首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
This study was aimed to authenticate and present phylogenetic relationship among 19 species of genus Chlorophytum using DNA barcoding. In all, 107 accessions were analyzed with eight plastid (matK, rbcL, trnH-psbA, rpoC1, ycf5, rpoB, atp and psbK-psbI) and six nuclear (ITS) markers. The matK and rbcL were found to be ideal markers for identification and discrimination of Chlorophytum species. Phylogenetic analysis based on matK and rbcL sequences resolved the species in two major clades. All markers, except matK and rbcL, showed ambiguous reads and paralogy in analysis. DGGE analysis showed the presence of pseudogenes and/or co-amplification in these markers, which caused poor sequence quality. Phylogeny and probable evolution of genus Chlorophytum was proposed on the basis of cytological, morphological and genetic information.  相似文献   

2.
DNA barcoding constitutes a fundamental tool for species identification, especially for highly diverse geographic regions. Here, we characterize and evaluate the plant core barcoding regions matK and rbcL to identify the 25 conifer species from the state of Hidalgo, Mexico, including 10 species in various threat categories. Sequence quality, linguistic complexity, and the presence of the barcode gap were estimated. Two methods were compared for successful species identification: BRONX (Barcode Recognition Obtained with Nucleotide eXposés) and the least inclusive clade. We generated 77 sequences for matK and 88 for rbcL. The matK region had higher haplotype diversity and nucleotide diversity (Π), including six indels. The analysis of 77 specimens with complete sequences (matK + rbcL) resulted in 21 nonspecies-specific unique haplotypes for the 25 conifer species. Higher sequence quality and linguistic complexity were observed in rbcL than in matK. Every diagnosable species had a barcode gap. Ninety-seven specimens were assigned unambiguously to family and genus, regardless of the marker or method employed. The analysis of matK with BRONX produced the highest species level identification success (44%). Despite the low specimen identification success at the specific level, it will be possible to establish local management, conservation, and monitoring projects for at least half of the threatened species even when specimens do not exhibit diagnostic morphological characters. The low divergence between closely related species may result from the slow rate of molecular evolution of the core barcoding markers or from hybridization or incomplete lineage sorting. Similar identification success is expected for groups with comparable life history traits under similar conditions as this study. A reduction in the geographic area will not necessarily translate into higher identification success, especially for high-diversity regions and centres of diversification.  相似文献   

3.
Differentiating tissue cultures of Andrographis paniculata produce three new flavones, 5-hydroxy-7,8,2′-trimethoxy-, 5,2′-dihydroxy-7,8-dimethoxy- and 5-hydroxy-7,8-dimethoxy-flavones. Flavones are not synthesized by the de-differentiated callus. Closely related flavones have been isolated from intact plants of Andrographis species.  相似文献   

4.
An endangered and rare species Aloe pseudorubroviolacea from the plant family Asphodelaceae which is presently recorded as endangered in Saudi Arabia collected from Al-Baha region of Saudi Arabia its GPS Latitude and Longitude coordinates 19.8345, 41.5481. The chloroplast matK and rbcL gene was considered in this study based on molecular identification the size is about 571 and 664 bp respectively. From the sequence analysis the gene matK and rbcL confirm that this species is very much closely related with A. rubroviolacea and also inter related with the species Astroloba rubriflora, Chrysopogon gryllus, Chortolirion angolense shows about 98.7% sequence homology. The partial matK and rbcL gene sequence discriminate Aloe pseudorubroviolacea from the closely related plant species, A. rubroviolacea. The gene sequence of rbcL discriminates the species from Chrysopogon gryllus and Chortolirion angolense, demonstrates the nucleotide variations in 3 different sites (623C/T; 653C/T; 700C/A). This study showed that matK and rbcL sequence region of chloroplast gene used to authenticate the samples of A. pseudorubroviolacea and which provide to help in correct identification and conservation process of this medicinally valuable endangered plant species.  相似文献   

