首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fruit use by the Japanese black bear (Ursus thibetanus japonicus) and seed clumping in bear scat were studied in central Japan using fecal analyses. Between May and November 2003 and 2004, the life form and fruit size of plants consumed by bears and the species composition and intactness of seeds contained in scat were examined in five transects (approximately 10 km × 10 m) in broad-leaved deciduous forests. In 2003, scats with seeds were found only in the autumn, when fruiting trees and shrubs were abundant. In 2004, scats with seeds occurred intermittently from the summer, when fruiting plants were rare, up to the autumn. Yearly and seasonal variation in fruit use reflects the opportunistic foraging behavior of Japanese black bears. Seven of the nine plant species detected in scats had medium-sized fruits (6–15 mm width), whereas the other two species had relatively large fruits (20–100 mm width). In total, 14,492 seeds were detected, of which 97.6% were intact; the remainder were damaged. Intact seeds of one or two species were found in each scat. The number of intact seeds per scat ranged from 1 to 5476. Japanese black bears seldom digest ingested seeds, thereby contributing to the seed dispersal of their food plants, including species with fruits that are too large to be swallowed by frugivorous birds.  相似文献   

2.
In Australia's tropical rainforests the endangered southern cassowary, Casuarius casuarius, L., is the largest native frugivore and many plant species, because of the size of their fruits or seeds, are thought to be largely dependent on cassowaries for their dispersal. In this study we asked whether the contribution of cassowaries to plant recruitment extends beyond removing seeds from the vicinity of the parent. To do this we conducted germination trials involving 17 rainforest plant species to test whether cassowary consumption and seed deposition pattern alter germination probability or time to germination. Twenty‐four per cent of species showed changed germination probabilities, with one species showing no germination without cassowary consumption, and 35% showed changed time to germination. However these differences did not translate into any significant effects when considered across all species. We examined gut scarification, fruit pulp removal (de‐inhibition) and deposition in faecal material as mechanisms for changing germination success; each contributed to the changed success of individual species. There was a negative effect of seed clumping on five species. We conclude that cassowary consumption can modify germination performance in a minority of rainforest plants and that the effect is generally positive. Although the effect on large seeded species was small it is most likely to be important as the cassowary is the only animal in Australia able to internally process large numbers of these seeds.  相似文献   

3.
Abstract Rainforests are naturally fragmented in the Northern Territory of Australia. A census of fruit and frugivorous bird abundance was taken monthly in 10 rainforest patches for 1 year and quarterly for a second year to investigate spatial and temporal patterns among the patches. Fruit abundance showed a marked annual cycle, with a peak around December in the wet season. Four of six bird species showed a significant seasonal fluctuation in abundance, and for three of them, these patterns were different among rainforest types. Three species also showed a significant tendency to be most abundant in the rainforest type with the most fruit in any month. We interpret these results as evidence that birds track fruit resources among rainforest patches of different types. The abundance of two of the species (figbird and pied imperial‐pigeon) was highly variable and did not reveal significantly different temporal trends among rainforest types. These species are probably even more mobile than the other species, although the data in the present study cannot be used to test this theory. The conservation of frugivorous birds and of the plants whose seeds they disperse will require the protection of networks of rainforest patches.  相似文献   

4.
In this paper we present an unusual incidence of an introduced Carnivora Felis catus as indirect seed disperser of plants that produce fleshy fruits in different ecosystems in the Canary Islands Four hundred and twenty six seeds from at least 8 fleshy fruit plant species have been identified in the analysis of 1047 scat groups, the majority of them being found in the lower habitats (<600 mas1) of the Canary archipelago Seeds from two plant species were significantly matched with the presence of lizard prey, and fruits of Jumperus phoenicea, Neochamaelea pulverulenta and Withania artstata were directly consumed by the cats Passing through the gut of the Gallotia galloti (Lacertidae) and Felis catus apparently does not damage the seeds At the moment, the phenomenon studied in this paper does not seem to have a great quantitative importance m the natural regeneration of the plants if we compare the direct vs indirect seed dispersal  相似文献   

