首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Aim We analysed body‐size variation in relation to latitude, longitude, elevation and environmental variables in Ctenomys (tuco‐tucos), subterranean rodents in the Ctenomyidae (Caviomorpha). We tested the existence of inter‐ and intraspecific size clines to determine if these rodents follow Bergmann's rule, to compare intra‐ and interspecific size trends and to assess the relevance of the subterranean lifestyle on these trends. Location South America, south of 15° latitude. Methods This paper is based on 719 specimens of tuco‐tucos from 133 localities of Argentina, Bolivia, Chile, Paraguay, Peru and Uruguay, representing 47 named species and 32 undescribed forms. Intraspecific analyses were performed for Ctenomys talarum Thomas, 1898 and the Ctenomys perrensi Thomas, 1896 species complex. Head and body length and weight were used for estimating body size. Geographical independent variables included latitude, longitude and altitude. Environmental independent variables were mean minimal and maximal monthly temperature, mean annual temperature, mean minimal and maximal precipitation, and total annual precipitation. To estimate seasonality, the annual variability of the climatic factors was calculated as their coefficients of variation and the difference between maximum and minimum values. Mean annual actual evapotranspiration (AET), and mean annual, January (summer) and July (winter) potential evapotranspiration (PET) values were also calculated for each locality, as well as annual, summer and winter water balance (WB). Statistical analyses consisted of simple and multiple regression and nonparametric correlation. Results Body size of Ctenomys decreases interspecifically from 15°00′ S to 48°15′ S and from 56°33′ W to 71°46′ W, and is positively correlated with ambient temperature and precipitation. The best predictors of body size according to multiple regression analyses were mean annual temperature, the difference between mean maximum and minimum annual temperatures, annual PET, the difference between summer and winter PET, and annual and winter water balance. These patterns are repeated, but not identically, at a smaller geographical scale within the species C. talarum and the superspecies C. perrensi. Main conclusions Tuco‐tucos follow the converse to Bergmann's rule at the interspecific level. At the intraspecific level some parallel trends were observed, but the smaller scale of these analyses, involving a very reduced variation of environmental factors, necessitates caution in interpreting results. The subterranean lifestyle probably insulates these rodents from the external temperature. The observed latitudinal body‐size gradients are more probably related to seasonality, ambient energy, primary productivity and/or intensity of predation.  相似文献   

2.
Variation in body size represents one of the crucial raw materials for evolution. However, at present, it is still being debated what is the main factor affecting body size or if the final body size is the consequence of several factors acting synergistically. To evaluate this, widespread species seem to be suitable models because the different populations occur along a geographical gradient and under contrasted climatic and environmental conditions. Here we describe the spatial pattern of variation in body size and sexual size dimorphism in the snouted treefrog Scinax fuscovarius (Anura, Hylidae) along a 10° range in latitude, 25° longitude, and 2000 m in altitude from Argentina, Brazil and Paraguay using an information‐theoretic approach to evaluate the support of the data for eight a priori hypotheses proposed in the literature to account for geographical body size, and three hypotheses for sexual size dimorphism variation. Body size of S. fuscovarius varied most dramatically with longitude and less so with latitude; frogs were largest in the northwestern populations. Body size was positively related with precipitation seasonality, and negatively with annual precipitation. Furthermore, the degree of sexual size dimorphism was greatest in the western populations with less annual precipitation, as the increase in body size was stronger for females. Our results on body size variation are consistent with two ecogeographical hypotheses, the starvation resistance and the water availability hypotheses, while our results on sexual size dimorphism in S. fuscovarius supports the differential‐plasticity hypothesis but the inverse to Rensch's rule and the parental investment hypothesis. Due to the weak association between environmental variables and body size and sexual size dimorphism variation, we stress that there are other factors, mainly those related to the life history, driving the geographical variation of S. fuscovarius.  相似文献   

