首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient immobilization of bone morphogenetic protein-2 (BMP-2) onto matrix is of crucial importance in the development of BMP-2-based bone tissue scaffold/implant. This often ties with precise control of desirable protein conformation and retention of protein activity. Recently, great attentions were paid to the regulation of protein conformation by tailoring the nanoscale surface properties. In this contribution, with hydrophilic COOH- and hydrophobic CH3-terminated single-walled carbon nanotubes (SWNTs-COOH and SWNTs-CH3) as models, we investigated the nanoscale interface-induced changes of adsorption dynamics, conformation, and bioactivity of recombinant human BMP-2 (rhBMP-2). Our data showed that SWNTs-COOH and SWNTs-CH3 bound rapidly to and induced unfolding of rhBMP-2 molecules, which promoted their interactions with corresponding receptors on cell surface and thus enhanced their bioactivities. In contrast, rhBMP-2 showed stronger affinity to the COOH-terminated surface than that terminated with CH3 groups, while better enhanced bioactivity on the SWNTs-CH3 surfaces. After released from SWNTs, the unfolded rhBMP-2 refolded and their activities from SWNTs-COOH and SWNTs-CH3 were reduced to 90% and 70% of the native rhBMP-2, respectively. Based on these results obtained, a model of the binding characteristics of rhBMP-2 onto SWNTs with different chemistry is presented. This study demonstrates the possibility of simple tailor-made nanoscale chemical surfaces to modulate the binding, conformation and bioactivity of BMP-2, allowing fabrication of BMP-2-based bone tissue scaffolds with high osteoinductivity and low BMP-2 dosage.  相似文献   

2.
The bone morphogenetic proteins (BMPs) are a family of growth factors that regulate the development of bone. BMP-2 is the most effective in the induction of bone tissue. A large amount of BMP-2 is needed for both bone tissue engineering research and clinical application. Thus, an effective way is necessary to produce sufficient BMP-2 protein. With the advance in plant biotechnology, transgenic plants have been targeted as a bioreactor to produce desired recombinant proteins. Here, the expression of recombinant human bmp-2 gene (rhbmp-2) was studied in tobacco plants using gus as a reporter gene. The difference of expression levels in root, stem and leaf tissues was analyzed by GUS activity assay, semi-quantitive RT-PCR and western blotting. The results indicated that the expression levels of fusion protein in root and stem tissues were significantly higher than those in leaf tissue. For the protein compositions in root and stem tissues were simpler than those in leaf tissue, this suggested that the purification process with root and stem tissues would potentially be easier.  相似文献   

3.
Bone morphogenetic protein-2 (BMP-2) promotes the differentiation of non-osteogenic mesenchymal cells to osteogenic cells. In this study, we isolated human adipose-derived stem cells (hASCs) and investigated the effects of recombinant human BMP-2 (rhBMP-2) and extracellular Ca2+ concentration ([Ca2+]out) on the osteogenic differentiation of hASCs. rhBMP-2 promoted calcium deposition in hASCs and stimulated the mRNA expressions of six proteins known to be involved in the osteogenic differentiation of hASCs: Runx2, osterix, alkaline phosphatase, osteonectin, bone sialoprotein and osteocalcin. Elevation of [Ca2+]out enhanced the level of alkaline phosphatase enzyme, increased the mRNA expressions of Runx2 and osteocalcin and induced the expressions of BMP-2 mRNA and protein in hASCs. Elevation of [Ca2+]out transiently increased the intracellular Ca2+ concentration ([Ca2+]in) due to activation of the calcium-sensing receptor (CaSR). The Ca2+-induced expressions of BMP-2 mRNA and protein were inhibited by the calmodulin antagonist, W-7. Furthermore, elevation of [Ca2+]out decreased the cytoplasmic level of phosphorylated nuclear factor of activated T-cell-2 (NFAT-2) and increased the nuclear level of dephosphorylated NFAT2. Taken together, these results suggest that rhBMP-2 promotes the osteogenic differentiation of hASCs. Furthermore, an increase in [Ca2+]out enhances the expression of BMP-2 via activation of the CaSR, elevation of [Ca2+]in and stimulation of Ca2+/calmodulin-dependent NFAT-signaling pathways.  相似文献   

