay, activated c-Src, phosphorylated on Tyr416, showed a stronger binding activity to cellular extracts from BEAS-2B with AQP5 compared with N185D or S156A mutant. Fluorescence in situ hybridization (FISH) analysis failed to show evidence of genomic amplification, suggesting AQP5 expression as a secondary event. Based on these clinical and molecular observations, we conclude that AQP5, through its phosphorylation on Ser156 and subsequent interaction with c-Src, plays an important role in NSCLC invasion and, therefore, may provide a unique opportunity for developing a novel therapeutic target as well as a prognostic marker in NSCLC.  相似文献   

4.
Aquaporin-5 (AQP5), a major water channel in lung epithelial cells, plays an important role in maintaining water homeostasis in the lungs. Cell surface expression of AQP5 is regulated by not only mRNA and protein synthesis but also changes in subcellular distribution. We investigated the effect of lipopolysaccharide (LPS) on the subcellular distribution of AQP5 in a mouse lung epithelial cell line (MLE-12). LPS caused significant increases in AQP5 in the plasma membrane at 0.5-2 h. Immunofluorescence and Western blotting strongly suggested that LPS altered AQP5 subcellular distribution from an intracellular vesicular compartment to the plasma membrane. The specific p38 MAP kinase inhibitor SB 203580 apparently prevented LPS-induced changes in AQP5 distribution. Furthermore, LPS increased the osmotic water permeability of MLE-12 cells. These findings demonstrate that LPS increases cell surface AQP5 expression by changing its subcellular distribution and increases membrane osmotic water permeability through activation of p38 MAP kinase.  相似文献   

5.
Phospholipase A1 (PLA1) hydrolyzes the fatty acids of glycerophospholipids, which are structural components of the cellular membrane. Genetic mutations in DDHD1, an intracellular PLA1, result in hereditary spastic paraplegia (HSP) in humans. However, the regulation of DDHD1 activity has not yet been elucidated in detail. In the present study, we examined the phosphorylation of DDHD1 and identified the responsible protein kinases. We performed MALDI-TOF MS/MS analysis and Phos-tag SDS-PAGE in alanine-substitution mutants in HEK293 cells and revealed multiple phosphorylation sites in human DDHD1, primarily Ser8, Ser11, Ser723, and Ser727. The treatment of cells with a protein phosphatase inhibitor induced the hyperphosphorylation of DDHD1, suggesting that multisite phosphorylation occurred not only at these major, but also at minor sites. Site-specific kinase-substrate prediction algorithms and in vitro kinase analyses indicated that cyclin-dependent kinase CDK1/cyclin A2 phosphorylated Ser8, Ser11, and Ser727 in DDHD1 with a preference for Ser11 and that CDK5/p35 also phosphorylated Ser11 and Ser727 with a preference for Ser11. In addition, casein kinase CK2α1 was found to phosphorylate Ser104, although this was not a major phosphorylation site in cultivated HEK293 cells. The evaluation of the effects of phosphorylation revealed that the phosphorylation mimic mutants S11/727E exhibit only 20% reduction in PLA1 activity. However, the phosphorylation mimics were mainly localized to focal adhesions, whereas the phosphorylation-resistant mutants S11/727A were not. This suggested that phosphorylation alters the subcellular localization of DDHD1 without greatly affecting its PLA1 activity.  相似文献   

6.
Aquaporins (AQPs) are water channel proteins that participate in water transport. In the principal cells of the kidney collecting duct, water reabsorption is mediated by the combined action of AQP2 in the apical membrane and both AQP3 and AQP4 in the basolateral membrane, and the expression of AQP2 and AQP3 is regulated by antidiuretic hormone and water restriction. The effect of hypertonicity on AQP3 expression in Madin-Darby canine kidney (MDCK) epithelial cells was investigated by exposing the cells to hypertonic medium containing raffinose or NaCl. Northern blot and immunoblot analyses revealed that the amounts of AQP3 mRNA and AQP3 protein, respectively, were markedly increased by exposure of cells to hypertonicity. These effects were maximal at 12 and 24 h, respectively. Immunofluorescence and immunoelectron microscopy also demonstrated that the abundance of AQP3 protein was increased in cells incubated in hypertonic medium and that the protein was localized at the basolateral plasma membrane. These results indicate that the expression of AQP3 is upregulated by hypertonicity.  相似文献   

