首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract Four DNA barcoding loci, chloroplast loci rbcL, matK, trnH‐psbA, and nuclear locus internal transcribed spacer (ITS), were tested for the accurate discrimination of the Chinese species of Gaultheria by using intraspecific and interspecific pairwise P‐distance, Wilcoxon signed rank test, and tree‐based analyses. This study included 186 individuals from 89 populations representing 30 species. For all individuals, single locus markers showed high levels of sequencing universality but were ineffective for species resolvability. Polymerase chain reaction amplification and sequencing were successful for all four loci. Both ITS and matK showed significantly higher levels of interspecific species delimitation than rbcL and trnH‐psbA. A combination of matK and ITS was the most efficient DNA barcode among all studied regions, however, they do not represent an appropriate candidate barcode for Chinese Gaultheria, by which only 11 out of 30 species can be separated. Loci rbcL, matK, and trnH‐psbA, which were recently proposed as universal plant barcodes, have a very poor capacity for species separation for Chinese Gaultheria. DNA barcodes may be reliable tools to identify the evolutionary units of this group, so further studies are needed to develop more efficient DNA barcodes for Gaultheria and other genera with complicated evolutionary histories.  相似文献   

2.

Background

DNA barcoding as a tool for species identification has been successful in animals and other organisms, including certain groups of plants. The exploration of this new tool for species identification, particularly in tree species, is very scanty from biodiversity-rich countries like India. rbcL and matK are standard barcode loci while ITS, and trnH-psbA are considered as supplementary loci for plants.

Methodology and Principal Findings

Plant barcode loci, namely, rbcL, matK, ITS, trnH-psbA, and the recently proposed ITS2, were tested for their efficacy as barcode loci using 300 accessions of tropical tree species. We tested these loci for PCR, sequencing success, and species discrimination ability using three methods. rbcL was the best locus as far as PCR and sequencing success rate were concerned, but not for the species discrimination ability of tropical tree species. ITS and trnH-psbA were the second best loci in PCR and sequencing success, respectively. The species discrimination ability of ITS ranged from 24.4 percent to 74.3 percent and that of trnH-psbA was 25.6 percent to 67.7 percent, depending upon the data set and the method used. matK provided the least PCR success, followed by ITS2 (59. 0%). Species resolution by ITS2 and rbcL ranged from 9.0 percent to 48.7 percent and 13.2 percent to 43.6 percent, respectively. Further, we observed that the NCBI nucleotide database is poorly represented by the sequences of barcode loci studied here for tree species.

Conclusion

Although a conservative approach of a success rate of 60–70 percent by both ITS and trnH-psbA may not be considered as highly successful but would certainly help in large-scale biodiversity inventorization, particularly for tropical tree species, considering the standard success rate of plant DNA barcode program reported so far. The recommended matK and rbcL primers combination may not work in tropical tree species as barcode markers.  相似文献   

3.
The Atlantic Forest is a phytogeographic domain with a high rate of endemism and large species diversity. The Sapotaceae is a botanical family for which species identification in the Atlantic Forest is difficult. An approach that facilitates species identification in the Sapotaceae is urgently needed because this family includes threatened species and valuable timber species. In this context, DNA barcoding could provide an important tool for identifying species in the Atlantic Forest. In this work, we evaluated four plant barcode markers (matK, rbcL, trnH-psbA and the nuclear ribosomal internal transcribed spacer region - ITS) in 80 samples from 26 species of Sapotaceae that occur in the Atlantic Forest. ITS yielded the highest average interspecific distance (0.122), followed by trnH-psbA (0.019), matK (0.008) and rbcL (0.002). For species discrimination, ITS provided the best results, followed by matK, trnH-psbA and rbcL. Furthermore, the combined analysis of two, three or four markers did not result in higher rates of discrimination than obtained with ITS alone. These results indicate that the ITS region is the best option for molecular identification of Sapotaceae species from the Atlantic Forest.  相似文献   

