首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
U2AF65蛋白表达水平影响基因UBQLN1的可变剪接   总被引:1,自引:1,他引:0  
目的:研究U2AF65蛋白的表达水平对基因UBQLN1可变剪接的影响。方法:应用pSR-GFP/Neo载体构建2个U2AF65-siRNA干扰载体,转染293T细胞,通过Western印迹、QRT-PCR检测干扰效果,RT-PCR验证基因UBQLN1的可变剪接。结果:利用设计的U2AF65-siRNA能够干扰细胞中U2AF65的表达;RT-PCR结果显示U2AF65表达水平的下降促使UBQLN1第8外显子的跳跃增加。结论:U2AF65可以通过表达水平的变化参与调控基因UBQLN1的可变剪接。  相似文献   

2.
U2 snRNP auxiliary factor 65 kDa (U2AF65) is a splicing factor that promotes prespliceosome assembly. The function of U2AF65 in alternative splicing has been identified; however, the essential physiological role of U2AF65 remains poorly understood. In this study, we investigated the regulatory role of U2AF65 in milk synthesis and growth of bovine mammary epithelial cells (BMECs). Our results showed that U2AF65 localizes in the nucleus. Treatment with amino acids (Met and Leu) and hormones (prolactin and β‐estradiol) upregulated the expression of U2AF65 in these cells. U2AF65 overexpression increased the synthesis of β‐casein, triglycerides, and lactose; increased cell viability; and promoted proliferation of BMECs. Furthermore, our results showed that U2AF65 positively regulated mTOR phosphorylation and expression of mature mRNA of mTOR and SREBP‐1c. Collectively, our findings demonstrate that U2AF65 regulates the mRNA expression of signalling molecules (mTOR and SREBP‐1c) involved in milk synthesis and growth of BMECs, possibly via controlling the splicing and maturation of these mRNAs. U2 snRNP auxiliary factor 65 kDa (U2AF65) is a splicing factor that promotes prespliceosome assembly. The essential physiological role of U2AF65 remains poorly understood. In the present study, we confirmed that U2AF65 functions as a positive regulator of milk synthesis in and proliferation of bovine mammary epithelial cells via the mTOR‐SREBP‐1c signalling pathway. Therefore, our study uncovers the regulatory role of U2AF65 in milk synthesis and cell proliferation.  相似文献   

3.
Essential, protein-protein complexes between the large subunit of the U2 small nuclear RNA auxiliary factor (U2AF65) with the splicing factor 1 (SF1) or the spliceosomal component SF3b155 are exchanged during a critical, ATP-dependent step of pre-mRNA splicing. Both SF1 and the N-terminal domain of SF3b155 interact with a U2AF homology motif (UHM) of U2AF65. SF3b155 contains seven tryptophan-containing sites with sequence similarity to the previously characterized U2AF65-binding domain of SF1. We show that the SF3b155 domain lacks detectable secondary structure using circular dichroism spectroscopy, and demonstrate that five of the tryptophan-containing SF3b155 sites are recognized by the U2AF65-UHM using intrinsic tryptophan fluorescence experiments with SF3b155 variants. When compared with SF1, similar spectral shifts and sequence requirements indicate that U2AF65 interactions with each of the SF3b155 sites are similar to the minimal SF1 site. However, thermodynamic comparison of SF1 or SF3b155 proteins with minimal peptides demonstrates that formation the SF1/U2AF65 complex is likely to affect regions of SF1 beyond the previously identified, linear interaction site, in a remarkably distinct manner from the local U2AF65 binding mode of SF3b155. Furthermore, the complex of the SF1/U2AF65 interacting domains is stabilized by 3.3 kcal mol-1 relative to the complex of the SF3b155/U2AF65 interacting domains, consistent with the need for ATP hydrolysis to drive exchange of these partners during pre-mRNA splicing. We propose that the multiple U2AF65 binding sites within SF3b155 regulate conformational rearrangements during spliceosome assembly. Comparison of the SF3b155 sites defines an (R/K)nXRW(DE) consensus sequence for predicting U2AF65-UHM ligands from genomic sequences, where parentheses denote residues that contribute to, but are not required for binding.  相似文献   