5.
The evolution of fleshy fruit size, in particular in bird-dispersed plants, is believed to be influenced by the size of seed-dispersing vertebrates through gape limitation. Also, it has been demonstrated that seed size correlates positively with fruit size, especially in single- or few-seeded fruits. However, there is little evidence of current selection pressure by disperser birds on fruit and seed size within populations of a particular plant species. In the present study, this aspect was investigated in guelder rose Viburnum opulus (Caprifoliaceae) fruit consumption by birds in an area in NW Spain. Guelder rose fruits are sub-globose drupes that can exceed 11 mm in width, with a single hard seed of up to 8.5 mm in width. Most of the seeds were dispersed by the robin Erithacus rubecula (gape width < 8 mm) and a small thrush, the song thrush Turdus philomelos (gape width < 11 mm), which swallowed the fruits whole, and some were destroyed by the bullfinch Pyrrhula pyrrhula. Most of the seeds were regurgitated rather than defecated by disperser birds, probably because seed size limited gut processing. The mean size of the ingested seeds was smaller than the mean diameter of Turdus droppings, which in turn was smaller than the mean size of the seeds of the fruits available on the plants. As winter progressed, only larger fruits and seeds remained on the plants (seed and fruit size were positively correlated), and the size of ingested seeds increased. Thus, the largest fruits were consumed less by seed-dispersing birds and were exposed to seed-predators (bullfinches and climbing rodents) for longer. Selection pressure on smaller guelder rose seeds must therefore be effective in the dispersal stage in the study area.  相似文献   

6.
Aim To test whether ingestion by endemic frugivores differentially affects the seed germination time, germination percentage and seedling survival of endemic, native and exotic fleshy fruited plant species, and to identify the principal processes and attributes driving such effects. Location Round Island, Mauritius. Methods We conducted a germination and seedling survival experiment for 3 months to test whether ingestion (gut passage and deposition in faeces) by the endemic Telfair’s skink (Leiolopisma telfairii) had a differential effect on the germination time, germination percentage and seedling survival of two endemic, four native and two exotic fleshy fruited plant species. To assess the importance of factors involved in the ingestion process, we used a factorial design with gut passage (gut‐passed vs. not gut‐passed), depulping (whole fruit vs. manually depulped seed) and the presence of faecal material (faeces vs. without faeces). In addition, the roles of species‐specific traits, seed size and deposition density (average number of seeds per faeces) were examined. Results Exotic species had a higher germination percentage than indigenous (native and endemic) species when not ingested. Following skink ingestion, there was no longer a difference, as ingestion enhanced germination percentage most in endemic species. The exotic species still germinated faster overall than the indigenous species, despite ingestion accelerating the germination time of endemics. However, ingestion strongly reduced seedling survival of the exotic species, while having no negative effect on the survival of indigenous seedlings. Overall, ingested indigenous seeds were more likely to germinate and the seedlings more likely to survive than ingested exotic seeds and seedlings. Seed size, deposition density and the removal of fruit pulp by either manual depulping or gut passage were important predictors of germination time, germination percentage and seedling survival. Main conclusions These endemic frugivores can enhance the competitiveness of endemic compared with exotic fleshy fruited plants at the critical germination and seedling establishment stage. Consequently, conservation and restoration of mutualistic endemic plant–animal interactions may be vital to mitigating the degradation of habitats invaded by exotic plants, which is of particular relevance for island ecosystems in which large numbers of endemics are threatened by exotic invaders.  相似文献   