5.
DNA barcoding enables precise identification of species from analysis of unique DNA sequence of a target gene. The present study was undertaken to develop barcodes for different species of the genus Dalbergia, an economically important timber plant and is widely distributed in the tropics. Ten Dalbergia species selected from the Western Ghats of India were evaluated using three regions in the plastid genome (matK, rbcL, trnH-psbA), a nuclear transcribed spacer (nrITS) and their combinations, in order to discriminate them at species level. Five criteria: (i) inter and intraspecific distances, (ii) Neighbor Joining (NJ) trees, (iii) Best Match (BM) and Best Close Match (BCM), (iv) character based rank test and (v) Wilcoxon signed rank test were used for species discrimination. Among the evaluated loci, rbcL had the highest success rate for amplification and sequencing (97.6%), followed by matK (97.0%), trnH-psbA (94.7%) and nrITS (80.5%). The inter and intraspecific distances, along with Wilcoxon signed rank test, indicated a higher divergence for nrITS. The BM and BCM approaches revealed the highest rate of correct species identification (100%) with matK, matK+rbcL and matK+trnH-psb loci. These three loci, along with nrITS, were further supported by character based identification method. Considering the overall performance of these loci and their ranking with different approaches, we suggest matK and matK+rbcL as the most suitable barcodes to unambiguously differentiate Dalbergia species. These findings will potentially be helpful in delineating the various species of Dalbergia genus, as well as other related genera.  相似文献   

6.
The genus Terminalia L. belongs to the Combretaceae family, which includes several medicinal and threatened species with high trade value. Species of Terminalia in India belong to four sections and species identification within the sections is considered to be complex due to the lack of sufficient taxonomical characters and the existence of morphotypes. Therefore, we tested the effectiveness of three chloroplast DNA barcodes (rbcL, matK, and trnH-psbA) and a nuclear DNA barcode (ITS2) for the discrimination of Terminalia species. A reference DNA barcode library consisting of 120 DNA barcodes from ten species of Terminalia was created. Intra-specific divergence was not observed among the accessions for any marker. Inter-specific divergence was highest in trnH-psbA (10.6%), followed by ITS2, matK and rbcL markers. The success of species differentiation by DNA barcodes was 100% with trnH-psbA, 80% with matK and ITS2, and 10% with rbcL. In the phylogenetic trees, the rbcL marker did not differentiate the species in any section. Two species from the section Catappa were not differentiated by matK and ITS2 markers. Only trnH-psbA resolved all the species and ranked the best among four markers for species identification. However, regarding species relationship studies, ITS2 was found to be better than other markers because it formed a separate clade for each section.  相似文献   

7.

Cymbopogon

is an important member of grass family Poaceae, cultivated for essential oils which have greater medicinal and industrial value. Taxonomic identification of Cymbopogon species is determined mainly by morphological markers, odour of essential oils and concentration of bioactive compounds present in the oil matrices which are highly influenced by environment. Authenticated molecular marker based taxonomical identification is also lacking in the genus; hence effort was made to evaluate potential DNA barcode loci in six commercially important Cymbopogon species for their individual discrimination and authentication at the species level. Four widely used DNA barcoding regions viz., ITS 1 & ITS 2 spacers, matK, psbA-trnH and rbcL were taken for the study. Gene sequences of the same or related genera of the concerned loci were mined from NCBI domain and primers were designed and validated for barcode loci amplification. Out of the four loci studied, sequences from matK and ITS spacer loci revealed 0.46% and 5.64% nucleotide sequence diversity, respectively whereas the other two loci i.e., psbA-trnH and rbcL showed 100% sequence homology. The newly developed primers can be used for barcode loci amplification in the genus Cymbopogon. The identified Single Nucleotide Polymorphisms from the studied sequences may be used as barcodes for the six Cymbopogon species. The information generated can also be utilized for barcode development of the genus by including more number of Cymbopgon species in future.
  相似文献   

8.
DNA barcoding coupled high resolution melting (Bar-HRM) is an emerging method for species discrimination based on DNA dissociation kinetics. The aim of this work was to evaluate the suitability of different primer sets, derived from selected DNA regions, for Bar-HRM analysis of species in Croton (Euphorbiaceae), one of the largest genera of plants with over 1,200 species. Seven primer pairs were evaluated (matK, rbcL1, rbcL2, rbcL3, rpoC, trnL and ITS1) from four plastid regions, matK, rbcL, rpoC, and trnL, and the nuclear ribosomal marker ITS1. The primer pair derived from the ITS1 region was the single most effective region for the identification of the tested species, whereas the rbcL1 primer pair gave the lowest resolution. It was observed that the ITS1 barcode was the most useful DNA barcoding region overall for species discrimination out of all of the regions and primers assessed. Our Bar-HRM results here also provide further support for the hypothesis that both sequence and base composition affect DNA duplex stability.  相似文献   

9.
CP Li  ZG Yu  GS Han  KH Chu 《PloS one》2012,7(7):e42154

Background

The composition vector (CV) method has been proved to be a reliable and fast alignment-free method to analyze large COI barcoding data. In this study, we modify this method for analyzing multi-gene datasets for plant DNA barcoding. The modified method includes an adjustable-weighted algorithm for the vector distance according to the ratio in sequence length of the candidate genes for each pair of taxa.

