首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Environmental controls on cladoceran community structure in lake ecosystems are complex and may involve many environmental parameters including trophic state and fish populations. In Lake Erhai, a plateau lake located in southwest China, it was hypothesized that a combination of lake eutrophication and planktivorous fish introduction would increase the abundance of cladoceran, while also decreasing cladoceran size. To test this hypothesis, we examined temporal changes in cladoceran microfossils in the sediments of Lake Erhai over the past century. The influence of changing macrophyte coverage within the littoral region of the lake was also considered. Results demonstrated that cladoceran abundance (measured as flux of cladoceran fossils in the sediments) increased markedly accompanying eutrophication of the lake. In addition, there was a shift in the dominant cladoceran species from those species that prefer oligotrophic conditions to those that prefer mesotrophic and eutrophic conditions. A reduction in the ephippium length of Daphnia spp. was observed and attributed to the introduction of the planktivorous fish Neosalanx taihuensis. Our findings indicated that eutrophication and fish introduction were the main controls affecting cladoceran community structure during the recent decades, and predation by planktivorous fish had an important impact on Daphnia body size.  相似文献   

2.
Benthic species and communities are linked to pelagic zooplankton through life‐stages encompassing both benthic and pelagic habitats and through a mutual dependency on primary producers as a food source. Many zooplankton taxa contribute to the sedimentary system as benthic eggs. Our main aim was to investigate the nature of the population level biotic interactions between and within these two seemingly independent communities, both dependent on the pelagic primary production, while simultaneously accounting for environmental drivers (salinity, temperature, and oxygen conditions). To this end, we applied multivariate autoregressive state‐space models to long (1966–2007) time series of annual abundance data, comparing models with and without interspecific interactions, and models with and without environmental variables included. We were not able to detect any direct coupling between sediment‐dwelling benthic taxa and pelagic copepods and cladocerans on the annual scale, but the most parsimonious model indicated that interactions within the benthic community are important. There were also positive residual correlations between the copepods and cladocerans potentially reflecting the availability of a shared resource or similar seasonal dependence, whereas both groups tended to correlate negatively with the zoobenthic taxa. The most notable single interaction within the benthic community was a tendency for a negative effect of Limecola balthica on the amphipods Monoporeia affinis and Pontoporeia femorata which can help explain the observed decrease in amphipods due to increased competitive interference.  相似文献   

3.
Fish introduction may have marked effects on the trophic dynamics and ecological state of former fishless lakes, but due to scarcity of historical data this can seldom be documented. We used remains of cladoceran, chironomid and pigment assemblages in the sediment archive to unravel the effect of introduction of carp (Cyprinus carpio), rainbow trout (Oncorhynchus mykiss) and a cyprinid (Chondrostoma oligolepis) in Lake Fogo, the Azores (Portugal). The stratigraphical record showed two major shifts in community assemblage coinciding with the time of introduction of carp (AD ca. 1890) and trout (AD 1941), respectively. Carp introduction was followed by an abrupt and major decline in the abundance of chironomids, a shift in the cladoceran community from a benthic to a more pelagic dominated community, and Daphnia size was significantly reduced. Pigment assemblages also indicated a shift from a benthic to a pelagic dominated ecosystem, as cryptophytes became markedly more abundant at the expense of benthic diatoms. Trout introduction was followed by a return to a more benthic cladoceran and benthic algae (pigments) dominated state, which we attribute to trout predation on carp leading to improved water clarity. A steady increase in the abundance of pigments and cladoceran remains followed, suggesting enhanced productivity, which may be attributed to enhanced atmospheric nitrogen deposition and introduction of C. oligolepis. We conclude that fish introduction has profoundly altered the trophic dynamics and the relative importance of benthic and pelagic production in this species poor and natural fishless lake in the Azores, and likely in most others lakes at the archipelago islands as fish stocking has been a widespread practice.  相似文献   