7.
Seed dispersal plays a central role in plant ecology. Among animals, birds are particularly important seed dispersers, often incorporating exotic plants into their diets and facilitating their integration in the communities. Network theory offers a highly informative framework to study the structural and functional attributes of complex interactions networks. We used information from bird fecal samples to build a quantitative seed dispersal network for the last fragment of native laurel forest in the island of São Miguel—Azores with three specific objectives: (1) to assess the integration of exotic seeds into seed dispersal; (2) to evaluate the impact of exotic plants in network structure; (3) to test the potential of an exotic species to reduce the seed dispersal of a co-occurring native, via competition for seed dispersers. The seed dispersal network was based on the analysis of 1,121 droppings and described 74 unique interactions between 41 plant species and 7 bird species. Exotic seeds deeply infiltrated into the seed dispersal network forming the majority (59 %) of seeds in the droppings and including those of three globally invasive plants. Overall, birds depended equally on native and exotic fruits despite the lower abundance of the latter in the study area. In an experiment, birds did not show a preference for fruits of the exotic Leycesteria formosa over the native Vaccinium cylindraceum consuming them equally. However, the presence of the exotic plant negatively affected the number of native seeds dispersed, by diverting some of the consumers of the native fruits. Taken altogether the results reveal an alarming invasion level of seed dispersal systems in one of the last remnant native forests of the Azores.  相似文献   

8.
Pithecia pithecia andChiropotes satanas are seed predators that eat fruits with hard pericarps. We measured resistance to puncturing and crushing of fruit and seeds eaten by these two pitheciins at two localities: in evergreen rain forest at Raleighvallen-Voltzberg, Surinam, and in tropical dry/transitional moist forest on islands in Guri Lake, Venezuela. Average measurements of pericarp hardness were similar at both sites for fruit eaten byChiropotes, but a higher maximum value was obtained at the rainforest site.Chiropotes andPithecia both ate fruits that had harder pericarps than did fruits eaten byAteles paniscus, but crushing resistances of seeds eaten were lower than values forAteles. Thus, both pitheciins selected fruits with hard pericarps and soft seeds, although there were notable intergeneric differences in hardness of fruit ingested. When fruit became scarce,Pithecia ate more flowers, whileChiropotes continued to eat fruits with hard seed coverings. Chemical analysis of species of seeds eaten byPithecia suggests that they avoided seeds with extremely high tannin levels, though they tolerated moderate tannin levels in combination with high levels of lipids. We propose that sclerocarpic harvesting (the preparation and ingestion of fruit with a hard pericarp) allows pitheciin monkeys to obtain nutritious seeds, with reduced tannins, that are softer than those ingested by other frugivores.Presented at XIIIth Congress, International Primatological Society, July 27, 1990.  相似文献   

9.
Moran C  Catterall CP  Green RJ  Olsen MF 《Oecologia》2004,141(4):584-595
Seed dispersal plays a critical role in rainforest regeneration patterns, hence loss of avian seed dispersers in fragmented landscapes may disrupt forest regeneration dynamics. To predict whether or not a plant will be dispersed in fragmented forests, it is necessary to have information about frugivorous bird distribution and dietary composition. However, specific dietary information for frugivorous birds is often limited. In such cases, information on the seed-crushing behaviour, gape width and relative dietary dominance by fruit may be used to describe functional groups of bird species with respect to their potential to disperse similar seeds. We used this information to assess differences in the seed dispersal potential of frugivorous bird assemblages in a fragmented rainforest landscape of southeast Queensland, Australia. The relative abundance of frugivorous birds was surveyed in extensive, remnant and regrowth rainforest sites (16 replicates of each). Large-gaped birds with mixed diets and medium-gaped birds with fruit-dominated diets were usually less abundant in remnants and regrowth than in continuous forest. Small-gaped birds with mixed diets and birds with fruit as a minor dietary component were most abundant in regrowth. We recorded a similar number of seed-crushing birds and large-gaped birds with fruit-dominated diets across site types. Bird species that may have the greatest potential to disperse a large volume and wide variety of plants, including large-seeded plants, tended to be less abundant outside of extensive forests, although one species, the figbird Sphecotheres viridis, was much more abundant in these areas. The results suggest that the dispersal of certain plant taxa would be limited in this fragmented landscape, although the potential for the dispersal of large-seeded plants may remain, despite the loss of several large-gaped disperser species.  相似文献   