4.
The rapid conversion of Southeast Asian lowland rainforests into monocultures calls for the development of rapid methods for species identification to support ecological research and sustainable land‐use management. Here, we investigated the utilization of DNA barcodes for identifying flowering plants from Sumatra, Indonesia. A total of 1,207 matK barcodes (441 species) and 2,376 rbcL barcodes (750 species) were successfully generated. The barcode effectiveness is assessed using four approaches: (a) comparison between morphological and molecular identification results, (b) best‐close match analysis with TaxonDNA, (c) barcoding gap analysis, and (d) formation of monophyletic groups. Results show that rbcL has a much higher level of sequence recoverability than matK (95% and 66%). The comparison between morphological and molecular identifications revealed that matK and rbcL worked best assigning a plant specimen to the genus level. Estimates of identification success using best‐close match analysis showed that >70% of the investigated species were correctly identified when using single barcode. The use of two‐loci barcodes was able to increase the identification success up to 80%. The barcoding gap analysis revealed that neither matK nor rbcL succeeded to create a clear gap between the intraspecific and interspecific divergences. However, these two barcodes were able to discriminate at least 70% of the species from each other. Fifteen genera and twenty‐one species were found to be nonmonophyletic with both markers. The two‐loci barcodes were sufficient to reconstruct evolutionary relationships among the plant taxa in the study area that are congruent with the broadly accepted APG III phylogeny.  相似文献   

5.

Background

Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70%) and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology.

Methodology/Principal Findings

Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species.

Conclusions/Significance

We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways.  相似文献   

6.
Many species of Schisandraceae are used in traditional Chinese medicine and are faced with contamination and substitution risks due to inaccurate identification. Here, we investigated the discriminatory power of four commonly used DNA barcoding loci (ITS, trnH-psbA, matK, and rbcL) and corresponding multi-locus combinations for 135 individuals from 33 species of Schisandraceae, using distance-, tree-, similarity-, and character-based methods, at both the family level and the genus level. Our results showed that the two spacer regions (ITS and trnH-psbA) possess higher species-resolving power than the two coding regions (matK and rbcL). The degree of species resolution increased with most of the multi-locus combinations. Furthermore, our results implied that the best DNA barcode for the species discrimination at the family level might not always be the most suitable one at the genus level. Here we propose the combination of ITS+trnH-psbA+matK+rbcL as the most ideal DNA barcode for discriminating the medicinal plants of Schisandra and Kadsura, and the combination of ITS+trnH-psbA as the most suitable barcode for Illicium species. In addition, the closely related species Schisandra rubriflora Rehder & E. H. Wilson and Schisandra grandiflora Hook.f. & Thomson, were paraphyletic with each other on phylogenetic trees, suggesting that they should not be distinct species. Furthermore, the samples of these two species from the southern Hengduan Mountains region formed a distinct cluster that was separated from the samples of other regions, implying the presence of cryptic diversity. The feasibility of DNA barcodes for identification of geographical authenticity was also verified here. The database and paradigm that we provide in this study could be used as reference for the authentication of traditional Chinese medicinal plants utilizing DNA barcoding.  相似文献   

7.
DNA barcoding of plants poses particular challenges, especially in differentiating, recently diverged taxa. The genus Gentiana (Gentianaceae) is a species-rich plant group which rapidly radiated in the Himalaya-Hengduan Mountains in China. In this study, we tested the core plant barcode (rbcL + matK) and three promising complementary barcodes (trnH-psbA, ITS and ITS2) in 30 Gentiana species across 6 sections using three methods (the genetic distance-based method, Best Close Match and tree-based method). rbcL had the highest PCR efficiency and sequencing success (100%), while the lowest sequence recoverability was from ITS (68.35%). The presence of indels and inversions in trnH-psbA in Gentiana led to difficulties in sequence alignment. When using a single region for analysis, ITS exhibited the highest discriminatory power (60%-74.42%). Of the combinations, matK + ITS provided the highest discrimination success (71.43%-88.24%) and is recommended as the DNA barcode for the genus Gentiana. DNA barcoding proved effective in assigning most species to sections, though it performed poorly in some closely related species in sect. Cruciata because of hybridization events. Our analysis suggests that the status of G. pseudosquarrosa needs to be studied further. The utility of DNA barcoding was also verified in authenticating ‘Qin-Jiao’ Gentiana medicinal plants (G. macrophylla, G. crassicaulis, G. straminea, and G. dahurica), which can help ensure safe and correct usage of these well-known Chinese traditional medicinal herbs.  相似文献   