4.
A paleolimnological evaluation was made in order to analyze the effects of increasing nutrient load, macrophyte degradation and fish introductions on the cladoceran community of a large, shallow plateau lake in southwestern China. The trophic state of Lake Dianchi has increased rapidly during recent decades, its macrophyte vegetation has suffered severe degradation, and fish introductions in the late 1950s and early 1980s have had a marked effect on the structure of the fish community. Our results show an increase in abundance of cladoceran species with a preference for eutrophic conditions over the last few decades, while species preferring oligotrophic conditions have decreased or disappeared. These changes correspond to the eutrophication in Lake Dianchi. The loss of the cladocerans Kurzia latissima and Disparalona rostrata is likely to be a reflection of the degradation of the macrophyte community. An increase in Daphnia body size indicated by the ephippia length since the early 1990s is associated with the decline of planktivorous species.  相似文献   

5.
The effects of planktivorous and benthivorous fish on benthic fauna, zooplankton, phytoplankton and water chemistry were studied experimentally in two eutrophic Swedish lakes using cylindrical enclosures. In enclosures in both lakes, dense fish populations resulted in low numbers of benthic fauna and planktonic cladocerans, high concentration of chlorophyll, blooms of blue-green, algae, high pH and low transparency. In the soft-water Lake Trummen, total phosporus increased in the enclosure with fish, but in the hard-water Lake Bysjön total phosphorus decreased simultaneously with precipitation of calcium carbonate. Enclosures without fish had a higher abundance of benthic fauna and large planktonic cladocerans, lower phytoplankton biomass, lower pH and higher transparency.The changes in enclosures with fish can be described as eutrophication, and those in enclosures without fish as oligotrophication. The possibility of regulation of fish populations as a lake restoration method is discussed.This paper was presented at the XXth SIL Congress in Copenhagen in 1977.  相似文献   

6.
1. We describe the changes in trophic dynamics in Lake Maggiore from c. 1943 to 2002 using subfossil cladoceran data from a high resolution sediment record, long‐term contemporary data series and historical information. During this period the lake went through a eutrophication phase until 1980 followed by oligotrophication. 2. During the eutrophication period a major increase occurred in the abundance of Chydorus sphaericus, the proportion of planktonic cladocerans and total abundance of cladocerans in the sediment. Since 1980 the abundance declined again and subfossil Eubosmina mucro length and contemporary Daphnia body length increased, most probably as a result of higher abundance of invertebrate predators. 3. Changes in the fish stock composition caused by the introduction of exotic fish during the pre‐eutrophication period and a complete ban on fishing because of Dichloro‐diphenil‐ethanes (DDTs) pollution of the lake (during oligotrophication) could also be detected in the community assemblage and size structure of the sediment zooplankton. 4. We found good correspondence between trophic changes inferred from cladoceran subfossils (community composition, size and predation pressure) and contemporary data, suggesting that sediment samples can be used to infer past development in trophic dynamics, including predation by fish and pelagic invertebrates in lakes with scarce neolimnological data. 5. Furthermore, by combining palaeolimnological cladoceran data rarely obtained from contemporary samples (e.g. benthic and plant‐associated cladocerans, mucro length of bosminids) with contemporary data of organisms poorly represented in the sediment record (e.g. remains of Bythotrephes and fishes) a more complete understanding of changes in trophic dynamics was obtained. 6. The detection in the sediments of meteorological events whose effects on zooplankton had been recorded in the long‐term studies also provided evidence that eutrophication tends to override climate signals. 7. We conclude that a combined palaeo‐neolimnological approach can be a powerful tool for elucidating past changes in the trophic dynamics of lakes and the interaction with climate induced changes, not least when high resolution sediment records are available.  相似文献   