4.
Bone morphogenetic protein-2 (BMP-2)-containing bone grafts are useful regenerative materials for oral and maxillofacial surgery; however, several in vitro and in vivo studies previously reported cancer progression-related adverse effects caused by BMP-2. In this study, by quantifying the rhBMP-2 content released from bone grafts, the rhBMP-2 concentration that did not show cytotoxicity in each cell line was determined and applied to the in vitro monoculture or coculture model in the invasion assay. Our results showed that 1 ng/ml rhBMP-2, while not affecting cancer cell viability, significantly increased the invasion ability of the cancer cells cocultured with fibroblasts. Cocultured medium with rhBMP-2 also contained increased levels of matrix metalloproteinases. rhBMP-2-treated cocultured fibroblasts did not show a prominent difference in mRNA expression profile. Some cytokines, however, were detected in the conditioned medium by a human cytokine antibody array. Among them, the cancer invasion-related factor CCL5 was quantified by ELISA. Interestingly, CCL5 neutralizing antibodies significantly reduced the invasion of oral cancer cells. In conclusion, our results suggest that 1 ng/ml rhBMP-2 may induce invasion of oral squamous cell carcinoma (OSCC) cells by CCL5 release in coculture models. Therefore, we propose that a careful clinical examination before the use of rhBMP-2-containing biomaterials is indispensable for using rhBMP-2 treatment to prevent cancer progression.  相似文献   

5.
The objective of this study was to investigate the enhanced osteoblast activity of MG-63 cells cultured on titanium (Ti) with a heparin/BMP-2 (Hep/BMP-2) complex. The Ti substrates were initially modified by chemical grafting poly-l-lysine (PLL) using condensing agent, followed by immobilizing the heparin/BMP-2 complex to the PLL-grafted Ti substrate via electrostatic interactions. The surface modification of Ti substrates with PLL and/or Hep/BMP-2 complex were confirmed with scanning electron microscopy, contact angle measurements, and X-ray photoelectron spectroscopy. Immobilized BMP-2 was released from the Hep/BMP-2/Ti substrate in a sustained manner. In vitro studies revealed that osteoblasts grown on Hep/BMP-2/Ti substrate increased ALP activity, calcium deposition, ALP and osteocalcin levels as compared to those grown on pristine Ti or PLL-Ti. These results indicated that heparin/BMP-2 complex immobilized Ti substrate can be useful to effectively improve osteoblast activity.  相似文献   

6.
Bone morphogenetic protein 2 (BMP-2) has been known for decades as a strong osteoinductive factor and for clinical applications is combined solely with collagen as carrier material. The growing concerns regarding side effects and the importance of BMP-2 in several developmental and physiological processes have raised the need to improve the design of materials by controlling BMP-2 presentation. Inspired by the natural cell environment, new material surfaces have been engineered and tailored to provide both physical and chemical cues that regulate BMP-2 activity. Here we describe surfaces designed to present BMP-2 to cells in a spatially and temporally controlled manner. This is achieved by trapping BMP-2 using physicochemical interactions, either covalently grafted or combined with other extracellular matrix components. In the near future, we anticipate that material science and biology will integrate and further develop tools for in vitro studies and potentially bring some of them toward in vivo applications.  相似文献   