8.
Amomum villosum Lour., produced from Yangchun, Guangdong Province, China, is a Daodi medicinal material of Amomi Fructus in traditional Chinese medicine. This herb germplasm should be accurately identified and collected to ensure its quality and safety in medication. In the present study, single nucleotide polymorphism typing method was evaluated on the basis of DNA barcoding markers to identify the germplasm of Amomi Fructus. Genomic DNA was extracted from the leaves of 29 landraces representing three Amomum species (A. villosum Lour., A. xanthioides Wall. ex Baker and A. longiligulare T. L. Wu) by using the CTAB method. Six barcoding markers (ITS, ITS2, LSU D1–D3, matK, rbcL and trnH-psbA) were PCR amplified and sequenced; SNP typing and phylogenetic analysis were performed to differentiate the landraces. Results showed that high-quality bidirectional sequences were acquired for five candidate regions (ITS, ITS2, LSU D1–D3, matK, and rbcL) except trnH-psbA. Three ribosomal regions, namely, ITS, ITS2, and LSU D1–D3, contained more SNP genotypes (STs) than the plastid genes rbcL and matK. In the 29 specimens, 19 STs were detected from the combination of four regions (ITS, LSU D1–D3, rbcL, and matK). Phylogenetic analysis results further revealed two clades. Minimum-spanning tree demonstrated the existence of two main groups: group I was consisting of 9 STs (ST1–8 and ST11) of A. villosum Lour., and group II was composed of 3 STs (ST16–18) of A. longiligulare T.L. Wu. Our results suggested that ITS and LSU D1–D3 should be incorporated with the core barcodes rbcL and matK. The four combined regions could be used as a multiregional DNA barcode to precisely differentiate the Amomi Fructus landraces in different producing areas.  相似文献   

9.
Four DNA barcoding loci,chloroplast loci rbcL,matK,trnH-psbA,and nuclear locus internal transcribed spacer (ITS),were tested for the accurate discrimination of the Chinese species of Gaultheria by using intraspecific and interspecific pairwise P-distance,Wilcoxon signed rank test,and tree-based analyses.This study included 186 individuals from 89 populations representing 30 species.For all individuals,single locus markers showed high levels of sequencing universality but were ineffective for species resolvability.Polymerase chain reaction amplification and sequencing were successful for all four loci.Both ITS and matK showed significantly higher levels of interspecific species delimitation than rbcL and trnH-psbA.A combination ofmatK and ITS was the most efficient DNA barcode among all studied regions,however,they do not represent an appropriate candidate barcode for Chinese Gaultheria,by which only 11 out of 30 species can be separated.Loci rbcL,matK,and trnH-psbA,which were recently proposed as universal plant barcodes,have a very poor capacity for species separation for Chinese Gaultheria.DNA barcodes may be reliable tools to identify the evolutionary units of this group,so further studies are needed to develop more efficient DNA barcodes for Gaultheria and other genera with complicated evolutionary histories.  相似文献   

10.
DNA barcoding has been proposed to be one of the most promising tools for accurate and rapid identification of taxa. However, few publications have evaluated the efficiency of DNA barcoding for the large genera of flowering plants. Dendrobium, one of the largest genera of flowering plants, contains many species that are important in horticulture, medicine and biodiversity conservation. Besides, Dendrobium is a notoriously difficult group to identify. DNA barcoding was expected to be a supplementary means for species identification, conservation and future studies in Dendrobium. We assessed the power of 11 candidate barcodes on the basis of 1,698 accessions of 184 Dendrobium species obtained primarily from mainland Asia. Our results indicated that five single barcodes, i.e., ITS, ITS2, matK, rbcL and trnH-psbA, can be easily amplified and sequenced with the currently established primers. Four barcodes, ITS, ITS2, ITS+matK, and ITS2+matK, have distinct barcoding gaps. ITS+matK was the optimal barcode based on all evaluation methods. Furthermore, the efficiency of ITS+matK was verified in four other large genera including Ficus, Lysimachia, Paphiopedilum, and Pedicularis in this study. Therefore, we tentatively recommend the combination of ITS+matK as a core DNA barcode for large flowering plant genera.  相似文献   

