首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Immunolocalization of glycodelin in the genital tract of rats   总被引:4,自引:0,他引:4  
Glycodelin, also known as placental protein 14 has been predominantly localized to organs of the human genital tract. Unfortunately the physiological role of glycodelin is largely unknown since it depends on limited availability of tissues. Therefore, a suitable animal model to study the role of glycodelin would be desirable. Previously, it was shown that glycodelin mRNA is expressed in the genital tract of male and female rats. In the present study, we demonstrate the expression of glycodelin protein in male and female rats by immunohistochemistry and Western blot analysis. For this purpose a polyclonal antibody was generated against glycodelin peptide. In female rats, glycodelin was found in the epithelial gland cells of the uterus, epithelial cells of the fallopian tube as well as in corpora lutea, interstitial and theca cells of the ovary. Glycodelin was distributed in all epithelial cells of the epididymis and the seminal vesicle. In the seminiferous epithelium, glycodelin was seen in all developmental stages of spermatogonia and spermatocytes and in Sertoli cells. Whereas in the rat male reproductive tract glycodelin expression is slightly different from human or primate tissues, in organs of the rat female genital tract glycodelin expression is similar to humans and primates.  相似文献   

2.
3.
4.
Syk protein tyrosine kinase (PTK) is involved in signaling in leukocytes. In macrophages, Fcgamma-receptor cross-linking induces Syk PTK phosphorylation and activation, resulting in Syk-dependent events required for phagocytosis and mediator release. We hypothesized that Syk antisense oligodeoxynucleotides (ASO) delivered by aerosol to rat lungs in vivo would depress Syk PTK expression, mediator release from alveolar macrophages, and Syk-dependent pulmonary inflammation. RT-PCR and RT-in situ PCR demonstrated that aerosolized Syk ASO administration reduced Syk mRNA expression from alveolar macrophages compared with cells isolated from sham-treated rats. Western blot analysis confirmed that Syk PTK expression was reduced after Syk ASO treatment. Compared with sham-treated rats (scrambled oligodeoxynucleotide), Syk ASO treatment suppressed Fcgamma-receptor-mediated nitric oxide (86.0 +/- 8.3%) and TNF (73.1 +/- 3.1%) production by alveolar macrophages stimulated with IgG-anti-IgG complexes. In contrast, Fcgamma-receptor-induced IL-1beta release was unaffected by Syk ASO treatment. Additionally, Syk ASO suppressed Ag-induced pulmonary inflammation, suggesting that Syk ASO may prove useful as an anti-inflammatory therapy in disorders such as asthma.  相似文献   

5.
Role of IL-18 in acute lung inflammation.   总被引:12,自引:0,他引:12  
We have examined the role of IL-18 after acute lung inflammation in rats caused by intrapulmonary deposition of IgG immune complexes. Constitutive IL-18 mRNA and protein expression (precursor form, 26 kDa) were found in normal rat lung, whereas in inflamed lungs, IL-18 mRNA was up-regulated; in bronchoalveolar (BAL) fluids, the 26-kDa protein form of IL-18 was increased at 2-4 h in inflamed lungs and remained elevated at 24 h, and the "mature" protein form of IL-18 (18 kDa) appeared in BAL fluids 1-8 h after onset of inflammation. ELISA studies confirmed induction of IL-18 in inflamed lungs (in lung homogenates and in BAL fluids). Prominent immunostaining for IL-18 was found in alveolar macrophages from inflamed lungs. When rat lung macrophages, fibroblasts, type II cells, and endothelial cells were cultured in vitro with LPS, only the first two produced IL-18. Intratracheal administration of rat recombinant IL-18 in the lung model caused significant increases in lung vascular permeability and in BAL content of neutrophils and in BAL content of TNF-alpha, IL-1beta, and cytokine-induced neutrophil chemoattractant, whereas intratracheal instillation of anti-IL-18 greatly reduced these changes and prevented increases in BAL content of IFN-gamma. Intratracheal administration of the natural antagonist of IL-18, IL-18 binding protein, resulted in suppressed lung vascular permeability and decreased BAL content of neutrophils, cytokines, and chemokines. These findings suggest that endogenous IL-18 functions as a proinflammatory cytokine in this model of acute lung inflammation, serving as an autocrine activator to bring about expression of other inflammatory mediators.  相似文献   