3.
Karan D  Dubey S  Moreteau B  Parkash R  David JR 《Genetica》2000,108(1):91-100
We analyzed natural populations of Zaprionus indianusin 10 Indian localities along a south-north transect (latitude: 10–31°3 N). Size traits (body weight, wing length and thorax length) as well as a reproductive trait (ovariole number) followed a pattern of clinal variation, that is, trait value increased with latitude. Wing/thorax ratio, which is inversely related to wing loading, also had a positive, but non-significant correlation with latitude. By contrast, bristle numbers (sternopleural and abdominal) exhibited a non-significant but negative correlation with latitude. Sex dimorphism, estimated as the female/male ratio, was very low in Z. indianus, contrasting with results already published in other species. Genetic variations among populations were also analyzed according to other geographic parameters (altitude and longitude) and to climatic conditions from each locality. A significant effect of altitude was found for size traits. For abdominal bristles, a multiple regression technique evidenced a significant effect of both latitude and altitude, but in opposite directions. Genetic variations were also correlated to climate, and mainly with average year temperature. Taking seasonal variations into account failed however to improve the predictability of morphometrical variations. The geographic differentiation of Z.indianusfor quantitative traits suggests adaptive response to local conditions, especially to temperature, but also reveals a complex situation according to traits investigated and to environmental parameters, which does not match results on other drosophilid species.  相似文献   

4.
Aim The aim of this study was to describe the composition, community structure and biogeographical variation of subtidal algal assemblages dominated by the brown alga Cystoseira crinita across the Mediterranean Sea. Location The Mediterranean coast, from Spain (1°25′ E) to Turkey (30°26′ E). Methods Data on the species composition and structure of assemblages dominated by the species C. crinita were collected from 101 sites in nine regions across the Mediterranean Sea. Multivariate and univariate statistical tools were used to investigate patterns of variation in the composition of the assemblages among sites and regions, and to compare these with previously defined biogeographical regions. Linear regressions of species richness versus longitude and versus latitude were also carried out to test previously formulated hypotheses of biodiversity gradients in the Mediterranean Sea. Results The main features characterizing C. crinita‐dominated assemblages across the Mediterranean included a similar total cover of species, a similar cover of C. crinita, and consistency in the presence of the epiphyte Haliptilon virgatum. Biogeographical variation was detected as shifts in relative abundances of species among regions, partly coinciding with previously described biogeographical sectors. A significant positive correlation was found between species richness and latitude, while no significant correlation was detected between species richness and longitude. Main conclusions The patterns of variation in community structure detected among the studied regions reflected their geographical positions quite well. However, latitude seemed to contribute more to the explanation of biological patterns of diversity than did geographical distances or boundaries, which classically have been used to delimit biogeographical sectors. Moreover, the positive correlation between species richness and latitude reinforced the idea that latitude, and possibly temperature as a related environmental factor, plays a primary role in structuring biogeographical patterns in the Mediterranean Sea. The lack of correlation between species richness and longitude contradicts the notion that there is a decrease in species richness from west to east in the Mediterranean, following the direction of species colonization from the Atlantic.  相似文献   

5.
According to Bergmann's rule, individuals of a given species tend to be larger in colder (northern) climates. Traditional explanation points to the relatively lower surface‐to‐volume ratio in larger animals and, consequently, relatively lower costs of thermoregulation. We examined intraspecific covariation of body size with geographical location and climate in five species of Sorex shrews, animals that are among the smallest extant mammals. The condylobasal length of skull (CBL), compiled from literature data and measured on museum specimens, was used as an indicator of the overall body size of shrews. Surprisingly, in three out of five shrew species, the CBL was negatively correlated with latitude, and the same trend, although not statistically significant, was found in the fourth species. In general, shrews were smaller in colder areas, as evidenced by the positive correlations between the CBL and temperature. In two species, these positive correlations appeared when the effect of longitude was held constant in the partial correlation analysis. Characteristically, the strongest negative correlation with latitude and positive with temperatures was found in S. minutus, the smallest species under study. Shrews were in general larger in environments with high actual evapotranspiration. Body mass reviewed in S. araneus paralleled the pattern found in the CBL variation in this species, i.e. it decreased northward, both in summer‐ and winter‐caught animals. In addition, contrary to the widely accepted ? but not rigorously tested ? belief, body mass recession from summer to winter (the Dehnel Effect) did not correlate with latitude. We concluded that shrews followed the converse to Bergmann's rule, and hypothesize that part of their body size variation along the west‐east axis may be explained by character displacement. We also hypothesize that scarcity of food, especially in winter, is a major factor selecting for small body size in shrews in northern areas, as smaller individuals should require less food. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 78 , 365–381.  相似文献   

