首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advanced age and mutations in the genes encoding amyloid precursor protein (APP) and presenilin (PS1) are two serious risk factors for Alzheimer's disease (AD). Finding common pathogenic changes originating from these risks may lead to a new therapeutic strategy. We observed a decline in memory performance and reduction in hippocampal long-term potentiation (LTP) in both mature adult (9-15 months) transgenic APP/PS1 mice and old (19-25 months) non-transgenic (nonTg) mice. By contrast, in the presence of bicuculline, a GABA(A) receptor antagonist, LTP in adult APP/PS1 mice and old nonTg mice was larger than that in adult nonTg mice. The increased LTP levels in bicuculline-treated slices suggested that GABA(A) receptor-mediated inhibition in adult APP/PS1 and old nonTg mice was upregulated. Assuming that enhanced inhibition of LTP mediates memory decline in APP/PS1 mice, we rescued memory deficits in adult APP/PS1 mice by treating them with another GABA(A) receptor antagonist, picrotoxin (PTX), at a non-epileptic dose for 10 days. Among the saline vehicle-treated groups, substantially higher levels of synaptic proteins such as GABA(A) receptor alpha1 subunit, PSD95, and NR2B were observed in APP/PS1 mice than in nonTg control mice. This difference was insignificant among PTX-treated groups, suggesting that memory decline in APP/PS1 mice may result from changes in synaptic protein levels through homeostatic mechanisms. Several independent studies reported previously in aged rodents both an increased level of GABA(A) receptor alpha1 subunit and improvement of cognitive functions by long term GABA(A) receptor antagonist treatment. Therefore, reduced LTP linked to enhanced GABA(A) receptor-mediated inhibition may be triggered by aging and may be accelerated by familial AD-linked gene products like Abeta and mutant PS1, leading to cognitive decline that is pharmacologically treatable at least at this stage of disease progression in mice.  相似文献   

2.
To date there is no effective therapy for Alzheimer disease (AD). High levels of circulating high density lipoprotein (HDL) and its main protein, apolipoprotein A-I (apoA-I), reduce the risk of cardiovascular disease. Clinical studies show that plasma HDL cholesterol and apoA-I levels are low in patients with AD. To investigate if increasing plasma apoA-I/HDL levels ameliorates AD-like memory deficits and amyloid-β (Aβ) deposition, we generated a line of triple transgenic (Tg) mice overexpressing mutant forms of amyloid-β precursor protein (APP) and presenilin 1 (PS1) as well as human apoA-I (AI). Here we show that APP/PS1/AI triple Tg mice have a 2-fold increase of plasma HDL cholesterol levels. When tested in the Morris water maze for spatial orientation abilities, whereas APP/PS1 mice develop age-related learning and memory deficits, APP/PS1/AI mice continue to perform normally during aging. Interestingly, no significant differences were found in the total level and deposition of Aβ in the brains of APP/PS1 and APP/PS1/AI mice, but cerebral amyloid angiopathy was reduced in APP/PS1/AI mice. Also, consistent with the anti-inflammatory properties of apoA-I/HDL, glial activation was reduced in the brain of APP/PS1/AI mice. In addition, Aβ-induced production of proinflammatory chemokines/cytokines was decreased in mouse organotypic hippocampal slice cultures expressing human apoA-I. Therefore, we conclude that overexpression of human apoA-I in the circulation prevents learning and memory deficits in APP/PS1 mice, partly by attenuating neuroinflammation and cerebral amyloid angiopathy. These findings suggest that elevating plasma apoA-I/HDL levels may be an effective approach to preserve cognitive function in patients with AD.  相似文献   

3.
It is reported that chitinase1 increases in Alzheimer’s disease (AD). However, the alteration of chitinase1 in the progress of AD is still unclear. Thus, we designed the present study to detect chitinase1 level in different stages of APP/PS1 double transgenic mice. Experimental models were APP/PS1 double transgenic mice with 4, 12 and 22 months. Cognitive function was detected by Morris water maze test in APP/PS1 mice as well as controls. ELISA and the quantitative RT-PCR were used to detect chitinase1 level in different groups. The study displayed that expression of chitinase1 gradually increased in a time-dependent manner in APP/PS1 mice, while there were no statistical differences among the wild-type mice in varies ages. Moreover, chitnase1 increased significantly in APP/PS1 mice aged 12 and 22 months compared with the age matched wild-type group, respectively. However, no difference of chitnase1 was found between 4 months-old APP/PS1 mice and wild-type mice. Comparing with the age matched wild type group, the consequences of mRNA on the increase in chitnase1 is in accordance with protein in APP/PS1 mice. Furthermore, Morris water maze showed that 4 months-old APP/PS1 mice have normal spatial learning and impaired spatial memory; both spatial learning and spatial memory in 12 and 22 months-old APP/PS1 mice were declined. Time-dependent increase of chitnase1 in APP/PS1 double transgenic mice indicates that the level of chitinase1 is associated with decline of cognition. Therefore, chitinase1 might be a biomarker of disease progression in AD.  相似文献   