7.
Relative role of intrinsic density‐dependent factors (such as inter‐ and intraspecific competition, predation) and extrinsic density‐independent factors (environmental changes) in population dynamics is a key issue in ecology. Density‐dependent mechanisms are considered as important drivers of population dynamics in many vertebrate and insect species; however, their influence on the population dynamics of freshwater invertebrates is not clearly understood. In this study, I examined interannual variations in the abundance of the glacial relict amphipod Monoporeia affinis in a small subarctic lake based on long‐term (2002–2019) monitoring data. The results suggest that the population dynamics of amphipods in the lake is influenced by the combined effects of both intrinsic and extrinsic factors. The reproductive success of amphipod cohorts was inversely related to its initial abundance, indicating it is influenced by density‐dependent factors. Maffinis recruitment was negatively correlated with population density and near‐bottom temperature but positively correlated with food availability, which is defined as the concentration of chlorophyll a. Multiple regression with chlorophyll, temperature, and abundance of parent cohort as independent factors explained about 80% of the variation in the reproductive success of amphipods. The negative correlation between amphipod recruitment and water temperature indicates that the current climate conditions adversely affect the populations of glacial relict amphipods even in cold‐water lakes of the subarctic zone. Results of this study can be useful in environmental assessments to separate population oscillations connected with density‐dependent mechanisms from human‐mediated changes.  相似文献   

8.
Occupancy models are often used to analyze long‐term monitoring data to better understand how and why species redistribute across dynamic landscapes while accounting for incomplete capture. However, this approach requires replicate detection/non‐detection data at a sample unit and many long‐term monitoring programs lack temporal replicate surveys. In such cases, it has been suggested that surveying subunits within a larger sample unit may be an efficient substitution (i.e., space‐for‐time substitution). Still, the efficacy of fitting occupancy models using a space‐for‐time substitution has not been fully explored and is likely context dependent. Herein, we fit occupancy models to Delta Smelt (Hypomesus transpacificus) and Longfin Smelt (Spirinchus thaleichthys) catch data collected by two different monitoring programs that use the same sampling gear in the San Francisco Bay‐Delta, USA. We demonstrate how our inferences concerning the distribution of these species changes when using a space‐for‐time substitution. Specifically, we found the probability that a sample unit was occupied was much greater when using a space‐for‐time substitution, presumably due to the change in the spatial scale of our inferences. Furthermore, we observed that as the spatial scale of our inferences increased, our ability to detect environmental effects on system dynamics was obscured, which we suspect is related to the tradeoffs associated with spatial grain and extent. Overall, our findings highlight the importance of considering how the unique characteristics of monitoring programs influences inferences, which has broad implications for how to appropriately leverage existing long‐term monitoring data to understand the distribution of species.  相似文献   

9.
This study presents the long‐term evolution of two floodplains lakes (San Juana and Barbacoas) of the Magdalena River in Colombia with varying degree of connectivity to the River and with different responses to climate events (i.e., extreme floods and droughts). Historical limnological changes were identified through a multiproxy‐based reconstruction including diatoms, sedimentation, and sediment geochemistry, while historical climatic changes were derived from the application of the Standardised Precipitation‐Evapotranspiration Index. The main gradients in climatic and limnological change were assessed via multivariate analysis and generalized additive models. The reconstruction of the more isolated San Juana Lake spanned the last c. 500 years. Between c. 1,620 and 1,750 CE, riverine‐flooded conditions prevailed as indicated by high detrital input, reductive conditions, and dominance of planktonic diatoms. Since the early 1800s, the riverine meander became disconnected, conveying into a marsh‐like environment rich in aerophil diatoms and organic matter. The current lake was then formed around the mid‐1960s with a diverse lake diatom flora including benthic and planktonic diatoms, and more oxygenated waters under a gradual increase in sedimentation and nutrients. The reconstruction for Barbacoas Lake, a waterbody directly connected to the Magdalena River, spanned the last 60 years and showed alternating riverine–wetland–lake conditions in response to varying ENSO conditions. Wet periods were dominated by planktonic and benthic diatoms, while aerophil diatom species prevailed during dry periods; during the two intense ENSO periods of 1987 and 1992, the lake almost desiccated and sedimentation rates spiked. A gradual increase in sedimentation rates post‐2000 suggests that other factors rather than climate are also influencing sediment deposition in the lake. We propose that hydrological connectivity to the Magdalena River is a main factor controlling lake long‐term responses to human pressures, where highly connected lakes respond more acutely to ENSO events while isolated lakes are more sensitive to local land‐use changes.  相似文献   