7.
重组人BMP-2在烟草不同组织中的表达   总被引:1,自引:0,他引:1  
骨形态发生蛋白(BMPs)是一类调节骨组织发育的生长因子。BMP-2是BMP家族中诱骨活性最强的。在骨组织工程研究和临床应用中需要大量的BMP-2。因此,研究出一种能够有效地大量生产BMP-2的方法是十分必要的。随着植物分子生物学的进展,转基因植物被用作一种生物反应器来生产目的蛋白。以gus作为报告基因,研究了重组人bmp-2基因在烟草中的表达。通过GUS活性检测、半定量PCR和Western blotting分析了根、茎、叶组织中基因表达的水平,结果显示融合蛋白在根和茎组织中表达量显著高于叶组织。由于根和茎组织中蛋白组成与叶组织相比相对简单,提示其更易于进行目的蛋白的纯化。  相似文献   

8.
Increased chondrocyte hypertrophy is often associated with cartilage joint degeneration in human osteoarthritis patients. Matrilin-3 knock-out (Matn3 KO) mice exhibit these features. However, the underlying mechanism is unknown. In this study, we sought a molecular explanation for increased chondrocyte hypertrophy in the mice prone to cartilage degeneration. We analyzed the effects of Matn3 on chondrocyte hypertrophy and bone morphogenetic protein (Bmp) signaling by quantifying the hypertrophic marker collagen type X (Col X) gene expression and Smad1 activity in Matn3 KO mice in vivo and in Matn3-overexpressing chondrocytes in vitro. The effect of Matn3 and its specific domains on BMP activity were quantified by Col X promoter activity containing the Bmp-responsive element. Binding of MATN3 with BMP-2 was determined by immunoprecipitation, solid phase binding, and surface plasmon resonance assays. In Matn3 KO mice, Smad1 activity was increased more in growth plate chondrocytes than in wild-type mice. Conversely, Matn3 overexpression in hypertrophic chondrocytes led to inhibition of Bmp-2-stimulated, BMP-responsive element-dependent Col X expression and Smad1 activity. MATN3 bound BMP-2 in a dose-dependent manner. Multiple epidermal growth factor (EGF)-like domains clustered together by the coiled coil of Matn3 is required for Smad1 inhibition. Hence, as a novel BMP-2-binding protein and antagonist in the cartilage extracellular matrix, MATN3 may have the inherent ability to inhibit premature chondrocyte hypertrophy by suppressing BMP-2/Smad1 activity.  相似文献   

9.
Osteoprogenitor cells in the human bone marrow stroma can be induced to differentiate into osteoblasts under stimulation with hormonal and local factors. We previously showed that human bone marrow stromal (HBMS) cells respond to dexamethasone and vitamin D by expressing several osteoblastic markers. In this study, we investigated the effects and interactions of local factors (BMP-2 and TGF-β2) on HBMS cell proliferation and differentiation in short-term and long-term cultures. We found that rhTGF-β2 increased DNA content and stimulated type I collagen synthesis, but inhibited ALP activity and mRNA levels, osteocalcin production, and mineralization of the matrix formed by HBMS cells. In contrast, rhBMP-2 increased ALP activity and mRNA levels, osteocalcin levels and calcium deposition in the extracellular matrix without affecting type I collagen synthesis and mRNA levels, showing that rhBMP-2 and rhTGF-β2 regulate differentially HBMS cells. Co-treatment with rhBMP-2 and rhTGF-β2 led to intermediate effects on HBMS cell proliferation and differentiation markers. rhTGF-β2 attenuated the stimulatory effect of rhBMP-2 on osteocalcin levels, and ALP activity and mRNA levels, whereas rhBMP-2 reduced the rhTGF-β2-enhanced DNA synthesis and type I collagen synthesis. We also investigated the effects of sequential treatments with rhBMP-2 and rhTGF-β2 on HBMS cell differentiation in long-term culture. A transient (9 days) treatment with rhBMP-2 abolished the rhTGF-β2 response of HBMS cells on ALP activity. In contrast, a transient (10 days) treatment with rhTGF-β2 did not influence the subsequent rhBMP-2 action on HBMS cell differentiation. The data show that TGF-β2 acts by increasing HBMS cell proliferation and type I collagen synthesis whereas BMP-2 acts by promoting HBMS cell differentiation. These observations suggest that TGF-β2 and BMP-2 may act in a sequential manner at different stages to promote human bone marrow stromal cell differentiation towards the osteoblast phenotype. J. Cell. Biochem. 68:411–426, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Dedifferentiated fat (DFAT) cells, which are isolated from mature adipocytes using the ceiling culture method, exhibit similar characteristics to mesenchymal stem cells, and possess adipogenic, osteogenic, chondrogenic, and myogenic potentials. Bone morphogenetic protein (BMP)-2 and -9, members of the transforming growth factor-β superfamily, exhibit the most potent osteogenic activity of this growth factor family. However, the effects of BMP-2 and BMP-9 on the osteogenic differentiation of DFAT remain unknown. Here, we examined the effects of BMP-2 and BMP-9 on osteoblastic differentiation of rat DFAT (rDFAT) cells in the presence or absence of FK506, an immunosuppressive agent. Co-stimulation with BMP-9 and FK506 induced gene expression of runx2, osterix, and bone sialoprotein, and ALP activity compared with BMP-9 alone, BMP-2 alone and BMP-2 + FK506 in rDFAT cells. Furthermore, it caused mineralization of cultures and phosphorylation of smad1/5/8, compared with BMP-9 alone. The ALP activity induced by BMP-9 + FK506 was not influenced by addition of noggin, a BMP antagonist. Our data suggest that the combination of BMP-9 and FK506 potently induces osteoblastic differentiation of rDFAT cells.  相似文献   