11.
This study was aimed to authenticate and present phylogenetic relationship among 19 species of genus Chlorophytum using DNA barcoding. In all, 107 accessions were analyzed with eight plastid (matK, rbcL, trnH-psbA, rpoC1, ycf5, rpoB, atp and psbK-psbI) and six nuclear (ITS) markers. The matK and rbcL were found to be ideal markers for identification and discrimination of Chlorophytum species. Phylogenetic analysis based on matK and rbcL sequences resolved the species in two major clades. All markers, except matK and rbcL, showed ambiguous reads and paralogy in analysis. DGGE analysis showed the presence of pseudogenes and/or co-amplification in these markers, which caused poor sequence quality. Phylogeny and probable evolution of genus Chlorophytum was proposed on the basis of cytological, morphological and genetic information.  相似文献   

12.
DNA barcoding, the identification of species using one or a few short standardized DNA sequences, is an important complement to traditional taxonomy. However, there are particular challenges for barcoding plants, especially for species with complex evolutionary histories. We herein evaluated the utility of five candidate sequences — rbcL, matK, trnH-psbA, trnL-F and the internal transcribed spacer (ITS) — for barcoding Rhodiola species, a group of high-altitude plants frequently used as adaptogens, hemostatics and tonics in traditional Tibetan medicine. Rhodiola was suggested to have diversified rapidly recently. The genus is thus a good model for testing DNA barcoding strategies for recently diversified medicinal plants. This study analyzed 189 accessions, representing 47 of the 55 recognized Rhodiola species in the Flora of China treatment. Based on intraspecific and interspecific divergence and degree of monophyly statistics, ITS was the best single-locus barcode, resolving 66% of the Rhodiola species. The core combination rbcL+matK resolved only 40.4% of them. Unsurprisingly, the combined use of all five loci provided the highest discrimination power, resolving 80.9% of the species. However, this is weaker than the discrimination power generally reported in barcoding studies of other plant taxa. The observed complications may be due to the recent diversification, incomplete lineage sorting and reticulate evolution of the genus. These processes are common features of numerous plant groups in the high-altitude regions of the Qinghai-Tibetan Plateau.  相似文献   

13.
The genus Andrographis, belonging to the family Acanthaceae, contains several species of medicinal importance. Species, such as Andrographis alata, Andrographis echioides, Andrographis glandulosa, Andrographis lineata, Andrographis nallamalayana and Andrographis paniculata, with several bio-active compounds are being extensively used in folk medicine. However, difference of opinion exists with regard to inclusion of the species echioides into the genus Andrographis. The present study, using rbcL and matK sequences, for the first time established DNA barcodes for these six species. The nucleotide sequence of rbcL provided species-specific haplotypes for A. alata, A. lineata, and A. paniculata. Despite the differences with regard to nucleotide sequence, all the six species showed conserved amino acid sequence. However, all the six species showed distinct haplotypes in nucleotide sequence of matK and facilitated the identification and discrimination of these species. The phylogenetic tree generated with combined sequence of rbcL and matK revealed grouping of all the six species into a single clade confirming the positioning of the species echioides into the genus Andrographis.  相似文献   