6.
Understanding how the temperature sensitivity of phenology changes with three spatial dimensions (altitude, latitude, and longitude) is critical for the prediction of future phenological synchronization. Here we investigate the spatial pattern of temperature sensitivity of spring and autumn phenology with altitude, latitude, and longitude during 1982–2016 across mid‐ and high‐latitude Northern Hemisphere (north of 30°N). We find distinct spatial patterns of temperature sensitivity of spring phenology (hereafter “spring ST”) among altitudinal, latitudinal, and longitudinal gradient. Spring ST decreased with altitude mostly over eastern Europe, whereas the opposite occurs in eastern North America and the north China plain. Spring ST decreased with latitude mainly in the boreal regions of North America, temperate Eurasia, and the arid/semi‐arid regions of Central Asia. This distribution may be related to the increased temperature variance, decreased precipitation, and radiation with latitude. Compared to spring ST, the spatial pattern of temperature sensitivity of autumn phenology (hereafter “autumn ST”) is more heterogeneous, only showing a clear spatial pattern of autumn ST along the latitudinal gradient. Our results highlight the three‐dimensional view to understand the phenological response to climate change and provide new metrics for evaluating phenological models. Accordingly, establishing a dense, high‐quality three‐dimensional observation system of phenology data is necessary for enhancing our ability to both predict phenological changes under changing climatic conditions and to facilitate sustainable management of ecosystems.  相似文献   

7.
陕西省3种主要树种叶片、凋落物和土壤N、P化学计量特征   总被引:5,自引:0,他引:5  
以陕西省29个县(市)39个样点的刺槐、辽东栎和油松林为研究对象,分析比较不同树种乔木叶片、凋落物与土壤N、P化学计量特征及其与经纬度、海拔、年均温度和年降水等环境因子间关系的异同以及三者之间可能存在的关系,以期为认识陕西省主要森林树种养分限制状况、制定合理的植被管理和恢复措施提供理论依据。结果表明:3树种叶片N、P含量及比值均为刺槐辽东栎油松,与叶片相比,凋落物中N、P含量变化幅度较小,为刺槐辽东栎油松,N∶P比值为油松辽东栎刺槐。10—20 cm与0—10 cm土层相比,3树种中除辽东栎中P含量差异不显著外,其它指标N、P含量及N∶P比值均显著下降(P0.05)。刺槐、辽东栎和油松叶片N、P含量与土壤N、P含量均没有显著相关性,以刺槐、辽东栎和油松3种植物叶片为总体来说,P含量与土壤P含量显著正相关(P0.05)。叶片N、P含量均大致表现出随着年均温度和年降水的增加而增加,随着经纬度的增加而降低的趋势,这一点在刺槐叶中最为明显。凋落物N含量随着年均温度和年降水的增加而增加,随着纬度和经度的增加而降低;P含量随着年降水和经度的增加而降低;N∶P比值随着年均温度和年降水的增加而增加,随着纬度的增加而降低。研究区内,土壤N、P含量随着纬度、海拔的增加和年均温度、年降水、经度的降低而增加,N∶P比值则呈相反的趋势。3树种土壤N、P含量及N∶P比值中,P含量比N含量受环境影响更大,且0—10 cm和10—20 cm土层N、P含量及N∶P比值与各环境因子的关系基本一致。  相似文献   

8.
Egg size and offspring size are fundamentally important aspects of the life histories of all animals. However the impact of environmental conditions on intraspecific variation in egg size of marine invertebrates is poorly documented. Here we followed three species of intertidal crabs Xanthodius sternberghii, Petrolisthes armatus and Clibanarius albidigitus to understand how seasonal environmental variation in temperature and salinity associated with seasonal upwelling impacts egg size. Ovigerous females of both P. armatus and C. albidigitus were found year round, while X. sternberghii has a limited reproductive season, with ovigerous females found only between November and February. In all three species more than half of the variation in egg size was attributable to variation among broods from different females. Eggs collected during the dry, upwelling season were significantly larger than those collected during the wet, non-upwelling season. Multiple regression analysis showed that average egg size from each brood was significantly negatively correlated with temperature for all three species. Egg size was also negatively correlated with salinity in P. armatus when we controlled for temperature. Overall these results support the idea that changes in environmental temperature caused by seasonal upwelling play a significant role in generating seasonal differences in egg size.  相似文献   