11.
In this study, heparin-conjugated poly(l-lactide-co-glycolide) (PLGA) nanospheres (HCPNs) suspended in fibrin gel (group 1) were developed for a long-term delivery of BMP-2, and then used to address the hypothesis that a long-term delivery of BMP-2 would enhance ectopic bone formation compared to a short-term delivery at an equivalent dose. Fibrin gel containing normal PLGA nanospheres (group 2) was used for short-term delivery of BMP-2. The in vitro release of BMP-2 from group 1 was sustained for 4 weeks with no initial burst release. In contrast, 83% of BMP-2 loaded in group 2 was released only for the first 3 days. BMP-2 released from group 1 stimulated an increase in alkaline phosphatase (ALP) activity of osteoblasts for 9 days in vitro. In contrast, BMP-2 released from group 2 induced a transient increase in ALP activity for the first 5 days and a decrease thereafter. Importantly, group 1 induced bone formation to a much greater extent than did group 2, with 2.0-fold greater bone formation area and 3.5-fold greater calcium content, upon implantation into rat hind limb muscle. These results show that long-term delivery of BMP-2 enhances in vivo osteogenic efficacy of the protein compared to short-term delivery at an equivalent dose.  相似文献   

12.
Small G proteins of the Rho family are pivotal regulators of several signaling networks. The Ras homolog family (Rho) and one of its targets, Rho-associated protein kinase (ROCK), participate in a wide variety of biological processes, including bone formation. A previous study has demonstrated that the ROCK inhibitor Y-27632 enhanced bone formation induced by recombinant human bone morphogenetic protein-2 (BMP-2) in vivo and in vitro. However, the effect of other Rho family members, such as Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42), on bone formation remains unknown. In this study, we investigated whether Rac1 also participates in BMP-2-induced osteogenesis. Expression of a dominant-negative mutant of Rac1 enhanced BMP-2-induced osteoblastic differentiation in C2C12 cells, whereas a constitutively active mutant of Rac1 attenuated that effect. Knockdown of T-lymphoma invasion and metastasis 1 (Tiam1), a Rac-specific guanine nucleotide exchange factor, enhanced BMP-2-induced alkaline phosphatase activity. Further, we demonstrated that BMP-2 stimulated Rac1 activity. These results indicate that the activation of Rac1 attenuates osteoblastic differentiation in C2C12 cells.  相似文献   