6.
Regulatory effects of eotaxin on acute lung inflammatory injury   总被引:3,自引:0,他引:3  
Eotaxin, which is a major mediator for eosinophil recruitment into lung, has regulatory effects on neutrophil-dependent acute inflammatory injury triggered by intrapulmonary deposition of IgG immune complexes in rats. In this model, eotaxin mRNA and protein were up-regulated during the inflammatory response, resulting in eotaxin protein expression in alveolar macrophages and in alveolar epithelial cells. Ab-induced blockade of eotaxin in vivo caused enhanced NF-kappaB activation in lung, substantial increases in bronchoalveolar lavage levels of macrophage inflammatory protein (MIP)-2 and cytokine-induced neutrophil chemoattractant (CINC), and increased MIP-2 and CINC mRNA expression in alveolar macrophages. In contrast, TNF-alpha levels were unaffected, and IL-10 levels fell. Under these experimental conditions, lung neutrophil accumulation was significantly increased, and vascular injury, as reflected by extravascular leak of (125)I-albumin, was enhanced. Conversely, when recombinant eotaxin was administered in the same inflammatory model of lung injury, bronchoalveolar lavage levels of MIP-2 were reduced, as was neutrophil accumulation and the intensity of lung injury. In vitro stimulation of rat alveolar macrophages with IgG immune complexes greatly increased expression of mRNA and protein for MIP-2, CINC, MIP-1alpha, MIP-1beta, TNF-alpha, and IL-1beta. In the copresence of eotaxin, the increased levels of MIP-2 and CINC mRNAs were markedly diminished, whereas MIP-1alpha, MIP-1beta, TNF-alpha, and IL-1beta expression of mRNA and protein was not affected. These data suggest that endogenous eotaxin, which is expressed during the acute lung inflammatory response, plays a regulatory role in neutrophil recruitment into lung and the ensuing inflammatory damage.  相似文献   

7.
Growing evidences indicate that Ly-GDI, an inhibitory protein of Rho GTPases, plays an essential role in regulating actin cytoskeletal alteration which is indispensible for the process such as phagocytosis. However, the role of Ly-GDI in inflammation remains largely unknown. In the current study, we found that Ly-GDI expression was significantly decreased in the IgG immune complex-injured lungs. To determine if Ly-GDI might regulate the lung inflammatory response, we constructed adenovirus vectors that could mediate ectopic expression of Ly-GDI (Adeno-Ly-GDI). In vivo mouse lung expression of Ly-GDI resulted in a significant attenuation of IgG immune complex-induced lung injury, which was due to the decreased pulmonary permeability and lung inflammatory cells, especially neutrophil accumulation. Upon IgG immune complex deposition, mice with Ly-GDI over-expression in the lungs produced significant less inflammatory mediators (TNF-α, IL-6, MCP-1, and MIP-1α) in bronchoalveolar lavage fluid when compared control mice receiving airway injection of Adeno-GFP. Mechanically, IgG immune complex-induced NF-κB activity was markedly suppressed by Ly-GDI in both alveolar macrophages and lungs as measured by luciferase assay and electrophoretic mobility shift assay. These findings suggest that Ly-GDI is a critical regulator of inflammatory injury after deposition of IgG immune complexes and that it negatively regulates the lung NF-κB activity.  相似文献   

8.
Bronchiolar Clara cells are integral components of lung homeostasis, predominantly distributed in distal airways. In addition to the 16 kDa Clara cell protein, a major secretory product with anti-inflammatory effects, rat Clara cells express the glycan-binding protein galectin-3 and secrete it into the airways. Given the essential role of galectin-3 in the control of inflammation and the well-established function of glucocorticoids (GCs) in lung physiology, here we investigated whether galectin-3 is a target of the regulatory effects of GCs. Adult male rats were subjected to bilateral adrenalectomy and the lungs were processed for light and transmission electron microscopy, immunoelectron microscopy and Western blot analysis. Profound changes in bronchiolar Clara cells and macrophage morphology could be observed by electron microscopy after adrenalectomy. While specific galectin-3 staining was detected in the nucleus and cytoplasm of Clara cells and macrophages from control animals, cytoplasmic galectin-3 expression was dramatically reduced after adrenalectomy in both cell types. This effect was cell-specific as it did not affect expression of this lectin in ciliated cells. After dexamethasone treatment, galectin-3 expression increased significantly in the nucleus and cytoplasm of macrophages and Clara cells. Western blot analysis showed a clear decrease in galectin-3 expression in ADX animals, which was recovered after a 7-day treatment with dexamethasone. In peritoneal macrophages, galectin-3 expression was also dependent on the effects of GCs both in vivo and in vitro. Our results identify a cell type-specific control of galectin-3 synthesis by GCs in lung bronchiolar Clara cells and interstitial macrophages, which may provide an alternative mechanism by which GCs contribute to modulate the inflammatory response.  相似文献   