Methodology/Principal Findings

Three datasets, matK+rbcL dataset with 2,083 sequences, matK+rbcL dataset with 397 sequences and matK+rbcL+trnH-psbA dataset with 397 sequences, were tested. We showed that the success rates of grouping sequences at the genus/species level based on this modified CV approach are always higher than those based on the traditional K2P/NJ method. For the matK+rbcL datasets, the modified CV approach outperformed the K2P-NJ approach by 7.9% in both the 2,083-sequence and 397-sequence datasets, and for the matK+rbcL+trnH-psbA dataset, the CV approach outperformed the traditional approach by 16.7%.

Conclusions

We conclude that the modified CV approach is an efficient method for analyzing large multi-gene datasets for plant DNA barcoding. Source code, implemented in C++ and supported on MS Windows, is freely available for download at http://math.xtu.edu.cn/myphp/math/research/source/Barcode_source_codes.zip.  相似文献   

10.
Acacia species are very important tree species in tropical and subtropical countries of the World for their economic and medicinal benefits. Precise identification of Acacia is very important to distinguish the invasive species from rare species however, it is difficult to differentiate Acacia species based on morphological charcters. In addition, precise identification is also important for wood charcterization in the forest industry as these species are declining due to illegal logging and deforestation. To overcome thsese limitations of morphological identification, DNA barcoding is being used as an efficient and quick approach for precise identification of tree species. In this study, we selected two chloroplast and plastid base DNA markers (rbcL and matK) for the identification of five selected tree species of Acacia (A. albida, A. ampliceps, A. catechu, A. coriacea and A. tortilis). The genomic DNA of the selected Acacia species was extracted, amplified through PCR using specific primers and subsequently sequenced through Sanger sequencing. In matK DNA marker the average AT nucleotide contents were higher (59.46%) and GC contents were lower (40.44%) as compared to the AT (55.40%) and GC content (44.54%) in rbcL marker. The means genetic distance K2P between the Acacia species was higher in matK (0.704%) as compared to rbcL (0.230%). All Acacia species could be identified based on unique SNPs profile. Based on SNP data profiles, DNA sequence based scannable QR codes were developed for accurate identification of Acacia species. The phylogenetic analysis based on both markers (rbcL and matK) showed that both A. coriacea and A. tortilis were closely related with each other and clustered in the same group while other two species A. albida and A. catechu were grouped together. The specie A. ampliceps remained ungrouped distantly, compared with other four species. These finding highlights the potential of DNA barcoding for efficient and reproducible identification of Acacia species.  相似文献   

11.
Aim To infer evolutionary relationships within the genus Phyllocladus and among its close relatives by phylogenetic analysis of DNA sequences. Interpret the inferred relationships in association with the fossil record to examine the origin and diversification of the genus. Location Australasia. Methods Phylogenetic analyses of rbcL, matK and internal transcribed spacer (ITS) sequences representing all of the extant species of Phyllocladus and a selection of outgroups from Podocarpaceae and Araucariaceae. Results The rbcL and matK sequences exhibit little variation within Phyllocladus, but ally its members to Podocarpaceae although its immediate sister remains unclear. The ITS sequences resolve all five species of Phyllocladus and two intraspecific ecotypes of P. alpinus. Main conclusions Phyllocladus forms a distinct lineage that diverged early in the evolutionary history of Podocarpaceae. The fossil record indicates that the genus was more widely distributed and morphologically diverse during the early Tertiary than at present. Although of Mesozoic origin, the level of sequence variation within Phyllocladus suggests that the extant species radiated during the late Tertiary c. 6.3 ± 0.9 Ma. New Zealand is the present centre of species diversity.  相似文献   

12.

Background

DNA barcoding as a tool for species identification has been successful in animals and other organisms, including certain groups of plants. The exploration of this new tool for species identification, particularly in tree species, is very scanty from biodiversity-rich countries like India. rbcL and matK are standard barcode loci while ITS, and trnH-psbA are considered as supplementary loci for plants.