7.
The 14-3-3 family of proteins are multifunctional proteins that interact with many of their cellular targets in a phosphorylation-dependent manner. Here, we determined that 14-3-3 proteins interact with phosphorylated forms of the water channel aquaporin-2 (AQP2) and modulate its function. With the exception of σ, all 14-3-3 isoforms were abundantly expressed in mouse kidney and mouse kidney collecting duct cells (mpkCCD14). Long-term treatment of mpkCCD14 cells with the type 2 vasopressin receptor agonist dDAVP increased mRNA and protein levels of AQP2 alongside 14-3-3β and -ζ, whereas levels of 14-3-3η and -θ were decreased. Co-immunoprecipitation (co-IP) studies in mpkCCD14 cells uncovered an AQP2/14-3-3 interaction that was modulated by acute dDAVP treatment. Additional co-IP studies in HEK293 cells determined that AQP2 interacts selectively with 14-3-3ζ and -θ. Use of phosphatase inhibitors in mpkCCD14 cells, co-IP with phosphorylation deficient forms of AQP2 expressed in HEK293 cells, or surface plasmon resonance studies determined that the AQP2/14-3-3 interaction was modulated by phosphorylation of AQP2 at various sites in its carboxyl terminus, with Ser-256 phosphorylation critical for the interactions. shRNA-mediated knockdown of 14-3-3ζ in mpkCCD14 cells resulted in increased AQP2 ubiquitylation, decreased AQP2 protein half-life, and reduced AQP2 levels. In contrast, knockdown of 14-3-3θ resulted in increased AQP2 half-life and increased AQP2 levels. In conclusion, this study demonstrates phosphorylation-dependent interactions of AQP2 with 14-3-3θ and -ζ. These interactions play divergent roles in modulating AQP2 trafficking, phosphorylation, ubiquitylation, and degradation.  相似文献   

8.

Purpose

To detect the causative mutation for congenital posterior polar cataracts in a five-generation Chinese family and further explore the potential pathogenesis of this disease.

Methods

Coding exons, with flanking sequences of five candidate genes, were screened using direct DNA sequencing. The identified mutations were confirmed by restriction fragment length polymorphism (RFLP) analysis. A full-length wild-type or an Y219* mutant aquaporin0 (AQP0) fused with an N-terminal FLAG tag, was transfected into HEK293T cells. For co-localization studies, FLAG-WT-AQP0 and Myc-Y219*-AQP0 constructs were co-transfected. Quantitative real-time RT-PCR, western blotting and immunofluorescence studies were performed to determine protein expression levels and sub-cellular localization, respectively.

Results

We identified a novel nonsense mutation in MIP (c.657 C>G; p.Y219*) (major intrinsic protein gene) that segregates with congenital posterior polar cataract in a Chinese family. This mutation altered a highly conserved tyrosine to a stop codon (Y219*) within AQP0.When FLAG-WT-AQP0 and FLAG-Y219*-AQP0 expression constructs were singly transfected into HEK 293T cells, mRNA expression showed no significant difference between the wild-type and the mutant, while Y219*-AQP0 protein expression was significantly lower than that of wild-type AQP0. Wild-type AQP0 predominantly localized to the plasma membrane, while the mutated protein was abundant within the cytoplasm of HEK293T cells. However, when FLAG-WT-AQP0 andMyc-MU-AQP0were co-expressed, both proteins showed high fluorescence in the cytoplasm.