9.
Stat3 activation in acute lung injury   总被引:8,自引:0,他引:8  
Stat3 plays diverse roles in biological processes including cell proliferation, survival, apoptosis, and inflammation. Very little is known regarding its activation and function in the lung during acute inflammation. We now show that Stat3 activation was triggered in lungs and in alveolar macrophages after intrapulmonary deposition of IgG immune complexes in rats. Low levels of constitutive Stat3 were observed in normal rat lungs as determined by the EMSA. Stat3 activity in whole lung extracts increased 2 h after initiation of IgG immune complex deposition, reaching maximal levels by 4 h, whereas Stat3 activation was found in alveolar macrophages as early as 30 min after onset of injury. Expression and activation of Stat3 mRNA, protein, and protein phosphorylation was accompanied by increased gene expression of IL-6, IL-10, and suppressor of cytokine signaling-3 in whole lung tissues. Both Tyr(705) and Ser(727) phosphorylation were involved in Stat3 activation as assessed in whole lung extracts. C5a (complement 5, fragment a) per se can induce phosphorylation of Ser(727) of Stat3. In vivo, Stat3 activation was dramatically suppressed by depletion of neutrophils or lung macrophages, resulting in reduced gene expression of IL-6 and IL-10 in whole lung tissues. Using blocking Abs to IL-6, IL-10, and C5a, Stat3 activation induced by IgG immune complexes was markedly diminished. These data suggest in the lung injury model used that activation of Stat3 in lungs is macrophage dependent and neutrophil dependent. IL-6, IL-10, and C5a contribute to Stat3 activation in inflamed rat lung.  相似文献   

10.
11.
Molecular mechanisms of the inflammatory reaction in hypoxia-induced lung injury are not well defined. Therefore, effects of alveolar hypoxia were studied in rat lungs, exposing rats to 10% oxygen over periods of 1, 2, 4, 6, and 8 h. An increase in the number of macrophages in bronchoalveolar lavage fluid of hypoxic animals was shown between 1 and 8 h. Extravasation of albumin was enhanced after 1 h and remained increased throughout the study period. NF-kappaB-binding activity as well as mRNA for TNF-alpha, macrophage inflammatory protein (MIP)-1beta, and monocyte chemoattractant protein (MCP)-1 were increased within the first 2 h of exposure to hypoxia. Hypoxia-inducible factor (HIF)-1alpha and intercellular adhesion molecule (ICAM)-1 mRNA were upregulated between 1 and 6 h. Elimination of alveolar macrophages by intratracheal application of liposome-encapsulated clodronate led to a decreased expression of NF-kappaB binding activity, HIF-1alpha, TNF-alpha, ICAM-1, and MIP-1beta. In summary, alveolar hypoxia induced macrophage recruitment, an increase in albumin leakage, and enhanced expression of inflammatory mediators, which were mainly macrophage dependent. Alveolar macrophages appear to have a prominent role in the inflammatory response in hypoxia-induced lung injury and the related upregulation of inflammatory mediators.  相似文献   

12.

Background

Connexin (Cx)-based gap junction channels play important roles in the inflammatory response. Cx43 is involved in the pathogenesis of some lung diseases such as acute lung injury. However, the Cx43 expression in asthma is unclear. In the present study, we used a murine model of ovalbumin (OVA)-induced allergic airway disease to examine the levels of Cx43 and analyze the relationship between Cx43 and airway inflammation in allergic airway disease.

Methods

Asthma was induced in mice via sensitization and challenge with OVA. Cx43 mRNA and protein expression levels were investigated via QT-PCR, western blot, and immunohistochemistry 0 h, 8 h, 1 d, 2 d and 4 d after the first challenge. The relationship between Cx43 protein levels and inflammatory cell infiltration, cytokine levels was analyzed.