10.
Alien plants with abundant and nutritious fruits may compete more effectively for avian dispersal services than native shrubs. This premise was examined by comparing daily foraging activity (visitation frequency, foraging bird number and foraging period) by four frugivorous bird species of different size on fruits of two native and two alien shrub species co-occurring at four different sites. Also, the quantities of seeds consumed daily by each of the four birds species from fruits of the four shrub species were measured and compared with the numbers of fruits and seeds, and the mass of fruits present in the shrub canopies as well as with their fruit monosaccharide concentrations. The quantities of seed consumed daily by four different size bird species (Columba arquatrix, Colius striatus, Pycnonotus capensis, Zosterops pallidus subsp capensis) were positively correlated with the numbers of seeds per m2 of canopy area and with fruit mass and fruit monosaccharide content per m2 of canopy area, as well as with the monosaccharide concentration of individual fruits, except in the C. arquatrix (African olive pigeon). All four bird species displayed the highest daily visitation frequencies on fruits of the alien Solanum mauritianum which were more abundant and nutritious than fruits of the other alien Lantana camara and fruits the natives Olea europaea subsp africana and Chrysanthemoides monilifera. They also all consumed greater quantities of seed daily from fruits of the alien S. mauritianum than from fruits of the other shrub species. These results corroborate proposals that frugivorous birds concentrate their foraging activities on those alien plants with the most abundant and nutritious fruits.  相似文献   

11.
Understanding the mutualisms between frugivores and plants is essential for developing successful forest management and conservation strategies, especially in tropical rainforests where the majority of plants are dispersed by animals. Gibbons are among the most effective seed dispersers in South East Asia's tropical forests, but are also one of the highly threatened arboreal mammals in the region. Here we studied the seed dispersal of the Pacific walnut (Dracontomelon dao), a canopy tree which produces fruit that are common in the diet of the endangered southern yellow-cheeked crested gibbon (Nomascus gabriellae). We found that gibbons were the most effective disperser for this species; they consumed approximately 45% of the fruit crop, which was four times more than that consumed by macaques – the only other legitimate disperser. Gibbons tracked the temporal (but not spatial) abundance of ripe fruits, indicating this fruit was a preferred species for the gibbon. Both gibbons and macaques dispersed the majority (>90%) of the seeds at least 20 m away from parent crowns, with mean dispersal distances by gibbons measuring 179.3 ± 98.0 m (range: 4–425 m). Seeds defecated by gibbons germinated quicker and at greater rates than seeds spat by macaques, or in undispersed fruits. Gibbon-dispersed seeds were also more likely to be removed by unknown seed predators or unknown secondary dispersers. Overall, gibbons play a key role in the regeneration of the Pacific walnut. Our findings have significant implications both for the management of the Pacific walnut tree dominating tropical rainforest as well as the reintroduction program of the Southern yellow-cheeked crested gibbon.  相似文献   

12.
Human‐induced fragmentation and disturbance of natural habitats can shift abundance and composition of frugivore assemblages, which may alter patterns of frugivory and seed dispersal. However, despite their relevance to the functioning of ecosystems, plant‐frugivore interactions in fragmented areas have been to date poorly studied. I investigated spatial variation of avian frugivore assemblages and fruit removal by dispersers and predators from Mediterranean myrtle shrubs (Myrtus communis) in relation to the degree of fragmentation and habitat features of nine woodland patches (72 plants). The study was conducted within the chronically fragmented landscape of the Guadalquivir Valley (SW Spain), characterized by ~1% of woodland cover. Results showed that the abundance and composition of the disperser guild was not affected by fragmentation, habitat features or geographical location. However, individual species and groups of resident/migrant birds responded differently: whereas resident dispersers were more abundant in large patches, wintering dispersers were more abundant in fruit‐rich patches. Predator abundances were similar between patches, although the guild composition shifted with fragmentation. The proportion of myrtle fruits consumed by dispersers and predators varied greatly between patches, but did not depend on bird abundances. The geographical location of patches determined the presence or absence of interactions between myrtles and seed predators (six predated and three non‐predated patches), a fact that greatly influenced fruit dispersal success. Moreover, predation rates were lower (and dispersal rates higher) in large patches with fruit‐poor heterospecific environments (i.e. dominated by myrtle). Predator satiation and a higher preference for heterospecific fruits by dispersers may explain these patterns. These results show that 1) the frugivore assemblage in warm Mediterranean lowlands is mostly composed of fragmentation‐tolerant species that respond differently to landscape changes; and 2) that the feeding behaviour of both dispersers and predators influenced by local fruit availability may be of great importance for interpreting patterns of frugivory throughout the study area.  相似文献   