10.
During the 20th century Lake Ringsjön has developed from a mesotrophic to a eutrophic lake, and the phytoplankton community has changed from a rather diverse community to a monoculture of blue-green algae. The eutrophication process has accelerated during the last decade. The most important external nutrient loading of today comes from agriculture.Although phosphorus has been shown to be the primary nutrient leading to excessive algal growth in fresh water, several biotic factors — such as interactions between nutrients, phytoplankton, zooplankton and planktivorous fish — may play a decisive role in the occurrence and maintenance of large algal blooms.The aim of this investigation was to study the changes in the fish community of Lake Ringsjön, especially the most dominant planktivores, and the state of the zooplankton community during the seventies. The fish fauna is dominated by cyprinids, especially roach, and there are relatively few predatory fish. During the seventies the mean size of roach decreased, and measurements of the zooplankton community indicated that the predation pressure on zooplankton had increased. The mean sizes of cladocerans such as Daphnia and Bosmina, which were selected for by the planktivorous fish, decreased; the size of the calanoid Diaptomus, which was not preyed upon by the dominating fish species, did not change. The growth of zooplankton-feeding stages of several fish species was retarded, which meant that the growth of young perch decreased, while older roach were mainly affected. In the prevailing situation, planktivorous roach can maintain a numerous population of small individuals, whereas the predatory perch is at a disadvantage, and predation on zooplankton is intense.  相似文献   

11.
Biomanipulation has been employed in numerous locations throughout the world as a means for reducing phytoplankton biomass; however, it has not been employed very often in Japan. A common approach involves the introduction of piscivorous fish to reduce the abundance of planktivorous fish. In our study, to first apply biomanipulation, we stocked Lake Shirakaba (a high-altitude, protected area in a park) in central Japan with rainbow trout fingerlings and cladoceran Daphnia (Daphnia galeata) in 2000. A “pre-biomanipulation” data set (1997–1999) and “a post-biomanipulation” data set (2000–2006) allowed us to evaluate the lake's response to biomanipulation. After the biomanipulation, zoo-planktivorous pond smelt disappeared and a large population of Daphnia had been established, which substantially reduced the number of the previously dominant small cladocerans and rotifers. Water transparency increased from about 2 m (before biomanipulation) to more than 4 m (after biomanipulation). Reductions in algal biomass and increased transparency led to expansion of the submerged macrophyte Elodea nuttallii. Total phosphorus concentrations declined as well over this time period. Based on these results, we concluded that biomanipulation using piscivore and Daphnia stocking succeeded in improving lake water quality by reducing algal abundance and providing favorable conditions for the establishment of rooted plants.  相似文献   

12.
Human cytomegalovirus (HCMV) infection in the respiratory tract leads to pneumonitis in immunocompromised hosts without available vaccine. Considering cytomegalovirus (CMV) mainly invades through the respiratory tract, CMV‐specific pulmonary mucosal vaccine development that provides a long‐lasting protection against CMV challenge gains our attention. In this study, N‐terminal domain of GP96 (GP96‐NT) was used as a mucosal adjuvant to enhance the induction of pulmonary‐resident CD8 T cells elicited by MCMV glycoprotein B (gB) vaccine. Mice were intranasally co‐immunized with 50 μg pgB and equal amount of pGP96‐NT vaccine 4 times at 2‐week intervals, and then i.n. challenged with MCMV at 16 weeks after the last immunization. Compared with pgB immunization alone, co‐immunization with pgB/pGP96‐NT enhanced a long‐lasting protection against MCMV pneumonitis by significantly improved pneumonitis pathology, enhanced bodyweight, reduced viral burdens and increased survival rate. Moreover, the increased CD8 T cells were observed in lung but not spleen from pgB/pGP96‐NT co‐immunized mice. The increments of pulmonary CD8 T cells might be mainly due to non‐circulating pulmonary‐resident CD8 T‐cell subset expansion but not circulating CD8 T‐cell populations that home to inflammation site upon MCMV challenge. Finally, the deterioration of MCMV pneumonitis by depletion of pulmonary site‐specific CD8 T cells in mice that were pgB/pGP96‐NT co‐immunization might be a clue to interpret the non‐circulating pulmonary‐resident CD8 T subset expansion. These data might uncover a promising long‐lasting prophylactic vaccine strategy against MCMV‐induced pneumonitis.  相似文献   