Results

The OVA-induced mice exhibited typical pathological features of asthma, including airway hyper-responsiveness; strong inflammatory cell infiltration surrounding the bronchia and vessels; many inflammatory cells in the bronchoalveolar lavage fluid (BALF); higher IL-4, IL-5 and IL-13 levels; and high OVA specific IgE levels. Low Cx43 expression was detected in the lungs of control (PBS) mice. A dramatic increase in the Cx43 mRNA and protein levels was found in the asthmatic mice. Cx43 mRNA and protein expression levels increased in a time-dependent manner in asthma mice, and Cx43 was mostly localized in the alveolar and bronchial epithelial layers. Moreover, lung Cx43 protein levels showed a significant positive correlation with inflammatory cell infiltration in the airway and IL-4 and IL-5 levels in the BALF at different time points after challenge. Interestingly, the increase in Cx43 mRNA and protein levels occurred prior to the appearance of the inflammatory cell infiltration.

Conclusion

Our data suggest that there is a strong upregulation of Cx43 mRNA and protein levels in the lungs in asthma. Cx43 levels also exhibited a positive correlation with allergic airway inflammation. Cx43 may represent a target to treat allergic airway diseases in the future.  相似文献   

13.
We describe an immunohistochemical study of the acute and chronic effects of fluorescein isothiocyanate (FITC) on Sonic hedgehog (Shh) expression and Clara cell secretory protein (CC10) up-regulation in murine lung. FITC was dissolved in PBS and instilled non-surgically into adult mouse lungs via the trachea. During the acute phase (120h) of the FITC response, CC10 staining within Clara cells increased markedly but the protein did not leak into the tissue spaces or the airways, and no fibrosis was apparent. An immune response was evident, characterised by infiltrating T and B lymphocytes. There was no concomitant expression of Shh. During the chronic phase (6 months post-instillation), significant tissue degeneration was observed in the airways. There was moderate to severe fibrosis in the lung fields that stained positively for FITC and significant inflammatory cell infiltrate was observed. Shh was expressed, and CC10 showed multiple sites of diffuse staining consistent with release from Clara cells into alveolar air spaces. PBS controls showed no fibrosis after 6 months, but there was positive Shh staining below the airway epithelia and minimal extracellular CC10 staining. The results may throw some light on the role of CC10 in pulmonary inflammation. The relationship of Shh expression and CC10 leakage to lung damage and repair is discussed.  相似文献   

14.
Caveolin-1 is one of the important regulators of vascular permeability in inflamed lungs. Podocalyxin is a CD34 protein expressed on vascular endothelium and has a role in podocyte development in the kidney. Few data are available on the expression of caveolin-1 and podocalyxin in lungs challenged with Toll-like receptor 2 (TLR2) agonists such as mycoplasma-derived macrophage activating lipopeptide or with immune modulators such as Fms-like tyrosine kinase receptor-3 ligand (Flt3L), which expands dendritic cell populations in the lung. Because of the significance of pathogen-derived molecules that act through TLR2 and of the role of immune modulators in lung physiology, we examine the immunohistochemical expression of caveolin-1 and podocalyxin in lungs from rats challenged with a 2-kDa macrophage-activating lipopeptide (MALP-2) and Flt3L. Normal rat lungs expressed caveolin-1 in alveolar septa, vascular endothelium and airway epithelium, especially along the lateral borders of epithelial cells but not in alveolar macrophages. MALP-2 and Flt3L decreased and increased, respectively, the expression of caveolin-1. Caveolin-1 expression seemed to increase in microvessels in bronchiole-associated lymphoid tissue (BALT) in Flt3L-challenged lungs but not in normal or MALP-2-treated lungs. Podocalyxin was absent in the epithelium and alveolar macrophages but was present in the vasculature of control, Flt3L- and MALP-2-treated rats. Compared with control and MALP-2-treated rats, Flt3L-treated lungs showed greater expression of podocalyxin in BALT vasculature and at the interface of monocytes and the endothelium. These immunohistochemical data describing the altered expression of caveolin-1 and podocalyxin in lungs treated with MALP-2 or Flt3L encourage further mechanistic studies on the role of podocalyxin and caveolin-1 in lung inflammation.  相似文献   