14.
The genus Terminalia L. belongs to the Combretaceae family, which includes several medicinal and threatened species with high trade value. Species of Terminalia in India belong to four sections and species identification within the sections is considered to be complex due to the lack of sufficient taxonomical characters and the existence of morphotypes. Therefore, we tested the effectiveness of three chloroplast DNA barcodes (rbcL, matK, and trnH-psbA) and a nuclear DNA barcode (ITS2) for the discrimination of Terminalia species. A reference DNA barcode library consisting of 120 DNA barcodes from ten species of Terminalia was created. Intra-specific divergence was not observed among the accessions for any marker. Inter-specific divergence was highest in trnH-psbA (10.6%), followed by ITS2, matK and rbcL markers. The success of species differentiation by DNA barcodes was 100% with trnH-psbA, 80% with matK and ITS2, and 10% with rbcL. In the phylogenetic trees, the rbcL marker did not differentiate the species in any section. Two species from the section Catappa were not differentiated by matK and ITS2 markers. Only trnH-psbA resolved all the species and ranked the best among four markers for species identification. However, regarding species relationship studies, ITS2 was found to be better than other markers because it formed a separate clade for each section.  相似文献   

15.
In plants, matK and rbcL have been selected as core barcodes by the Consortium for the Barcode of Life (CBOL) Plant Working Group (PWG), and ITS/ITS2 and psbA‐trnH were suggested as supplementary loci. Yet, research on DNA barcoding of non‐flowering seed plants has been less extensive, and the evaluation of DNA barcodes in this division has been limited thus far. Here, we evaluated seven markers (psbA‐trnH, matK, rbcL, rpoB, rpoC1, ITS and ITS2) from non‐flowering seed plants. The usefulness of each region was assessed using four criteria: the success rate of PCR amplification, the differential intra‐ and inter‐specific divergences, the DNA barcoding gap and the ability to discriminate species. Among the seven loci tested, ITS2 produced the best results in the barcoding of non‐flowering seed plants. In addition, we compared the abilities of the five most‐recommended markers (psbA‐trnH, matK, rbcL, ITS and ITS2) to identify additional species using a large database of gymnosperms from GenBank. ITS2 remained effective for species identification in a wide range of non‐flowering seed plants: for the 1531 samples from 608 species of 80 diverse genera, ITS2 correctly authenticated 66% of them at the species level. In conclusion, the ITS2 region can serve as a useful barcode to discriminate non‐flowering seed plants, and this study will contribute valuable information for the barcoding of plant species.  相似文献   

16.
The genus Dalbergia contains many valuable timber species threatened by illegal logging and deforestation, but knowledge on distributions and threats is often limited and accurate species identification difficult. The aim of this study was to apply DNA barcoding methods to support conservation efforts of Dalbergia species in Indochina. We used the recommended rbcL, matK and ITS barcoding markers on 95 samples covering 31 species of Dalbergia, and tested their discrimination ability with both traditional distance-based as well as different model-based machine learning methods. We specifically tested whether the markers could be used to solve taxonomic confusion concerning the timber species Dalbergia oliveri, and to identify the CITES-listed Dalbergia cochinchinensis. We also applied the barcoding markers to 14 samples of unknown identity. In general, we found that the barcoding markers discriminated among Dalbergia species with high accuracy. We found that ITS yielded the single highest discrimination rate (100%), but due to difficulties in obtaining high-quality sequences from degraded material, the better overall choice for Dalbergia seems to be the standard rbcL+matK barcode, as this yielded discrimination rates close to 90% and amplified well. The distance-based method TaxonDNA showed the highest identification rates overall, although a more complete specimen sampling is needed to conclude on the best analytic method. We found strong support for a monophyletic Dalbergia oliveri and encourage that this name is used consistently in Indochina. The CITES-listed Dalbergia cochinchinensis was successfully identified, and a species-specific assay can be developed from the data generated in this study for the identification of illegally traded timber. We suggest that the use of DNA barcoding is integrated into the work flow during floristic studies and at national herbaria in the region, as this could significantly increase the number of identified specimens and improve knowledge about species distributions.  相似文献   