13.
Most plants with fleshy fruits have seeds that are ingested by animals, but a less well-understood mode of seed dispersal involves fleshy fruits containing seeds that are discarded by frugivorous animals because they are too large or toxic to be ingested. We studied the seed dispersal biology of Haemanthus deformis, an amaryllid lily species found in a mosaic of bush clumps in a grassland matrix in South Africa. We asked whether seed dispersal is directed in and among bush clumps and whether germination and survival are greater for seeds dispersed to bush clumps than for those dispersed into grassland. Using camera trapping, we found that fruits are consumed mainly by birds and rodents. The pulp was removed from the seeds which were then discarded without ingestion. While many seeds were dispersed close to the parent plant, most (c. 78.5%) were dispersed further than 1 m away from the parent plant. Longer distance dispersal resulted mainly from birds flying off with fruits in their bill or from rodents engaging in scatter-hoarding behavior. Seedling survival was most successful within bush clumps as compared to grasslands and shade was identified as a primary requirement for seedling survival. Seeds from which the fruit pulp had been removed germinated faster than those in intact fruits. Haemanthus deformis deploys a system of directed seed dispersal, whereby both birds and rodents contribute to the dispersal of seeds within patchy bush clumps that are favorable for seedling survival.  相似文献   

14.
Abstract We examine the role of the native fox, Pseudalopex culpaeus, as a frugivore and seed disperser in a semiarid thornscrub of Chile. We quantified the fruit and animal components in its diet versus the availability of fruits and small mammals in the field over a 2‐year period (January 1998 through February 2000). We tested the legitimacy and effectiveness of foxes as dispersers by quantifying the percentages of seed viability and of germination of seeds that passed through fox gut versus those picked from plants. We also studied their efficiency as dispersers, monitoring the fate of seeds in faeces placed in the field. The highest frequencies of fruit consumption by foxes were observed when abundances of small mammal prey were <6 individuals per hectare, regardless of fruit abundance in the field. Thus, foxes consumed fruits as a supplementary food resource. Based on 326 faeces, the total number of fruits consumed was about 34 000 over the 2‐year study period, and fruits from the alien shrub Schinus molle represented 98% of that total, with the native Porlieria chilensis a distant second. Germination and viability of defecated seeds of P. chilensis were reduced by 66% and 48%, respectively, in comparison to controls. In contrast, germination of seeds of S. molle increased by 50% and no effect on viability was observed. With regard to P. chilensis, foxes were legitimate (they defecated viable seeds), but ineffective (seeds in faeces had lower germination than those taken directly from parental plants and there was no seedling establishment in the field) and inefficient dispersers (seeds in faeces were deposited on microhabitats hostile to seed germination and seedling establishment). However, with regard to S. molle, foxes were legitimate, effective (seeds in faeces had higher germination than those taken directly from parental plants; there was germination but no establishment in the field), and efficient dispersers (over 41% of seeds were deposited on safe microsites). Thus, a native fox may be contributing to the spread of an alien shrub, co‐opting existing community processes.  相似文献   