Conclusions

The novel nonsense mutation in the MIP gene (c.657 C>G) identified in a Chinese family may cause posterior polar cataracts. The dominant negative effect of the mutated protein on the wild-type protein interfered with the trafficking of wild-type protein to the cell membrane and both the mutant and wild-type protein were trapped in the cytoplasm. Consequently, both wild-type and mutant protein lost their function as a water channel on the cell membrane, and may result in a cataract phenotype. Our data also expands the spectrum of known MIP mutations.  相似文献   

9.
Phosphorylation pathway has been identified as an important step in membrane trafficking for AQP5. We generated stably transfected BEAS-2B human bronchial epithelial cells with various over-expression constructs on permeable support. In stable cells with wild-type AQP5 and S156A (AQP5 mutant targeting PKA consensus sequence), AQP5 expression was predominantly polarized to the apical membrane, whereas stable cells with N185D (AQP5 mutant targeting second NPA motif), mainly localized to the cytoplasm. Treatment with H89 and/or chlorophenylthio-cAMP (cpt-cAMP) did not affect membrane expression of AQP5 in any of three stable cells. In cells with wild-type AQP5 and N185D, AQP5s were phosphorylated by PKA, while phosphorylation of AQP5 was not detected in cells with S156A. These results indicate that, in AQP5, serine156 may be phosphorylated by PKA, but membrane expression of AQP5 may not be regulated by PKA phosphorylation. We conclude that AQP5 membrane targeting can include more than one mechanism besides cAMP dependent phosphorylation.  相似文献   

10.
Gao J  Wang X  Chang Y  Zhang J  Song Q  Yu H  Li X 《Analytical biochemistry》2006,350(2):165-170
Water channel proteins, known as aquaporins, are transmembrane proteins that mediate osmotic water permeability. In a previous study, we found that acetazolamide could inhibit osmotic water transportation across Xenopus oocytes by blocking the function of aquaporin-1 (AQP1). The purpose of the current study was to confirm the effect of acetazolamide on water osmotic permeability using the human embryonic kidney 293 (HEK293) cells transfected with pEGFP/AQP1 and to investigate the interaction between acetazolamide and AQP1. The fluorescence intensity of HEK293 cells transfected with pEGFP/AQP1, which corresponds to the cell volume when the cells swell in a hyposmotic solution, was recorded under confocal laser fluorescence microscopy. The osmotic water permeability was assessed by the change in the ratio of cell fluorescence to certain cell area. Acetazolamide, at concentrations of 1 and 10muM, inhibited the osmotic water permeability in HEK293 cells transfected with pEGFP/AQP1. The direct binding between acetazolamide and AQP1 was detected by surface plasmon resonance. AQP1 was prepared from rat red blood cells and immobilized on a CM5 chip. The binding assay showed that acetazolamide could directly interact with AQP1. This study demonstrated that acetazolamide inhibited osmotic water permeability through interaction with AQP1.  相似文献   

11.
Apical plasma membrane accumulation of the water channel Aquaporin-2 (AQP2) in kidney collecting duct principal cells is critical for body water homeostasis. Posttranslational modification (PTM) of AQP2 is important for regulating AQP2 trafficking. The aim of this study was to determine the role of cholesterol in regulation of AQP2 PTM and in apical plasma membrane targeting of AQP2. Cholesterol depletion from the basolateral plasma membrane of a collecting duct cell line (mpkCCD14) using methyl-beta-cyclodextrin (MBCD) increased AQP2 ubiquitylation. Forskolin, cAMP or dDAVP-mediated AQP2 phosphorylation at Ser269 (pS269-AQP2) was prevented by cholesterol depletion from the basolateral membrane. None of these effects on pS269-AQP2 were observed when cholesterol was depleted from the apical side of cells, or when MBCD was applied subsequent to dDAVP stimulation. Basolateral, but not apical, MBCD application prevented cAMP-induced apical plasma membrane accumulation of AQP2. These studies indicate that manipulation of the cholesterol content of the basolateral plasma membrane interferes with AQP2 PTM and subsequently regulated apical plasma membrane targeting of AQP2.  相似文献   