13.
14.
The interaction between proteins and nanoscale inorganic particles is one of the most important topics in many fields. In this study, the dynamic behaviours of protein bone morphogenetic protein-2 (BMP-2) (with six different orientations) on hydroxyapatite (HAP) (001) surface were studied using the molecular dynamics and steered molecular dynamics simulation. The results show that the orientation of protein BMP-2 has obvious influence on its adsorption–desorption behaviours. Among the six systems studied in this article, system I exhibits the strongest interaction with the HAP (001) surface, and the number of the adsorbed residues is more than any one of the other five systems correspondingly. These findings suggest that there will be a preferential orientation when a protein is adsorbed onto a nanoscale interface. For protein BMP-2 interacting with the HAP (001) surface, the preferential orientation is the orientation in system I.  相似文献   

15.
Recently we have reported that biglycan (BGN) promotes osteoblast differentiation and that this function is due in part to its ability to positively modulate bone morphogenetic protein (BMP) functions. In this study we investigated the role of glycosaminoglycans (GAGs) of BGN in this function using in vitro and in vivo models. C2C12 myogenic cells were treated or untreated with BMP-2 alone or in combination with glycanated, partially glycanated or de-glycanated BGN, and the effects on BMP signaling and function were assessed by Smad1/5/8 phosphorylation and alkaline phosphatase (ALP) activity. Furthermore, the effect of de-glycanation of BGN on BMP-2 induced osteogenesis was investigated employing a rat mandible defect model. The defects were filled with collagen scaffolds loaded with glycanated or de-glycanated BGN alone or in combination with a sub-optimal dose of BMP-2 (subBMP). In in vitro experiments, BMP signaling and function were the greatest when BMP-2 was combined with de-glycanated BGN among the groups tested. In the rat mandible experiments, μCT analyses revealed that the newly formed bone was significantly increased only when subBMP was combined with de-glycanated BGN. The data indicate that the GAG component of BGN functions as a suppressor for the BGN-assisted BMP function.  相似文献   

16.
Bone morphogenetic protein-7 (BMP-7) is a multifunctional cytokine of the transforming growth factor β superfamily, which induces bone formation and plays an important role during bone tissue repair and embryonic development. In this study, human BMP-7 (hBMP-7) cDNA was cloned and expressed in Escherichia coli, and its yield was approximately 30% of the total bacterial protein. After the bacteria were lysed by ultrasonication and repeated washing, inclusion bodies were extracted and dissolved using a high-strength denaturant. The monomer of rhBMP-7 was purified by ion-exchange chromatography, and the purity coefficient was approximately 96%. The protein was renatured with refolding buffers at different pH values. The renatured rhBMP-7 dimer protein in this study increased the alkaline phosphatase activity of NIH3T3 cells. This study may be helpful for the in vitro production and biomedical application of rhBMP-7 protein expressed in an E. coli expression system.  相似文献   

17.
Nobiletin (NOB) is polymethoxy flavonoids, which plentifully there in Citrus depressa and they demonstrate numerous pharmacological effects. NOB has an anti-proliferative effect, attenuates ovalbumin-treated eosinophilic airway inflammation and Type II collagen treated arthritis. NOB noticeably inhibits bone resorption and renovates bone loss in mice model, but role of NOB in bone metabolism is unclear. Human bone is a important organ that sustains its homeostasis among bone resorpting osteoclasts and bone developing osteoblasts. The balances of among these two kind of cell outcomes are implicated in bone remodeling. The current study designed to explore possessions of NOB on differentiation and proliferation of MG-63 cells and contribution of morphogenetic protein signaling. Cell proliferation was analyzed by MTT, mineralization analysis by alizarin red staining and morphogenetic signaling protein by RT-PCR. No stimulus outcome of NOB on cell proliferation was found at days of 1, 3 and 7. Accumulation of calcium was augmented after that treatment of NOB. The mRNA expression of BMP-2, COL-I, ALP, OCN, RUNX2 and COL1A1 augmented markedly with NOB supplement. Hence, NOB can stimulate osteogenic differentiation of MG-63, almost certainly by promoting RUNX2 and BMP-2 signaling and this result might provide to its action on stimulation of osteoblast development, differentiation and augments of bone mass.  相似文献   