Methodology and Principal Findings

Plant barcode loci, namely, rbcL, matK, ITS, trnH-psbA, and the recently proposed ITS2, were tested for their efficacy as barcode loci using 300 accessions of tropical tree species. We tested these loci for PCR, sequencing success, and species discrimination ability using three methods. rbcL was the best locus as far as PCR and sequencing success rate were concerned, but not for the species discrimination ability of tropical tree species. ITS and trnH-psbA were the second best loci in PCR and sequencing success, respectively. The species discrimination ability of ITS ranged from 24.4 percent to 74.3 percent and that of trnH-psbA was 25.6 percent to 67.7 percent, depending upon the data set and the method used. matK provided the least PCR success, followed by ITS2 (59. 0%). Species resolution by ITS2 and rbcL ranged from 9.0 percent to 48.7 percent and 13.2 percent to 43.6 percent, respectively. Further, we observed that the NCBI nucleotide database is poorly represented by the sequences of barcode loci studied here for tree species.

Conclusion

Although a conservative approach of a success rate of 60–70 percent by both ITS and trnH-psbA may not be considered as highly successful but would certainly help in large-scale biodiversity inventorization, particularly for tropical tree species, considering the standard success rate of plant DNA barcode program reported so far. The recommended matK and rbcL primers combination may not work in tropical tree species as barcode markers.  相似文献   

13.
Abdulrahman Alasmari 《Phyton》2020,89(4):1059-1081
In the Kingdom of Saudi Arabia (KSA), thousands of plants are considered to have therapeutic value. The ambiguous use of identification mainly morphological characteristics of many plants has resulted in the adulteration and displacement of plant products which undermine their therapeutic value and weak documentation of plant resources. The aims of this study were therefore to evaluate genetic variability and explore the phylogeographic architecture for Saudi medicinal plant samples using rbcL and matK genes as barcodes for genomic identification. The matK and rbcL sequences collected for these samples were used as key markers for examining the relationship between Saudi medicinal plant species based on genetic diversity. During our study we were successful in identifying and documenting 4 different species (Foeniculum vulgare, Nitraria retusa, Dodonaea viscosa, and Rumex nervosus) located in Saudi Arabia using DNA barcoding technique. A total number of 8 sequences were obtained with a total sequence length of 6176 bp, where it ranged from 617 bp to 878 bp with an average length of 772 bp. The total number of rbcL sequences length is 2801 bp, where it ranges from 617 bp to 807 bp with an average length of 700.2 bp. Out of the 4 plant samples used, only three samples were identified correctly on the species level with an identity percentage higher than 95% using rbcL gene. Additionally, 4 matK sequences have been retrieved belong to 4 species. The total number of matK sequences length is 3375 bp, where it ranges from 819 bp to 878 bp with an average length of 843.8 bp. Out of the 4 plant samples used, only two samples were identified correctly on the species level with an identity percentage higher than 98% using matK gene. Both rbcL and matK have been able to identify most of our collected plant samples by genus, and some by species. Using only one DNA-barcoding technique was not reliable for plant identification, where matK and rbcL must be used as a dual DNA-barcoding procedure.  相似文献   

14.
The islands of the Caribbean are considered to be a “biodiversity hotspot.” Collectively, a high level of endemism for several plant groups has been reported for this region. Biodiversity conservation should, in part, be informed by taxonomy, population status, and distribution of flora. One taxonomic impediment to species inventory and management is correct identification as conventional morphology‐based assessment is subject to several caveats. DNA barcoding can be a useful tool to quickly and accurately identify species and has the potential to prompt the discovery of new species. In this study, the ability of DNA barcoding to confirm the identities of 14 endangered endemic vascular plant species in Trinidad was assessed using three DNA barcodes (matK, rbcL, and rpoC1). Herbarium identifications were previously made for all species under study. matK, rbcL, and rpoC1 markers were successful in amplifying target regions for seven of the 14 species. rpoC1 sequences required extensive editing and were unusable. rbcL primers resulted in cleanest reads, however, matK appeared to be superior to rbcL based on a number of parameters assessed including level of DNA polymorphism in the sequences, genetic distance, reference library coverage based on BLASTN statistics, direct sequence comparisons within “best match” and “best close match” criteria, and finally, degree of clustering with moderate to strong bootstrap support (>60%) in neighbor‐joining tree‐based comparisons. The performance of both markers seemed to be species‐specific based on the parameters examined. Overall, the Trinidad sequences were accurately identified to the genus level for all endemic plant species successfully amplified and sequenced using both matK and rbcL markers. DNA barcoding can contribute to taxonomic and biodiversity research and will complement efforts to select taxa for various molecular ecology and population genetics studies.  相似文献   