12.
Human LIN28A and LIN28B are RNA-binding proteins (RBPs) conserved in animals with important roles during development and stem cell reprogramming. We used Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) in HEK293 cells and identified a largely overlapping set of ∼3000 mRNAs at ∼9500 sites located in the 3′ UTR and CDS. In vitro and in vivo, LIN28 preferentially bound single-stranded RNA containing a uridine-rich element and one or more flanking guanosines and appeared to be able to disrupt base-pairing to access these elements when embedded in predicted secondary structure. In HEK293 cells, LIN28 protein binding mildly stabilized target mRNAs and increased protein abundance. The top targets were its own mRNAs and those of other RBPs and cell cycle regulators. Alteration of LIN28 protein levels also negatively regulated the abundance of some but not all let-7 miRNA family members, indicating sequence-specific binding of let-7 precursors to LIN28 proteins and competition with cytoplasmic miRNA biogenesis factors.  相似文献   

13.
Aquaporin-5 (AQP5) is present on the apical membrane of epithelial cells in various secretory glands as well as on the apical membrane of the airway epithelium, airway submucosal glands, and type 1 pneumocytes, where it can participate in respiratory tract water homeostasis. We examined the effects of cAMP on AQP5 distribution and abundance. When AQP5-expressing mouse lung epithelial cells were treated with cAMP or the beta-adrenergic agonist terbutaline, a biphasic AQP5 response was observed. Short term (minutes) exposure to cAMP produced internalization of AQP5 off of the membrane and a decrease in protein abundance. Both of these responses were blocked by inhibition of protein kinase A and the decrease in abundance was blocked by chloroquine, indicating lysosome-mediated degradation. Sustained cAMP exposure (hours) produced an increase in membrane localization and increased abundance; these effects were also blocked by protein kinase A inhibition. The beta-adrenergic agonist terbutaline produced changes in AQP5 abundance in mouse trachea and lung, consistent with our findings in cultured epithelial cells. Purified AQP5 protein was phosphorylated by protein kinase A but not protein kinase C or casein kinase II, and aquaporin-5 was phosphorylated in cultured cells after long term (but not short term) exposure to cAMP. These studies indicate that cAMP and beta-adrenergic agonists produce distinct short and long term effects on AQP5 distribution and abundance that may contribute to regulation of lung water homeostasis.  相似文献   

14.
The overall goal is to study the effect of low-level laser therapy (LLLT) on membrane distribution of major water channel protein aquaporin 5 (AQP5) in salivary gland during hyperglycemia. Par C10 cells treated with high glucose (50?mM) showed a reduced membrane distribution of AQP5. The functional expression of AQP5 was downregulated due to intracellular Ca2+ overload and ER stress. This reduction in AQP5 expression impairs water permeability and therefore results in hypo-salivation. A reduced salivary flow was also observed in streptozotocin (STZ)-induced diabetic mice model and the expression of AQP5 and phospho-AQP5 was downregulated. Low-level laser treatment with 850?nm (30?mW, 10?min?=?18?J/cm2) reduced ER stress and recovered AQP5 membrane distribution via serine phosphorylation in the cells. In the STZ-induced diabetic mouse, LLLT with 850?nm (60?J/cm2) increased salivary flow and upregulated of AQP5 and p-AQP5. ER stress was also reduced via downregulation of caspase 12 and CHOP. In silico analysis confirmed that the serine 156 is one of the most favorable phosphorylation sites of AQP5 and may contribute to the stability of the protein. Therefore, this study suggests high glucose inhibits phosphorylation-dependent AQP5 membrane distribution. High glucose induces intracellular Ca2+ overload and ER stress that disrupt AQP5 functional expression. Low-level laser therapy with 850?nm improves salivary function by increasing AQP5 membrane distribution in hyperglycemia-induced hyposalivation.  相似文献   