13.
The historical ecological paradigm of wetland ecosystems emphasized the role of physical or “bottom‐up” factors in maintaining functions and services. However, recent studies have shown that the loss of predators in coastal salt marshes can lead to a significant reduction in wetland extent due to overgrazing of vegetation by herbivores. Such studies indicate that consumers or “top‐down” factors may play a much larger role in the maintenance of wetland ecosystems than was previously thought. The objective of this study was to evaluate whether altering top‐down control by manipulating the presence of predators can lead to measurable changes in salt marsh ecosystem properties. Between May and August of 2015 and 2016, we established exclosure and enclosure cages within three New England coastal wetland areas and manipulated the presence of green crab predators to assess how they and their fiddler and purple marsh crab prey affect changes in ecosystem properties. Predator presence was associated with changes in soil nitrogen and aboveground biomass at two of the three field sites, though the magnitude and direction of these effects varied from site to site. Further, path analysis results indicate that across field sites, a combination of bottom‐up and top‐down factors influenced changes in measured variables. These results challenge the growing consensus that consumers have strong effects, indicating instead that predator impacts may be highly context‐dependent.  相似文献   

14.
1. This study describes the environmental conditions and cladoceran community structure of 29 Faroese lakes with special focus on elucidating the impact of fish planktivory. In addition, long‐term changes in biological structure of the Faroese Lake Heygsvatn are investigated. 2. Present‐day species richness and community structure of cladocerans were identified from pelagial snapshot samples and from samples of surface sediment (0–1 cm). Multivariate statistical methods were applied to explore cladoceran species distribution relative to measured environmental variables. For Lake Heygsvatn, lake development was inferred by cladoceran‐based paleolimnological investigations of a 14C‐dated sediment core covering the last ca 5700 years. 3. The 29 study lakes were overall shallow, small‐sized, oligotrophic and dominated by brown trout (Salmo trutta). Cladoceran species richness was overall higher in the surface sediment samples than in the snapshot samples. 4. Fish abundance was found to be of only minor importance in shaping cladoceran community and body size structure, presumably because of predominance of the less efficient zooplanktivore brown trout. 5. Canonical correspondence analysis showed maximum lake depth (Zmax) to be the only significant variable in explaining the sedimentary cladoceran species (18 cladoceran taxa, two pelagic, 16 benthic) distribution. Multivariate regression trees revealed benthic taxa to dominate in lakes with Zmax < 4.8 m and pelagic taxa to dominate when Zmax was > 4.8 m. 6. Predictive models to infer Zmax were developed using variance weighted‐averaging procedures. These were subsequently applied to subfossil cladoceran assemblages identified from a 14C‐dated sediment core from Lake Heygsvatn and showed inferred Zmax to correspond well to the present‐day lake depth. A recent increase in inferred Zmax may, however, be an artefact induced by, for instance, eutrophication.  相似文献   

15.
Dormant stages (“resting eggs”) produced by cladocerans can persist for long periods of time in sediments and restore populations once the environmental conditions become favorable again. Lake Blanca, a subtropical shallow eutrophic lake, hosts a cladoceran community dominated by small-sized species. Previous studies on zooplankton resting eggs suggested that the cladoceran genera Daphnia and Simocephalus were present, but they had never been found before in water samples. In the present study, we compared a biweekly active community sampling with the resting egg bank (passive cladoceran community) from littoral and pelagic zones. Moreover, we tested the amount of samples required to have a representative reconstruction of the diversity in both compartments (water and sediment). Lake Blanca showed a relatively high cladoceran species richness (24) in the water column, with rapid temporal replacement. Several species were present in water samples during short temporal windows; therefore, to detect these species a strong sampling effort in terms of temporal frequency and spatial distribution was required. Contrary to our expectations, resting egg community showed a lower diversity than the active community; however, we demonstrated that the analysis of resting egg bank composition can help detect general community structure patterns.  相似文献   