15.
We study the effect of ingestion by birds on seed germination and theconsequences of absence of dispersal, with the persistency of the seedsinside the fruit. We collected seeds of four woody species ofthe temperate rainforest of Chiloé: Gaultheriamucronata, Luma apiculata, Myrteolanummularia, and Myrceugenia planipes. The seedstested had the following origins: 1) Ingested seeds: seeds collected fromthe feces of birds, 2) Extracted seeds: seeds obtained directly from thefruits, and 3) Intact fruits: fruits collected directly from the plants.Germination of Myrceugenia planipes under greenhouseconditions, Luma apiculata, and Myrteolanummularia under laboratory conditions, and Gaultheriamucronata under both conditions was analyzed. We found that the seedsreach their maximum germination between 15–20 days after sowing, withthe exception of those of G. mucronata sown in the greenhouse,which showed a low germination rate. In the greenhouse assay, seeds ofG. mucronata ingested by birds, seeds extracted manuallyfrom the fruits, and seeds inside the fruits did not show significant differencesin their germination percentages. In the laboratory assays, the seeds ofG. mucronata and M. nummulariaingested by birds and the seeds extracted manually from the fruits also did not show anysignificant difference in germination. Under laboratory conditions, theseeds of L. apiculata ingested by birds presented astatistically greater percentage of germination than the seeds extracted manually.Under greenhouse conditions, seeds of M. planipes ingestedby birds did not present a statistically different germination percentage fromthose seeds extracted from the fruits. The seeds of M.planipes, and L. apiculata inside the intactfruits did not germinate. We conclude that birds do not affect the seedviability of any of the four species studied.  相似文献   

16.
We studied consumption of wild fruits by redwings Turdus thacus coburnt at two sites on the southwest coast of Iceland, just prior to the autumn migration During this period the principal study site offers c 800000 fruits ha−1 most of these are of Empetrum nigrum (c 90% of fresh weight), but fruits of Vaccimum uliginosum. Arctostaphylos uva-ursi, Vaccimum myrtillus and Rubus saxatilis are also present Redwings regularly consumed the fruits of all these species except R saxatilis At both study sites E nigrum fruits were the most important component of the redwing diet (70 - 80% of fruits ingested), followed by V uliginosum (c 20%) Neither species was consumed as predicted on the basis either of overall relative abundance of fruits or of relative frequency of occurrence of fruiting plants in two hundred 0 3 m2 plots In another forty 0 3 m2 plots, the number of E nigrum fruits consumed over a seven-day penod was not significantly correlated with the number of fruits initially present Empetrum nigrum seed width is positively correlated with fruit size, and the mean width of seeds in droppings suggests that redwings prefer large E nigrum fruits (which have a higher pulp-to-seed weight ratio) to small E nigrum fruits Despite the predominance of E nigrum, redwing droppings tend to contain a mix of seeds of different species, the most frequent combination being E nigrum and V uliginosum  相似文献   

17.
We examined the interactions between bird-dispersed plants and fruit-consuming birds with various feeding strategies, by reviewing the plant species consumed by 14 bird species in Japan with four feeding types: gulpers (five species), grinders (four species), crushers (four species), and peckers (one species). Our literature review provided information on the plant species consumed by the birds in Japan and the morphological traits of the fruits: fruit volume, seed mass and number, pulp type (fleshy, dry, or arillate), and plant height (tall, medium, or small). Using these data, we examined the diversity of plant species consumed by each bird and the fruit morphological traits that affected fruit selection. The five gulpers consumed fruits from the largest number of plants, followed by the four grinders, the four crushers, and the one pecker. The gulpers and grinders consumed a wider variety of fruits than were consumed by the crushers and the pecker. Logistic regression analysis revealed that some crushers and the pecker preferred plants with dry or arillate pulp around the seeds. Our results suggest that a frugivorous bird’s feeding strategies, and particularly its fruit-handling behaviors and the fruit parts it ingests, influence the diversity of plants it consumes. The crushers and the pecker, which feed exclusively on seeds, require more effort and time to consume this type of food, and this might cause a strong preference for specific fruit traits and thus, consumption of a lower diversity of plant species.  相似文献   