4.
5.
Intron retention (IR) is the least well‐understood alternative splicing type in animals, and its prevalence and function in physiological and pathological processes have long been underestimated. Cellular senescence contributes to individual aging and age‐related diseases and can also serve as an important cancer prevention mechanism. Dynamic IR events have been observed in senescence models and aged tissues; however, whether and how IR impacts senescence remain unclear. Through analyzing polyA+ RNA‐seq data from human replicative senescence models, we found IR was prevalent and dynamically regulated during senescence and IR changes negatively correlated with expression alteration of corresponding genes. We discovered that knocking down (KD) splicing factor U2AF1, which showed higher binding density to retained introns and decreased expression during senescence, led to senescence‐associated phenotypes and global IR changes. Intriguingly, U2AF1‐KD‐induced IR changes also negatively correlated with gene expression. Furthermore, we demonstrated that U2AF1‐mediated IR of specific gene (CPNE1 as an example) contributed to cellular senescence. Decreased expression of U2AF1, higher IR of CPNE1, and reduced expression of CPNE1 were also discovered in dermal fibroblasts with age. We discovered prevalent IR could fine‐tune gene expression and contribute to senescence‐associated phenotypes, largely extending the biological significance of IR.  相似文献   

6.
RNA recognition motifs (RRMs) constitute versatile macromolecular interaction platforms. They are found in many components of spliceosomes, in which they mediate RNA and protein interactions by diverse molecular strategies. The human U11/U12-65K protein of the minor spliceosome employs a C-terminal RRM to bind hairpin III of the U12 small nuclear RNA (snRNA). This interaction comprises one side of a molecular bridge between the U11 and U12 small nuclear ribonucleoprotein particles (snRNPs) and is reminiscent of the binding of the N-terminal RRMs in the major spliceosomal U1A and U2B″ proteins to hairpins in their cognate snRNAs. Here we show by mutagenesis and electrophoretic mobility shift assays that the β-sheet surface and a neighboring loop of 65K C-terminal RRM are involved in RNA binding, as previously seen in canonical RRMs like the N-terminal RRMs of the U1A and U2B″ proteins. However, unlike U1A and U2B″, some 30 residues N-terminal of the 65K C-terminal RRM core are additionally required for stable U12 snRNA binding. The crystal structure of the expanded 65K C-terminal RRM revealed that the N-terminal tail adopts an α-helical conformation and wraps around the protein toward the face opposite the RNA-binding platform. Point mutations in this part of the protein had only minor effects on RNA affinity. Removal of the N-terminal extension significantly decreased the thermal stability of the 65K C-terminal RRM. These results demonstrate that the 65K C-terminal RRM is augmented by an N-terminal element that confers stability to the domain, and thereby facilitates stable RNA binding.  相似文献   

7.
8.
9.
The human telomeric protein TRF1 is a component of the six-subunit protein complex shelterin, which provides telomere protection by organizing the telomere into a high-order structure. TRF1 functions as a negative regulator of telomere length by controlling the access of telomerase to telomeres. Thus, the cellular abundance of TRF1 at telomeres should be maintained and tightly regulated to ensure proper telomere function. Here, we identify U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor 65 (U2AF65), an essential pre-mRNA splicing factor, as a novel TRF1-interacting protein. U2AF65 interacts with TRF1 in vitro and in vivo and is capable of stabilizing TRF1 protein by inhibiting its ubiquitin-dependent proteolysis. We also found that U2AF65 interferes with the interaction between TRF1 and Fbx4, an E3 ubiquitin ligase for TRF1. Depletion of endogenous U2AF65 expression by short interfering RNA (siRNA) reduced the stability of endogenous TRF1 whereas overexpression of U2AF65 significantly extended the half-life of TRF1. These findings demonstrate that U2AF65 plays a critical role in regulating the level of TRF1 through physical interaction and ubiquitin-mediated proteolysis. Hence, U2AF65 represents a new route for modulating TRF1 function at telomeres.  相似文献   