9.
Two primary patterns of body size variation have been recorded in ectotherms in relation to latitudinal/altitudinal shifts. In some, body size increases with increasing latitude/altitude whereas, in others, body size decreases with increasing latitude/altitude. This clinal variation is generally assumed to be caused by local adaptation to environmental conditions however the selective variable(s) (temperature, humidity, diet quality, etc.) is still heavily debated. Here we investigate geographic variation in body size of dark and pale color morphs of males of the bush-cricket lsophya rizeensis collected from 15 locations along an elevation gradient ranging from 350 to 2 500 m. Using an information theoretical approach we evaluate the relative support of four different hypotheses (the temperature size rule, the moisture gradient hypothesis, the seasonal constraint hypothesis, and the primary productivity hypothesis) explaining body size variation along the altitudinal gradient. Body size variation in pale color morphs showed a curvilinear relationship with altitude while dark color morphs showed no variation in body size. Body size variation in pale color morphs was highly correlated with precipitation and temperature seasonality values thus giving strong support for the moisture gradient and seasonal constraint hypothesis. Our results reinforce the importance of gradients in humidity and seasonality over temperature in the creation of altitudinal body size clines and the role of selection for resistance to stress factors in the establishment of these clines. Whether a body size cline is observed or not might also depend on the phenotypic properties of the individuals, like coloration.  相似文献   

10.
野生玫瑰种群表型变异   总被引:4,自引:2,他引:2  
童冉  吴小龙  姜丽娜  司倩倩  臧德奎 《生态学报》2017,37(11):3706-3715
在野生玫瑰(Rosa rugosa)自然分布区内选取5个代表种群,选择24个表型性状作为研究对象,运用方差分析、多重比较、主成分分析、相关分析、聚类分析等方法,得出野生玫瑰种群表型变异程度和变异规律。结果显示:(1)24个表型性状在种群间和种群内均存在极显著差异,变异非常丰富;种群内变异(0.2718)大于种群间变异(0.1679),种群内变异是表型变异的主要来源,种群间平均表型分化系数(VST)为0.2952,分化水平相对较大;表型性状平均变异系数(CV)为18.48%(6.67—26.79%),叶片、果实、花、种子的变异系数依次为21.40%、17.42%、12.54%、6.67%;主成分分析表明叶片、果实的表型变异对种群变异起主要的贡献作用。(2)托叶长与年平均气温、7月平均气温呈显著正相关,与经、纬度呈显著负相关;果实横径与年降水量呈显著正相关;千粒重与经、纬度呈显著正相关,与7月平均气温呈显著负相关。(3)利用欧氏距离进行系统聚类分析,可以将5个种群划分为3类,表型性状主要依地理位置聚类。  相似文献   

11.
Body size is among the most important biological variables but despite much measurement of this trait, the factors driving its variation are not fully understood. Here, I describe variation in body size in the damselfly Calopteryx maculata to establish whether variations in growth and development observed in response to experimental manipulation of temperature and time stress in the laboratory can be scaled‐up to variation among natural populations. Nine hundred and seven specimens of C. maculata males were collected from 34 sites across the species’ entire range in North America during the summer of 2010. A general measure of body size was derived from a series of wing and leg measurements. I compare the fit of models based on latitude (Bergmann’s rule), temperature (the temperature–size rule) and seasonal effects (a combination of temperature and time stress) using Akaike’s information criterion (AIC). The U‐shaped relationship between size and latitude was best explained by a seasonality model containing both photoperiod and temperature. The presence of both these terms suggests that time stress dominates in the southern part of the range, reducing body size by accelerating development. However, the temperature–size rule dominates in the northern part of the range, increasing body size closer to the northern range margin. The best‐fit model of geographic variation in size is in accordance with previous laboratory studies of temperature and photoperiod in damselflies and theoretical work, indicating that the findings from such studies can be applied to natural populations. These findings are likely applicable to any species with complex life histories inhabiting seasonal environments.  相似文献   

12.
Integrating conservation goals with the sustainable use of tropical rain forests has received much attention in recent decades. Amomum villosum, a traditional Chinese medicinal herb, has been cultivated in the understory of seasonal rain forest for 40 years in Xishuangbanna, Southwest China. Cultivated area has reached 58.11 km2 much of which is distributed within nature reserves. This practice has caused controversy on whether A. villosum cultivation would alter the structure and function of the primary forest. This study examined the effects of medicinal plant cultivation on seasonal rain forest by comparing plant diversity, biomass, litterfall and soil nutrients of primary rain forest with disturbed areas where A. villosum is cultivated. The results indicate that plant diversity, tree biomass, litter production and soil nutrients are significantly lower in the disturbed than in the primary rain forest. These results suggest that the cultivation of A. villosum affects the structure and function of the seasonal rain forest in Xishuangbanna.  相似文献   