15.
Many species of Schisandraceae are used in traditional Chinese medicine and are faced with contamination and substitution risks due to inaccurate identification. Here, we investigated the discriminatory power of four commonly used DNA barcoding loci (ITS, trnH-psbA, matK, and rbcL) and corresponding multi-locus combinations for 135 individuals from 33 species of Schisandraceae, using distance-, tree-, similarity-, and character-based methods, at both the family level and the genus level. Our results showed that the two spacer regions (ITS and trnH-psbA) possess higher species-resolving power than the two coding regions (matK and rbcL). The degree of species resolution increased with most of the multi-locus combinations. Furthermore, our results implied that the best DNA barcode for the species discrimination at the family level might not always be the most suitable one at the genus level. Here we propose the combination of ITS+trnH-psbA+matK+rbcL as the most ideal DNA barcode for discriminating the medicinal plants of Schisandra and Kadsura, and the combination of ITS+trnH-psbA as the most suitable barcode for Illicium species. In addition, the closely related species Schisandra rubriflora Rehder & E. H. Wilson and Schisandra grandiflora Hook.f. & Thomson, were paraphyletic with each other on phylogenetic trees, suggesting that they should not be distinct species. Furthermore, the samples of these two species from the southern Hengduan Mountains region formed a distinct cluster that was separated from the samples of other regions, implying the presence of cryptic diversity. The feasibility of DNA barcodes for identification of geographical authenticity was also verified here. The database and paradigm that we provide in this study could be used as reference for the authentication of traditional Chinese medicinal plants utilizing DNA barcoding.  相似文献   

16.

Background

DNA barcoding will revolutionize our understanding of fern ecology, most especially because the accurate identification of the independent but cryptic gametophyte phase of the fern''s life history—an endeavor previously impossible—will finally be feasible. In this study, we assess the discriminatory power of the core plant DNA barcode (rbcL and matK), as well as alternatively proposed fern barcodes (trnH-psbA and trnL-F), across all major fern lineages. We also present plastid barcode data for two genera in the hyperdiverse polypod clade—Deparia (Woodsiaceae) and the Cheilanthes marginata group (currently being segregated as a new genus of Pteridaceae)—to further evaluate the resolving power of these loci.

Principal Findings

Our results clearly demonstrate the value of matK data, previously unavailable in ferns because of difficulties in amplification due to a major rearrangement of the plastid genome. With its high sequence variation, matK complements rbcL to provide a two-locus barcode with strong resolving power. With sequence variation comparable to matK, trnL-F appears to be a suitable alternative barcode region in ferns, and perhaps should be added to the core barcode region if universal primer development for matK fails. In contrast, trnH-psbA shows dramatically reduced sequence variation for the majority of ferns. This is likely due to the translocation of this segment of the plastid genome into the inverted repeat regions, which are known to have a highly constrained substitution rate.

Conclusions

Our study provides the first endorsement of the two-locus barcode (rbcL+matK) in ferns, and favors trnL-F over trnH-psbA as a potential back-up locus. Future work should focus on gathering more fern matK sequence data to facilitate universal primer development.  相似文献   

17.
DNA barcoding, the identification of species using one or a few short standardized DNA sequences, is an important complement to traditional taxonomy. However, there are particular challenges for barcoding plants, especially for species with complex evolutionary histories. We herein evaluated the utility of five candidate sequences — rbcL, matK, trnH-psbA, trnL-F and the internal transcribed spacer (ITS) — for barcoding Rhodiola species, a group of high-altitude plants frequently used as adaptogens, hemostatics and tonics in traditional Tibetan medicine. Rhodiola was suggested to have diversified rapidly recently. The genus is thus a good model for testing DNA barcoding strategies for recently diversified medicinal plants. This study analyzed 189 accessions, representing 47 of the 55 recognized Rhodiola species in the Flora of China treatment. Based on intraspecific and interspecific divergence and degree of monophyly statistics, ITS was the best single-locus barcode, resolving 66% of the Rhodiola species. The core combination rbcL+matK resolved only 40.4% of them. Unsurprisingly, the combined use of all five loci provided the highest discrimination power, resolving 80.9% of the species. However, this is weaker than the discrimination power generally reported in barcoding studies of other plant taxa. The observed complications may be due to the recent diversification, incomplete lineage sorting and reticulate evolution of the genus. These processes are common features of numerous plant groups in the high-altitude regions of the Qinghai-Tibetan Plateau.  相似文献   