10.
11.
Spliceosomes assemble on pre-mRNA splice sites through a series of dynamic ribonucleoprotein complexes, yet the nature of the conformational changes remains unclear. Splicing factor 1 (SF1) and U2 auxiliary factor (U2AF65) cooperatively recognize the 3′ splice site during the initial stages of pre-mRNA splicing. Here, we used small-angle X-ray scattering to compare the molecular dimensions and ab initio shape restorations of SF1 and U2AF65 splicing factors, as well as the SF1/U2AF65 complex in the absence and presence of AdML (adenovirus major late) splice site RNAs. The molecular dimensions of the SF1/U2AF65/RNA complex substantially contracted by 15 Å in the maximum dimension, relative to the SF1/U2AF65 complex in the absence of RNA ligand. In contrast, no detectable changes were observed for the isolated SF1 and U2AF65 splicing factors or their individual complexes with RNA, although slight differences in the shapes of their molecular envelopes were apparent. We propose that the conformational changes that are induced by assembly of the SF1/U2AF65/RNA complex serve to position the pre-mRNA splice site optimally for subsequent stages of splicing.  相似文献   

12.
13.
During pre-mRNA splicing, the spliceosome must configure the substrate, catalyze 5′ splice site cleavage, reposition the substrate, and catalyze exon ligation. The highly conserved U2/U6 helix I, which adjoins sequences that define the reactive sites, has been proposed to configure the substrate for 5′ splice site cleavage and promote catalysis. However, a role for this helix at either catalytic step has not been tested rigorously and previous observations question its role at the catalytic steps. Through a comprehensive molecular genetic study of U2/U6 helix I, we found that weakening U2/U6 helix I, but not mutually exclusive structures, compromised splicing of a substrate limited at the catalytic step of 5′ splice site cleavage, providing the first compelling evidence that this helix indeed configures the substrate during 5′ splice site cleavage. Further, mutations that we proved weaken only U2/U6 helix I suppressed a mutation in PRP16, a DEAH-box ATPase required after 5′ splice site cleavage, providing persuasive evidence that helix I is destabilized by Prp16p and suggesting that this structure is unwound between the catalytic steps. Lastly, weakening U2/U6 helix I also compromised splicing of a substrate limited at the catalytic step of exon ligation, providing evidence that U2/U6 helix I reforms and functions during exon ligation. Thus, our data provide evidence for a fundamental and apparently dynamic role for U2/U6 helix I during the catalytic stages of splicing.  相似文献   

14.
15.
The protein kinase KIS is made by the juxtaposition of a unique kinase domain and a C-terminal domain with a U2AF homology motif (UHM), a sequence motif for protein interaction initially identified in the heterodimeric pre-mRNA splicing factor U2AF. This domain of KIS is closely related to the C-terminal UHM domain of the U2AF large subunit, U2AF65. KIS phosphorylates the splicing factor SF1, which in turn enhances SF1 binding to U2AF65 and the 3′ splice site, an event known to take place at an early step of spliceosome assembly. Here, the analysis of the subcellular localization of mutated forms of KIS indicates that the kinase domain of KIS is the necessary domain for its nuclear localization. As in the case of U2AF65, the UHM-containing C-terminal domain of KIS is required for binding to the splicing factors SF1 and SF3b155. The efficiency of KIS binding to SF1 and SF3b155 is similar to that of U2AF65 in pull-down assays. These results further support the functional link of KIS with splicing factors. Interestingly, when compared to other UHM-containing proteins, KIS presents a different specificity for the UHM docking sites that are present in the N-terminal region of SF3b155, thus providing a new insight into the variety of interactions mediated by UHM domains.  相似文献   