13.
One of the major adaptations during the evolution of Homo sapiens was an increase in brain size. Here we present evidence that a significant and substantial proportion of variation in brain size may be related to changes in temperature. Based on a sample of 109 fossilized hominid skulls, we found that cranial capacities were highly correlated with paleoclimatic changes in temperature, as indexed by oxygen isotope data and sea-surface temperature. Indeed, as much as 52% of the variance in the cranial capacity of these skulls could be accounted for by temperature variation at 100 ka intervals. As an index of more short-term seasonal fluctuations in temperature, we examined the latitude of the sites from which the crania originated. More than 22% of the variance in cranial capacity of these skulls could be accounted for by variation in equatorial distance.  相似文献   

14.
Characterising the adaptability in nature of plant stoichiometric patterns across geographic or environmental gradients is important in advancing our understanding of the organisation of plant–nutrient relationships. We examined correlations between plant nutrient traits, latitude, longitude, climate and soil variables in 34 populations of Oryza rufipogon across its range. We further compared the responses of population transplants at two experimental gardens: one beyond its northern natural range and another near the southern limit, to assess the nature of geographic variation in plant nutrients. The study showed that leaf P of O. rufipogon in the field was negatively correlated with latitude and largely depended on temperature and soil P availability. Leaf N was not related to latitude but was significantly correlated with precipitation and soil N concentration. Leaf N:P ratio was largely determined by absorption efficiency of P. Transplantation revealed that there were no significant associations of leaf nutrients with geographic, climatic or soil variables of origin in either of the experimental gardens, indicating phenotypic plasticity. However, examination of relationships between response ratios of leaf nutrients and change ratio of climate and soil environments, as well as norms of reaction in the transplantation experiment, revealed more complexity, suggesting both substantial genotypic diversity and the existence of genotype × environment interactions in these populations of O. rufipogon. These data indicate that adaptive plasticity response of plants to temperature and soil P availability significantly explain the observed shifts in leaf N, P and N:P of O. rufipogon along latitudinal gradients.  相似文献   

15.
The relationship between environmental gradients and patterns of geographic variation in body size has been a controversial topic for ectothermic organisms globally. To examine whether the patterns that generally hold in more temperate species also hold for tropical ones, we examined the intraspecific body size variation in three species of Neotropical frogs, Dendropsophus minutus, Hypsiboas faber and Physalaemus cuvieri, along different environmental gradients (e.g. temperature, precipitation and topography). We analysed four competing hypotheses: (i) the water availability hypothesis that predicts a negative relationship between body size and precipitation; (ii) the heat balance hypothesis that predicts a negative relationship between body size and temperature; (iii) the topography hypothesis that predicts a negative relationship between body size and altitude; and (iv) the mixed‐effect hypothesis that predicts that individuals occurring in wet and cold sites would be larger than individuals occurring in dry and warm sites. The spatial pattern of geographic variation in body size among populations of H. faber was associated with the mixed‐effect hypothesis. In localities with low precipitation seasonality and cold conditions, H. faber individuals were larger than in localities with high precipitation seasonality and warm conditions. Variation in the body size of D. minutus was the opposite of that predicted by the heat balance hypothesis. Individuals in localities with high temperatures were larger than in localities with low temperatures. On the other hand, variation in the body size of P. cuvieri was not associated with the variables used in this study. Our results suggest that intraspecific variation in anuran body size is more dependent on species‐specific response than on the region (i.e. temperate or tropical) where they occur.  相似文献   

16.
Abstract It is generally thought that insects inhabiting lower latitudes are more severely impacted by changes in their thermal environment than are high latitude species. This is attributed to the wider range of temperatures to which high‐latitude species are exposed. By contrast, low‐latitude species have typically evolved in more thermally stable environments with a narrower range of temperature variation. However, deviation from this pattern can occur and here we report that under variable winter conditions a higher latitude species may be more sensitive to thermal variation than its lower latitude sister species. Using split broods, we examined the survival and adult emergence success of diapausing pupae of Papilio canadensis and P. glaucus, as well as a unique, recombinant hybrid population (“late‐flight”) to short periods of mid‐winter cold and heat stress. Our results indicate that the higher latitude, univoltine populations (P. canadensis and late‐flights) exhibit lower pupal survival than the lower latitude, facultative diapauser (P. glaucus) for all mid‐winter thermal stress treatments, both high and low. Size differences alone do not appear to account for the observed differences in survival or metabolic costs in these three phenotypes, as late‐flight individuals are similar in size to P. glaucus. We attribute the observed differences in survival and weight loss to potential metabolic differences and variation in the intensity of diapause, in addition to divergent adaptation to winter precipitation levels (e.g. snow cover) and the influences this may have on microhabitat temperature moderation.  相似文献   