18.
The genus Curcuma L. is commonly used as spices, medicines, dyes and ornamentals. Owing to its economic significance and lack of clear‐cut morphological differences between species, this genus is an ideal case for developing DNA barcodes. In this study, four chloroplast DNA regions (matK, rbcL, trnH‐psbA and trnL‐F) and one nuclear region (ITS2) were generated for 44 Curcuma species and five species from closely related genera, represented by 96 samples. PCR amplification success rate, intra‐ and inter‐specific genetic distance variation and the correct identification percentage were taken into account to assess candidate barcode regions. PCR and sequence success rate were high in matK (89.7%), rbcL (100%), trnH‐psbA (100%), trnL‐F (95.7%) and ITS2 (82.6%) regions. The results further showed that four candidate chloroplast barcoding regions (matK, rbcL, trnH‐psbA and trnL‐F) yield no barcode gaps, indicating that the genus Curcuma represents a challenging group for DNA barcoding. The ITS2 region presented large interspecific variation and provided the highest correct identification rates (46.7%) based on BLASTClust method among the five regions. However, the ITS2 only provided 7.9% based on NJ tree method. An increase in discriminatory power needs the development of more variable markers.  相似文献   

19.
DNA barcoding of plants poses particular challenges, especially in differentiating, recently diverged taxa. The genus Gentiana (Gentianaceae) is a species-rich plant group which rapidly radiated in the Himalaya-Hengduan Mountains in China. In this study, we tested the core plant barcode (rbcL + matK) and three promising complementary barcodes (trnH-psbA, ITS and ITS2) in 30 Gentiana species across 6 sections using three methods (the genetic distance-based method, Best Close Match and tree-based method). rbcL had the highest PCR efficiency and sequencing success (100%), while the lowest sequence recoverability was from ITS (68.35%). The presence of indels and inversions in trnH-psbA in Gentiana led to difficulties in sequence alignment. When using a single region for analysis, ITS exhibited the highest discriminatory power (60%-74.42%). Of the combinations, matK + ITS provided the highest discrimination success (71.43%-88.24%) and is recommended as the DNA barcode for the genus Gentiana. DNA barcoding proved effective in assigning most species to sections, though it performed poorly in some closely related species in sect. Cruciata because of hybridization events. Our analysis suggests that the status of G. pseudosquarrosa needs to be studied further. The utility of DNA barcoding was also verified in authenticating ‘Qin-Jiao’ Gentiana medicinal plants (G. macrophylla, G. crassicaulis, G. straminea, and G. dahurica), which can help ensure safe and correct usage of these well-known Chinese traditional medicinal herbs.  相似文献   

20.
The DNA barcoding technique developed for species identification has recently been adapted for ecological studies (e.g. host plant identification). Comprehensive barcode databases, covering most species inhabiting areas, habitats or communities of interest are essential for reliable and efficient identification of plants. Here we present a three‐barcode (plastid rbcL and matK genes and the trnL intron) database for xerothermic plant species from central Europe. About 85% of the xerothermic plant species (126 out of c. 150) known to be associated with xerothermic habitats were collected and barcoded. The database contains barcodes for 117 (rbcL and trnL) and 96 (matK) species. Interspecific nucleotide distances were in the ranges 0–17.9% (0–3.2% within genera) for rbcL, 0–44.4% (0–3.1%) for trnL and 0–52.5% (0–10.9%) for matK. Blast‐searching of each sequence in the database against the entire database showed that species‐level identification is possible for 89.6% (rbcL), 98.4% (trnL) and 96.4% (matK) of examined plant species. The utility of the presented database for identification of host plants was demonstrated using two insect species associated with xerothermic habitats: the oligophagous leaf‐beetle Cheilotoma musciformis (for which two host plants in Fabaceae were identified) and the polyphagous weevil Polydrusus inustus (which was found to feed on 14 host plants, mostly Rosaceae, Asteraceae and Fabaceae). The developed database will be useful in various applications, including biodiversity, phylogeography, conservation and ecology. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 576–592.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号