16.
The essential pre-mRNA splicing factor, U2 auxiliary factor 65KD (U2AF(65)) recognizes the polypyrimidine tract (Py-tract) consensus sequence of the pre-mRNA using two RNA recognition motifs (RRMs), the most prevalent class of eukaryotic RNA-binding domain. The Py-tracts of higher eukaryotic pre-mRNAs are often interrupted with purines, yet U2AF(65) must identify these degenerate Py-tracts for accurate pre-mRNA splicing. Previously, the structure of a U2AF(65) variant in complex with poly(U) RNA suggested that rearrangement of flexible side-chains or bound water molecules may contribute to degenerate Py-tract recognition by U2AF(65). Here, the X-ray structure of the N-terminal RRM domain of U2AF(65) (RRM1) is described at 1.47 A resolution in the absence of RNA. Notably, RNA-binding by U2AF(65) selectively stabilizes pre-existing alternative conformations of three side-chains located at the RNA interface (Arg150, Lys225, and Arg227). Additionally, a flexible loop connecting the beta2/beta3 strands undergoes a conformational change to interact with the RNA. These pre-existing alternative conformations may contribute to the ability of U2AF(65) to recognize a variety of Py-tract sequences. This rare, high-resolution view of an important member of the RRM class of RNA-binding domains highlights the role of alternative side-chain conformations in RNA recognition.  相似文献   

17.
18.
Fu Y  Masuda A  Ito M  Shinmi J  Ohno K 《Nucleic acids research》2011,39(10):4396-4404
In pre-mRNA splicing, a conserved AG/G at the 3'-splice site is recognized by U2AF(35). A disease-causing mutation abrogating the G nucleotide at the first position of an exon (E(+1)) causes exon skipping in GH1, FECH and EYA1, but not in LPL or HEXA. Knockdown of U2AF(35) enhanced exon skipping in GH1 and FECH. RNA-EMSA revealed that wild-type FECH requires U2AF(35) but wild-type LPL does not. A series of artificial mutations in the polypyrimidine tracts of GH1, FECH, EYA1, LPL and HEXA disclosed that a stretch of at least 10-15 pyrimidines is required to ensure normal splicing in the presence of a mutation at E(+1). Analysis of nine other disease-causing mutations at E(+1) detected five splicing mutations. Our studies suggest that a mutation at the AG-dependent 3'-splice site that requires U2AF(35) for spliceosome assembly causes exon skipping, whereas one at the AG-independent 3'-splice site that does not require U2AF(35) gives rise to normal splicing. The AG-dependence of the 3'-splice site that we analyzed in disease-causing mutations at E(+1) potentially helps identify yet unrecognized splicing mutations at E(+1).  相似文献   

19.
20.
The heterodimeric pre-mRNA splicing factor, U2AF (U2 snRNP auxiliary factor), plays a critical role in 3′ splice site selection. Although the U2AF subunits associate in a tight complex, biochemical experiments designed to address the requirement for both subunits in splicing have yielded conflicting results. We have taken a genetic approach to assess the requirement for the Drosophila U2AF heterodimer in vivo. We developed a novel Escherichia coli copurification assay to map the domain on the Drosophila U2AF large subunit (dU2AF50) that interacts with the Drosophila small subunit (dU2AF38). A 28-amino-acid fragment on dU2AF50 that is both necessary and sufficient for interaction with dU2AF38 was identified. Using the copurification assay, we scanned this 28-amino-acid interaction domain for mutations that abrogate heterodimer formation. A collection of these dU2AF50 point mutants was then tested in vivo for genetic complementation of a recessive lethal dU2AF50 allele. A mutation that completely abolished interaction with dU2AF38 was incapable of complementation, whereas dU2AF50 mutations that did not effect heterodimer formation rescued the recessive lethal dU2AF50 allele. Analysis of heterodimer formation in embryo extracts derived from these interaction mutant lines revealed a perfect correlation between the efficiency of subunit association and the ability to complement the dU2AF50 recessive lethal allele. These data indicate that Drosophila U2AF heterodimer formation is essential for viability in vivo, consistent with a requirement for both subunits in splicing in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号