18.
《Cytotherapy》2014,16(10):1441-1448
Background aimsHeparin-conjugated fibrin (HCF) is a carrier for long-term release of bone morphogenetic protein-2 (BMP-2) and has been shown to promote bone formation in animal models. We performed an experimental study to determine the optimal dose of BMP-2 with an HCF carrier that promotes bone formation comparable to that of autograft while minimizing complications in spinal fusion.MethodsTwenty-four rabbits underwent posterolateral fusion of the L5–6 spinal segments. Different concentrations of HCF BMP-2 (1/10, 1/20, 1/30 or 1/40) were implanted in the spines of experimental rabbits, and autograft or INFUSE was implanted in the spines of control animals. Eight weeks after treatment, spinal fusion efficacy was evaluated by plain radiography, micro-computed tomography (micro-CT), mechanical testing and histomorphometry.ResultsSimilar to autograft, the 1/40 HCF BMP-2 showed significant bone formation on micro-CT and histomorphometry with mechanical stability. However, the other HCF BMP-2 concentrations did not show significant bone formation compared with autograft. Although conventional BMP-2 (INFUSE) led to higher bone formation and stability, it also led to excessive ectopic bone and fibrous tissue formation.ConclusionsThis study suggests the optimal concentration of BMP-2 using HCF for spinal fusion, which may decrease the complications of high-dose conventional BMP-2.  相似文献   

19.
AimsBone defects induced by different causes are difficult to replace and repair. We sought to repair bone defects by transplantation of genetically modified adipose-derived stem cells (ADSC) and acellular bone matrix (ACBM).MethodsWe constructed the biologic material of ACBM and evaluated its mechanical properties, general biocompatibility and biosafety. ADSC isolated from minipigs were cultured in vitro and then transfected by recombinant human bone morphogenetic protein-2 (rhBMP-2) and recombinant human vascular endothelial growth factor (rhVEGF) plasmids, respectively. Subsequently, the compounds of ACBM/ADSC/rhBMP-2/rhVEGF were used to repair bone defects of the ulna in minipigs. X-ray examination, radionuclide bone imaging and single photon emission computerized tomography (SPECT) were employed to monitor the therapeutic effects 2, 4, 8 and 12 weeks after operation. Histologic experiments were carried out 12 weeks after operation.ResultsACBM had no or weak antigenicity and the natural mechanical properties of ACBM were preserved. In vitro, ADSC transfected by rhBMP-2 and rhVEGF, respectively, could release rhBMP-2 or rhVEGF for at least 4 weeks. The X-ray, radionuclide bone imaging and SPECT examinations indicated that the compound of ACBM/ADSC/rhBMP-2/rhVEGF had better treatment effects on bone defects compared with the controls.ConclusionsScaffolds, seed cells and bioactive factors are key points in tissue engineering. This research indicates that ACBM is a good biologic material for tissue repair, and ACBM/ADSC/rhBMP-2/rhVEGF can accelerate bone formation significantly.  相似文献   

20.
Homodimeric bone morphogenetic protein-2 (BMP-2) is a member of the transforming growth factor beta superfamily that has been used for bone grafting. We were interested in exploring the functions of BMP-2 in other disease areas and focused on expressing and purifying active BMP-2 proteins. We have developed a new approach which involves using FoldIt refolding buffer to refold BMP-2 followed by a heparin affinity column to separate correctly folded dimer from monomer. A high yield of 29.4 mg BMP-2 dimer per gram cell wet weight was achieved. The purified BMP-2 dimer was shown to possess the same level of activity as BMP-2 from CHO cells as tested by the induction of alkaline phosphatase activity in C2C12 cells. This approach has potential application in refolding and purifying other homodimeric proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号