15.
Abnormal inflammation and accelerated decline in lung function occur in patients with chronic obstructive pulmonary disease (COPD). Klotho, an anti-aging protein, has an anti-inflammatory function. However, the role of Klotho has never been investigated in COPD. The aim of this study is to investigate the possible role of Klotho by alveolar macrophages in airway inflammation in COPD. Klotho levels were assessed in the lung samples and peripheral blood mononuclear cells of non-smokers, smokers, and patients with COPD. The regulation of Klotho expression by cigarette smoke extract (CSE) was studied in vitro, and small interfering RNA (siRNA) and recombinant Klotho were employed to investigate the role of Klotho on CSE-induced inflammation. Klotho expression was reduced in alveolar macrophages in the lungs and peripheral blood mononuclear cells of COPD patients. CSE decreased Klotho expression and release from MH-S cells. Knockdown of endogenous Klotho augmented the expression of the inflammatory mediators, such as MMP-9, IL-6, and TNF-α, by MH-S cells. Exogenous Klotho inhibited the expression of CSE-induced inflammatory mediators. Furthermore, we showed that Klotho interacts with IκBα of the NF-κB pathway. Dexamethasone treatment increased the expression and release level of Klotho in MH-S cells. Our findings suggest that Klotho plays a role in sustained inflammation of the lungs, which in turn may have therapeutic implications in COPD.  相似文献   

16.
Stone AE  Giguere S  Castleman WL 《Cytokine》2003,24(3):103-113
The goal of this research was to determine whether differential pulmonary IL-12 gene expression controls susceptibility to Sendai virus-induced chronic airway inflammation and fibrosis in inbred rat strains. Sendai virus-resistant F344 rats and susceptible BN rats were studied from 1 to 14 days following virus inoculation. F344 rats had 3.4-fold higher IL-12 mRNA levels detected by real-time PCR in lung than BN rats as early as two days following inoculation. This increase in mRNA was associated at two days with increased total IL-12 protein and with a 2-fold increase in numbers of bronchiolar, OX-6-positive dendritic cells and an increased number of IL-12 p40-positive, bronchiolar macrophages and dendritic cells (p<0.05). Virus-susceptible BN rats treated with 3 mug of recombinant, mouse IL-12 intraperitoneally at the time of virus inoculation had a 22.1% decrease in severity of chronic bronchiolar inflammation and a 23.8% decrease in fibrosis compared to virus-inoculated BN rats treated with saline. IL-12 treatment induced increased IFN-gamma mRNA and protein expression after virus inoculation (p<0.05). The results demonstrate that there is differential pulmonary IL-12 gene expression between virus-susceptible and resistant rat strains and that IL-12 treatment can provide significant protection from virus-induced chronic airway inflammation and remodeling during early life.  相似文献   

17.
Regulation of the inflammatory infiltrate is critical to the successful outcome of pneumonia. Alveolar macrophage apoptosis is a feature of pneumococcal infection and aids disease resolution. The host benefits of macrophage apoptosis during the innate response to bacterial infection are incompletely defined. Because NO is required for optimal macrophage apoptosis during pneumococcal infection, we have explored the role of macrophage apoptosis in regulating inflammatory responses during pneumococcal pneumonia, using inducible NO synthase (iNOS)-deficient mice. iNOS(-/-) mice demonstrated decreased numbers of apoptotic macrophages as compared with wild-type C57BL/6 mice following pneumococcal challenge, greater recruitment of neutrophils to the lung and enhanced expression of TNF-alpha. Pharmacologic inhibition of iNOS produced similar results. Greater pulmonary inflammation was associated with greater levels of early bacteremia, IL-6 production, lung inflammation, and mortality within the first 48 h in iNOS(-/-) mice. Labeled apoptotic alveolar macrophages were phagocytosed by resident macrophages in the lung and intratracheal instillation of exogenous apoptotic macrophages decreased neutrophil recruitment in iNOS(-/-) mice and decreased TNF-alpha mRNA in lungs and protein in bronchial alveolar lavage, as well as chemokines and cytokines including IL-6. These changes were associated with a lower probability of mice becoming bacteremic. This demonstrates the potential of apoptotic macrophages to down-regulate the inflammatory response and for the first time in vivo demonstrates that clearance of apoptotic macrophages decreases neutrophil recruitment and invasive bacterial disease during pneumonia.  相似文献   