15.
Milk secretion involves significant flux of water, driven largely by synthesis of lactose within the Golgi apparatus. It has not been determined whether this flux is simply a passive consequence of the osmotic potential between cytosol and Golgi, or whether it involves regulated flow. Aquaporins (AQPs) are membrane water channels that regulate water flux. AQP1, AQP3 and AQP5 have previously been detected in mammary tissue, but evidence of developmental regulation (altered expression according to the developmental and physiological state of the mammary gland) is lacking and their cellular/subcellular location is not well understood. In this paper we present evidence of developmental regulation of all three of these AQPs. Further, there was evidence of reciprocity since expression of the rather abundant AQP3 and less abundant AQP1 increased significantly from pregnancy into lactation, whereas expression of the least abundant AQP5 decreased. It would be tempting to suggest that AQP3 and AQP1 are involved in the secretion of water into milk. Paradoxically, however, it was AQP5 that demonstrated most evidence of expression located at the apical (secretory) membrane. The possibility is discussed that AQP5 is synthesized during pregnancy as a stable protein that functions to regulate water secretion during lactation. AQP3 was identified primarily at the basal and lateral membranes of the secretory cells, suggesting a possible involvement in regulated uptake of water and glycerol. AQP1 was identified primarily at the capillary and secretory cell cytoplasmic level and may again be more concerned with uptake and hence milk synthesis, rather than secretion. The fact that expression was developmentally regulated supports, but does not prove, a regulatory involvement of AQPs in water flux through the milk secretory cell.  相似文献   

16.
Altered tissue water homeostasis may contribute to edema formation during various stresses including bacterial infection. We observed induction of aquaporin-1 (AQP1) during Staphylococcus aureus infection of cultured cells indicating a potential mechanism underlying altered water homeostasis during infection. To investigate mechanisms of AQP1 induction, we examined the effects of the S. aureus α-hemolysin on AQP1 abundance in Balb/c fibroblasts. Fibroblasts incubated with 30 μg/ml hemolysin exhibited a 5–10 fold increase in AQP1 protein within 4-6 hours of exposure. The use of multiple signaling cascade inhibitors failed to affect hemolysin-mediated accumulation of AQP1. However, immunoprecipitation revealed an initial accumulation of ubiquitinated AQP1 followed by a decrease to baseline levels after 4 hours. Immunofluorescence indicated that following hemolysin exposure, AQP1 was no longer on the plasma membrane, but was found in a population of submembrane vacuoles. AQP1 redistribution was further indicated by surface biotinylation experiments suggesting diminished AQP1 abundance on the plasma membrane as well as redistribution out of lipid raft fractions. Live cell confocal microscopy revealed that the pattern of cell volume change observed following hemolysin exposure was altered in cells in which AQP1 was silenced. We conclude that alpha-toxin alters proteasomal processing and leads to intracellular accumulation of AQP1, which may likely contribute to disrupted cell volume homeostasis in infection.  相似文献   

17.
 Aquaporin 2 (AQP2) transfected into LLC-PK1 cells functions as a vasopressin-regulated water channel that recycles between intracellular vesicles and the plasma membrane upon vasopressin stimulation. The green fluorescent protein (GFP) of the jellyfish, Aequorea victoria, was used as an autofluorescent tag to monitor AQP2 trafficking in transfected LLC-PK1 cells. Two chimeras were constructed, one in which GFP was fused to the amino-terminus of AQP2 [GFP-AQP2(NT)] and the second in which it was fused to the carboxyl-terminus [AQP2-GFP(CT)]. The GFP-AQP2(NT) chimera trafficked in a regulated pathway from intracellular vesicles to the basolateral plasma membrane in response to vasopressin or forskolin stimulation of cells. In contrast, the AQP2-GFP(CT) chimera expressed in LLC-PK1 cells was localized constitutively on both apical and basolateral plasma membranes. The cellular location of this chimera was not modified by vasopressin or forskolin. Thus, while the GFP-AQP2(NT) chimera will be useful to study AQP2 trafficking in vitro, the abnormal, constitutive membrane localization of the AQP2-GFP(CT) chimera suggests that one or more trafficking signals exist on the carboxyl-terminus of the AQP2 protein. Accepted: 8 April 1998  相似文献   