17.
DNA barcode databases are increasingly available for a range of organisms, facilitating the wide application of DNA barcode-based studies. Here we announce the development of a comprehensive DNA barcode reference library of Japanese native woody seed plants representing 43 orders, 99 families, 303 genera and 834 species, and comprising 77.3% of the genera and 72.2% of the species of native woody seed plants in Japan. A total of 6216 plant specimens were collected from 223 sites across the subtropical, temperate, boreal and alpine biomes in Japan with most species represented by multiple accessions. This reference library utilized three chloroplast DNA regions (rbcL, trnH-psbA and matK) and consists of 14,403 barcode sequences. Individual regions varied in their identification rates, with species-level and genus-level rates for rbcL, trnH-psbA and matK based on blast being 57.4%/96.2%, 78.5%/99.1% and 67.8%/98.1%, respectively. Identification rates were higher using region combinations, with total species-level rates for two region combinations (rbcL & trnH-psbA, rbcL & matK and trnH-psbA & matK) ranging between 90.6% and 95.8%, and for all three regions being equal to 98.6%. Genus-level identification rates were even higher, ranging between 99.7% and 100% for two region combinations and being 100% for the three regions. These results indicate that this DNA barcode reference library is an effective resource for investigations of native woody seed plants in Japan using DNA barcodes and provides a useful template for the development of libraries for other components of the Japanese flora.  相似文献   

18.
DNA barcoding is a useful tool to define operational taxonomic units based on standardized DNA regions. In this study, three chloroplast markers (rbcL, trnH-psbA and matK) and one nrDNA marker (ITS) were tested for species identification in Roscoea. The ITS and trnH-psbA regions showed high success rate of PCR amplification and bidirectional sequencing, as well as perfect discriminatory ability. On the contrary, rbcL possessed no genetic variation and matK was relatively difficult in PCR amplification and DNA sequencing. Combination of multiple markers greatly improved identification ability of DNA barcoding. ITS + trnH-psbA could effectively discriminate 90% species based on method of the Neighbor-Joining (NJ) tree. Awful PCR amplification and DNA sequencing of matK restricted its efficiency, although it showed rich genetic variability in Roscoea. Moreover, it might be more appropriate to treat Roscoea cautleoides var. pubescens as an independent species based on molecular data, namely R. pubescens Z. Y. Zhu.  相似文献   

19.
Although DNA barcoding has been widely used to identify plant species composition in temperate and tropical ecosystems, relatively few studies have used DNA barcodes to document both herbaceous and woody components of forest plot. A total of 201 species (72 woody species and 129 herbaceous species) representing 135 genera distributed across 64 families of seed plants were collected in a 25 ha CForBio subalpine forest dynamics plot. In total, 491 specimens were screened for three DNA regions of the chloroplast genome (rbcL, matK, and trnHpsbA) as well as the internal transcribed spacers (ITS) of nuclear ribosomal DNA. We quantified species resolution for each barcode separately or in combination using a ML tree‐based method. Amplification and sequencing success were highest for rbcL, followed by trnH‐psbA, which performed better than ITS and matK. The rbcL + ITS barcode had slightly higher species resolution rates (88.60%) compared with rbcL + matK (86.60%) and rbcL + trnH‐psbA (86.01%). The addition of trnH‐psbA or ITS to the rbcL + matK barcode only marginally increased species resolution rates, although in combination the four barcodes had the highest discriminatory power (90.21%). The situations where DNA barcodes did not discriminate among species were typically associated with higher numbers of co‐occurring con‐generic species. In addition, herbaceous species were much better resolved than woody species. Our study represents one of the first applications of DNA barcodes in a subalpine forest dynamics plot and contributes to our understanding of patterns of genetic divergence among woody and herbaceous plant species.  相似文献   

20.
DNA barcoding, an increasingly popular mean of species identification, has been widely used for global species identification despite a consensus not being reached regarding which DNA sequences can be used as the best plant barcodes. In this study, we tested the feasibility of five candidate DNA barcodes (nrITS, nrITS2, matk, rbcL and trnH-psbA) for identifying Uncaria species. We collected a total of 54 specimens of 10 Uncaria species across its distributional range. BLAST, barcoding gaps, tree-based methods and TAXONDNA analysis were used to investigate the molecular identification capability of the candidate DNA barcodes. The results showed that the ITS2 is most suitable as a candidate DNA barcode for identification of medicinal plants of the genus Uncaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号