18.
The ability of ecosystems to maintain their functions after disturbance (ecological resilience) depends on heterogeneity in the functional capabilities among species within assemblages. Functional heterogeneity may affect resilience by determining multiplicity between species in the provision of functions (redundancy) and complementarity between species in their ability to respond to disturbances (response diversity), but also by promoting the maintenance of biological information that enables ecosystems to reorganize themselves (ecological memory). Here, we assess the role of the components of the functional heterogeneity of a plant–frugivore assemblage on the resilience of seed dispersal to habitat loss. For three years, we quantified the distributions of fruits, frugivorous thrushes (Turdus spp.) and dispersed seeds, as well as frugivore diet and movement, along a gradient of forest cover in N Spain. The abundances and the spatial distributions of fruits and birds varied between years. The different thrushes showed similar diets but differed in spatial behavior and response to habitat loss, suggesting the occurrence of both functional redundancy and response diversity. Forest cover and fruit availability affected the spatial distribution of the whole frugivore assemblage. Fruit tracking was stronger in years when fruits were scarcer but more widespread across the whole fragmented landscape, entailing larger proportions of seeds dispersed to areas of low forest cover and open microhabitats. Rather than depending on redundancy and/or response diversity, seed dispersal resilience mostly emerged from the ecological memory conferred by the inter‐annual variability in fruit production and the ability of thrushes to track fruit resources across the fragmented landscape. Ecological memory also derived from the interaction of plants and frugivores as source organisms (trees in undisturbed forest), mobile links (birds able to disperse seeds into the disturbed habitat), and biological legacies (remnant trees and small forest patches offering scattered fruit resources across the landscape).  相似文献   

19.
Egg placement by herbivorous insects is an important step in their interaction with their host plants, and is the result of processes operating at different spatial and temporal scales. Although several studies have examined egg-placement patterns at different scales, this has rarely been achieved simultaneously using a multi-scale hierarchical approach. We studied egg placement in a rare European butterfly, Iolana iolas , whose larvae specifically feed on seeds of plants of the genus Colutea, using a hierarchical approach and Generalised Linear Mixed Modelling. The study was carried out in 2002 and 2003 in a ca 60 km2 area in southern Madrid province, Spain, where the host plant, Colutea hispanica , has a highly fragmented distribution. We monitored in detail 132 plants in 24 patches and estimated the abundance of butterflies over the whole reproductive period of C. hispanica . We measured phenological, morphological and landscape variables potentially affecting egg-placement at three hierarchical levels: fruit, plant and host plant patch. Using egg presence–absence on mature fruits as the response variable, we found that eggs were more likely to be laid on fruits aged 1–2 weeks at the middle of the flowering period (fruit level), on large plants with a small number of shoots at the base (plant level), and in well connected host plant patches (patch level). Our results suggest that egg-placement is a process determined by factors operating at different levels: fruit, plant and host plant patch. Because egg-placement studies are often made with spatially correlated data, neglecting their intrinsic hierarchical nature could lead to equivocal conclusions.  相似文献   

20.
Dispersal by frugivorous birds facilitates invasion by many exotic plants. We measured the seed rain of ornithochorous native and exotic plants at three habitats of a fragmented landscape of the northeastern United States for 1 year. We studied maple-beech forests, old fields, and abandoned conifer plantations. Across all sites we collected 2,196 ornithochorous seeds, including seeds from six exotic species and 10 native species. The majority (90%) of collected seeds were from exotic species. Seed dispersal was broadly similar among habitats, though seed rain of exotic species was higher in old fields than forested habitats. Seed rain was not strongly influenced by artificial perches for most species. However, seeds of exotic species were more commonly found in traps under an artificial perch in old fields. Seed rains for the exotic Elaeagnus umbellata, Rhamnus cathartica, and Rosa multiflora were positively associated with local density of mature plants. Seed rain of R. cathartica was positively associated with abundance of seedlings but not saplings, suggesting that post-dispersal mortality was important. Seed dispersal of the exotic Lonicera spp. was high in all habitats, accounting for 66% of all seeds collected. With the exception of Lonicera spp., seed rain of common exotic invaders was affected by the abundance of seed sources, and these species might be effectively controlled by elimination of local fruiting plants. Fruits of Lonicera morrowii, which has extensively invaded our area, are apparently a common component in the diet of frugivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号