18.
Activation-induced subcellular redistribution of Gs alpha.   总被引:4,自引:2,他引:2       下载免费PDF全文
We have examined the subcellular distribution of alpha s, the alpha subunit of the heterotrimeric G protein Gs, by using immunofluorescence microscopy. In transiently transfected HEK293 cells, wild-type alpha s localizes to the plasma membrane. However, a mutationally activated alpha s (alpha sR201C) is diffusely distributed throughout the cytoplasm. Similarly, cholera toxin activation of alpha s causes it to redistribute from the plasma membrane to cytoplasm in stably transfected cells. In HEK293 cells stably transfected with alpha s and the beta 2-adrenergic receptor (beta-AR), stimulation of the beta-AR by the agonist isoproterenol also causes a translocation of alpha s from the plasma membrane to cytoplasm. Replacing the agonist with antagonist allows alpha s to return to the plasma membrane, demonstrating the reversibility of alpha s translocation. Receptor-activated alpha s does not colocalize with internalized beta-AR at endosomes. Incubation of cells in hypertonic sucrose to inhibit clathrin-coated pit-mediated endocytosis of agonist-activated beta-AR failed to block agonist-stimulated redistribution of alpha s. These findings demonstrate that activated alpha s reversibly undergoes a translocation from the plasma membrane to cytoplasm and begin to address the relationship between regulated trafficking of a seven-transmembrane receptor and its cognate G protein.  相似文献   

19.
Aquaporin-5 (AQP5) is a water channel protein and is considered to play an important role in water movement across the plasma membrane. We raised anti-AQP5 antibody and examined the localization of AQP5 protein in rat salivary and lacrimal glands by immunofluorescence microscopy. AQP5 was found in secretory acinar cells of submandibular, parotid, and sublingual glands, where it was restricted to apical membranes including intercellular secretory canaliculi. In the submandibular gland, abundant AQP5 was also found additionally at the apical membrane of intercalated duct cells. Upon stimulation by isoproterenol, apical staining for AQP5 in parotid acinar cells tended to appear as clusters of dots. These results suggest that AQP5 is one of the candidate molecules responsible for the water movement in the salivary glands.  相似文献   

20.
The corticotropin releasing factor (CRF) type 1alpha receptor, a member of the G protein-coupled receptor (GPCR) subfamily B, is involved in the aetiology of anxiety and depressive disorders. In the present study, we examined the internalization and trafficking of the CRF1alpha receptor in both human embryonic kidney (HEK)293 cells and primary cortical neurons. We found that CRF1alpha receptor activation leads to the selective recruitment of beta-arrestin2 in both HEK293 cells and neurons. We observed distinct distribution patterns of CRF1alpha receptor and beta-arrestin2 in HEK293 cells and cortical neurons. In HEK293 cells, beta-arrestin2-green fluorescent protein (GFP) co-localized with CRF1alpha receptor in vesicles at the plasma membrane but was dissociated from the receptor in endosomes. In contrast, in primary cortical neurons, beta-arrestin2 and CRF1alpha receptor were internalized in distinct endocytic vesicles. By bioluminescence resonance energy transfer, we demonstrated that beta-arrestin2 association with CRF1alpha receptor was increased in cells transfected with G protein-coupled receptor kinase (GRK)3 and GRK6 and decreased in cells transfected with GRK2 and GRK5. In both HEK293 cells and cortical neurons, internalized CRF1alpha receptor transited from Rab5-positive early endosomes to Rab4-positive recycling endosomes and was not targeted to lysosomes. However, CRF1alpha receptor resensitization was blocked by the overexpression of wild-type, but not dominant-negative, Rab5 and Rab4 GTPases. Taken together, our results suggest that beta-arrestin trafficking differs between HEK293 cells and neurons, and that CRF1alpha receptor resensitization is regulated in an atypical manner by Rab GTPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号