18.
Clara cell secretory protein (CCSP) has been shown to have anti-inflammatory and immunomodulatory functions in the lung. Respiratory syncytial virus (RSV) is the most common cause of respiratory infection in infants and young children. RSV usually infects small airways and likely interacts with the Clara cells of bronchioles. To determine a possible role for CCSP during acute RSV infection, CCSP-deficient (CCSP(-/-)) and wild-type (WT) mice were intratracheally infected with RSV and the lung inflammatory and immune responses to RSV infection were assessed. RSV-F gene expression was increased in the lungs of CCSP(-/-) mice as compared with WT mice following RSV infection, consistent with increased viral persistence. Lung inflammation was significantly increased in CCSP(-/-) mice as compared with WT mice after infection. Moreover, although the levels of Th1 cytokines were similar, the levels of Th2 cytokines and neutrophil chemokines were increased in the lungs of CCSP(-/-) mice following infection. Physiologic endpoints of exacerbated lung disease, specifically airway reactivity and mucus production, were increased in CCSP(-/-) mice after RSV infection. Importantly, restoration of CCSP in the airways of CCSP(-/-) mice abrogated the increased viral persistence, lung inflammation, and airway reactivity. These findings suggest a role for CCSP and Clara cells in regulating lung inflammatory and immune responses to RSV infection.  相似文献   

19.
We have reported that alpha 1-acid glycoprotein (AGP) gene expression was induced in lung tissue and in alveolar type II cells during pulmonary inflammatory processes, suggesting that local production of this immunomodulatory protein might contribute to the modulation of inflammation within the alveolar space. Because AGP may also be secreted by other cell types in the alveolus, we have investigated the expression and the regulation of the AGP gene in human and rat alveolar macrophages. Spontaneous AGP secretion by alveolar macrophages was increased 4-fold in patients with interstitial lung involvement compared with that in controls. In the rat, immunoprecipitation of [35S]methionine-labeled cell lysates showed that alveolar macrophages synthesize and secrete AGP. IL-1 beta had no effect by itself, but potentiated the dexamethasone-induced increase in AGP production. RNase protection assay demonstrated that AGP mRNA, undetectable in unstimulated cells, was induced by dexamethasone. Conditioned medium from LPS-stimulated macrophages as well as IL-1 beta had no effect by themselves, but potentiated the dexamethasone-induced increase in AGP mRNA levels. In addition to cytokines, PGE2 as well as dibutyryl cAMP increased AGP mRNA levels in the presence of dexamethasone. When AGP expression in other cells of the monocyte/macrophage lineage was examined, weak and no AGP production by human blood monocytes and by rat peritoneal macrophages, respectively, were observed. Our data showed that 1) AGP expression is inducible specifically in alveolar macrophages in vivo and in vitro; and 2) PGE2 and cAMP act as new positive stimuli for AGP gene expression.  相似文献   

20.
Pathways mediating pulmonary metal uptake remain unknown. Because absorption of iron and manganese could involve similar mechanisms, transferrin (Tf) and transferrin receptor (TfR) expression in rat lungs was examined. Tf mRNA was detected in bronchial epithelium, type II alveolar cells, macrophages, and bronchus-associated lymphoid tissue (BALT). Tf protein levels in lung and bronchoalveolar lavage fluid did not change in iron deficiency despite increased plasma levels, suggesting that lung Tf concentrations are regulated by local synthesis in a manner independent of body iron status. Iron oxide exposure upregulated Tf mRNA in bronchial and alveolar epithelium, macrophages, and BALT, but protein was not significantly increased. In contrast, TfR mRNA and protein were both upregulated by iron deficiency. To examine potential interactions with lung Tf, rats were intratracheally instilled with (54)Mn or (59)Fe. Unlike (59)Fe, interactions between (54)Mn and Tf in lung fluid were not detected. Absorption of intratracheally instilled (54)Mn from the lungs to the blood was unimpaired in Belgrade rats homozygous for the functionally defective G185R allele of divalent metal transporter-1, indicating that this transporter is also not involved in pulmonary manganese absorption. Pharmacological studies of (54)Mn uptake by A549 cells suggest that metal uptake by type II alveolar epithelial cells is associated with activities of both L-type Ca(2+) channels and TRPM7, a member of the transient receptor potential melastatin subfamily. These results demonstrate that iron and manganese are absorbed by the pulmonary epithelium through different pathways and reveal the potential role for nonselective calcium channels in lung metal clearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号