16.
Although large-bodied cladocerans such asDaphnia can reduce algal biomass significantly in temperate lakes if freed from fish predation, the applicability of such biomanipulation techniques for eutrophication management in the subtropics and tropics has been examined only recently. Subtropical cladoceran assemblages differ from those of temperate lakes by their low species richness, early summer gameogenesis, and greatly reduced body size. Eutrophic Florida lakes are dominated by pump-filter feeding fish rather than by size selective planktivores as a temperate lakes. Cladocerans in Florida lakes can increase in abundance significantly if freed from fish but fail to have an impact on algal biomass or composition. The greatest potential for using biomanipulation to manage phytoplankton-dominated lakes in the subtropics and tropics lies with phytophagous fish. Future research should concentrate on defining the role of individual fish taxa on phytoplankton composition and community structure, nutrient cycling, and planktonic productivity before embarking on whole lake manipulation projects.  相似文献   

17.
18.
White‐nose syndrome (WNS) is a disease caused by the fungus Pseudogymnoascus destructans which has resulted in the deaths of millions of bats across eastern North America. To date, hibernacula counts have been the predominant means of tracking the spread and impact of this disease on bat populations. However, an understanding of the impacts of WNS on demographic parameters outside the winter season is critical to conservation and recovery of bat populations impacted by this disease. We used long‐term monitoring data to examine WNS‐related impacts to summer populations in West Virginia, where WNS has been documented since 2009. Using capture data from 290 mist‐net sites surveyed from 2003 to 2019 on the Monongahela National Forest, we estimated temporal patterns in presence and relative abundance for each bat species. For species that exhibited a population‐level response to WNS, we investigated post‐WNS changes in adult female reproductive state and body mass. Myotis lucifugus (little brown bat), M. septentrionalis (northern long‐eared bat), and Perimyotis subflavus (tri‐colored bat) all showed significant decreases in presence and relative abundance during and following the introduction of WNS, while Eptesicus fuscus (big brown bat) and Lasiurus borealis (eastern red bat) responded positively during the WNS invasion. Probability of being reproductively active was not significantly different for any species, though a shift to earlier reproduction was estimated for E. fuscus and M. septentrionalis. For some species, body mass appeared to be influenced by the WNS invasion, but the response differed by species and reproductive state. Results suggest that continued long‐term monitoring studies, additional research into impacts of this disease on the fitness of WNS survivors, and a focus on providing optimal nonwintering habitat may be valuable strategies for assessing and promoting recovery of WNS‐affected bat populations.  相似文献   

19.
20.
Herpes simplex virus (HSV) establishes latent infection in long‐lived neurons. During initial infection, neurons are exposed to multiple inflammatory cytokines but the effects of immune signaling on the nature of HSV latency are unknown. We show that initial infection of primary murine neurons in the presence of type I interferon (IFN) results in a form of latency that is restricted for reactivation. We also find that the subnuclear condensates, promyelocytic leukemia nuclear bodies (PML‐NBs), are absent from primary sympathetic and sensory neurons but form with type I IFN treatment and persist even when IFN signaling resolves. HSV‐1 genomes colocalize with PML‐NBs throughout a latent infection of neurons only when type I IFN is present during initial infection. Depletion of PML prior to or following infection does not impact the establishment latency; however, it does rescue the ability of HSV to reactivate from IFN‐treated neurons. This study demonstrates that viral genomes possess a memory of the IFN response during de novo infection, which results in differential subnuclear positioning and ultimately restricts the ability of genomes to reactivate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号