17.
Body size is a multi‐functional trait related to various fitness components, but the relative importance of different selection pressures is seldom resolved. In Carabus japonicus beetles, of which the larvae exclusively prey on earthworms, adult body size is related to the presence/absence of a larger congener and habitat temperature. In sympatry, C. japonicus consistently exhibits smaller body size which is effective for avoiding interspecific mating, but in allopatry, it shows size variation unrelated to temperature. Here, we show that this predator–size variation is attributed to prey–size variation, associated with high phylogenetic diversity in earthworm communities. In allopatry, the predator size was larger where larger prey occurred. Larger adult size may have been selected because larger females produce larger larvae, which can subdue larger prey. Thus, in the absence of a larger congener, variation in prey body size had a pronounced effect on geographic body size divergence in C. japonicus.  相似文献   

18.
1. In most birds and mammals, larger individuals of the same species tend to be found at higher latitudes, but in insects, body size–latitude relationships are highly variable. 2. Recent studies have shown that larger‐bodied insect species are more likely to decrease in size when reared at increased temperature, compared with smaller‐sized species. These findings have led to the prediction that a positive relationship between body size and latitude should be more prevalent in larger‐bodied insect species. 3. This study measured the body size of > 4000 beetle specimens (12 species) collected throughout North America. Some beetle species increased in size with latitude, while others decreased. Importantly, mean species body size explained c. 30% of the interspecific variation in the size–latitude response. 4. As predicted, larger‐bodied beetle species were more likely to show a positive relationship between body size and latitude (Bergmann's rule), and smaller‐bodied species were more likely to show a negative body size–latitude relationship (inverse Bergmann's rule). 5. These body size–latitude patterns suggest that size‐specific responses to temperature may underlie global latitudinal distributions of body size in Coleoptera, as well as other insects.  相似文献   

19.
Patterns of geographic variation in body size are predicted to evolve as adaptations to local environmental gradients. However, many of these clinal patterns in body size, such as Bergmann's rule, are controversial and require further investigation into ectotherms such as reptiles on a regional scale. To examine the environmental variables (temperature, precipitation, topography and primary productivity) that shaped patterns of geographic variation in body size in the reptile Calotes versicolor, we sampled 180 adult specimens (91 males and 89 females) at 40 locations across the species range in China. The MANOVA results suggest significant sexual size dimorphism in C. versicolor (F23,124 = 11.32, p < .001). Our results showed that C. versicolor failed to fit the Bergmann's rule. We found that the most important predictors of variation in body size of C. versicolor differed for males and females, but mechanisms related to heat balance and water availability hypotheses were involved in both sexes. Temperature seasonality, precipitation of the driest month, precipitation seasonality, and precipitation of the driest quarter were the most important predictors of variation in body size in males, whereas mean precipitation of the warmest quarter, mean temperature of the wettest quarter, precipitation seasonality, and precipitation of the wettest month were most important for body size variation in females. The discrepancy between patterns of association between the sexes suggested that different selection pressures may be acting in males and females.  相似文献   

20.
There is a striking difference in body size of jungle cats ( Felis chaus ) in the west and the east of their distribution, with Israeli cats being 43% heavier than Indian cats. We tested the hypothesis that increasing competition from other small felids towards the east is responsible for the difference in body size. We measured jungle cat skulls for eight cranial and dental variables and related these to independent variables such as species richness (local and regional), latitude, longitude, temperature, and precipitation. Data from a narrow band between latitudes 24.0°N and 33.9°N, where Bergmann's rule was largely not observed, showed that the western population (≤ 50.0°E longitude) of jungle cats is larger than the eastern (> 60.0°E longitude) population with the size difference being most evident in the upper carnassials (P4L). Species richness at the regional level showed a significant negative relation to P4L. An even spacing in condylobasal length for a small-cat guild from India through null model analysis indicated the occurrence of character displacement. The results support the hypothesis that competition is responsible for geographical variation in jungle cat body size in the region where Bergmann's rule does not apply. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 163–172.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号