4.
Prior work has shown that iron interacts with hyperphosphorylated tau, which contributes to the formation of neurofibrillary tangles (NFTs) in Alzheimer’s disease (AD), whereas iron chelator desferrioxamine (DFO) slows down the clinical progression of the cognitive decline associated with this disease. However, the effects of DFO on tau phosphorylation in the presence or absence of iron have yet to be determined. Using amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mouse brain as a model system, we investigated the effects and potential mechanisms of intranasal administration of DFO on iron induced abnormal tau phosphorylation. High-dose iron treatment markedly increased the levels of tau phosphorylation at the sites of Thr205, Thr231 and Ser396, whereas highly induced tau phosphorylation was abolished by intranasal administration of DFO in APP/PS1 transgenic mice. Moreover, DFO intranasal administration also decreases Fe-induced the activities of cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3β (GSK3β), which in turn suppressing tau phosphorylation. Cumulatively, our data show that intranasal DFO treatment exerts its suppressive effects on iron induced tau phosphorylation via CDK5 and GSK3β pathways. More importantly, elucidation of DFO mechanism in suppressing tau phosphorylation may provide insights for developing therapeutic strategies to combat AD.  相似文献   

5.
Linjie Yu  Jiali Jin  Xing Ye  Yi Liu  Yun Xu 《Aging cell》2017,16(5):1073-1082
The accumulation and deposition of beta‐amyloid (Aβ) is a key neuropathological hallmark of Alzheimer's disease (AD). Histone deacetylases (HDACs) are promising therapeutic targets for the treatment of AD, while the specific HDAC isoforms associated with cognitive improvement are poorly understood. In this study, we investigate the role of HDAC3 in the pathogenesis of AD. Nuclear HDAC3 is significantly increased in the hippocampus of 6‐ and 9‐month‐old APPswe/PS1dE9 (APP/PS1) mice compared with that in age‐matched wild‐type C57BL/6 (B6) mice. Lentivirus ‐mediated inhibition or overexpression of HDAC3 was used in the hippocampus of APP/PS1 mice to investigate the role of HDAC3 in spatial memory, amyloid burden, dendritic spine density, glial activation and tau phosphorylation. Inhibition of HDAC3 in the hippocampus attenuates spatial memory deficits, as indicated in the Morris water maze test, and decreases amyloid plaque load and Aβ levels in the brains of APP/PS1 mice. Dendritic spine density is increased, while microglial activation is alleviated after HDAC3 inhibition in the hippocampus of 9‐month‐old APP/PS1 mice. Furthermore, HDAC3 overexpression in the hippocampus increases Aβ levels, activates microglia, and decreases dendritic spine density in 6‐month‐old APP/PS1 mice. In conclusion, our results indicate that HDAC3 negatively regulates spatial memory in APP/PS1 mice and HDAC3 inhibition might represent a potential therapy for the treatment of AD.  相似文献   

6.
Alzheimer’s disease (AD) is a devastating illness characterized by a progressive loss of cognitive, social, and emotional functions, including memory impairments and more global cognitive deficits. Clinical-epidemiological evidence suggests that neuropsychiatric symptoms precede the onset of cognitive symptoms both in humans with early and late onset AD. The behavioural profile promoted by the AD pathology is believed to associate with degeneration of the serotonergic system. Using the APPswe/PS1δE9 model of AD-like pathology starting with 9 months old mice, we characterised long term non-cognitive behavioural changes measured at 9, 12, 15, and 18 months of age and applied principal component analysis on data obtained from open field, elevated plus maze, and social interaction tests. Long-term treatment with the selective serotonin reuptake inhibitor (SSRI) paroxetine was applied to assess the role of 5-HT on the behavioural profile; duration of treatment was 9 months, initiated when mice were 9 months of age. Treatment with paroxetine delays the decline in locomotion, in exploration and risk assessment behaviour, found in the APP/PS1 mice. APP/PS1 mice also exhibit low social activity and less aggressiveness, both of which are not affected by treatment with paroxetine. The APP/PS1 behavioural phenotype, demonstrated in this study, only begins to manifest itself from 12 months of age. Our results indicate that treatment with SSRI might ameliorate some of the behavioural deficits found in aged APP/PS1 mice.  相似文献   

7.
Electroacupuncture (EA) has demonstrated therapeutic potential for the treatment of Alzheimer's disease (AD). A previous study reported that N-myc downstream-regulated gene 2 (NDRG2) was upregulated in the brain of patients with AD. In the present study, we investigated the effects of repeated EA administration on reference memory impairment and the role of NDRG2 in an amyloid precursor protein (APP)/presenilin-1 (PS1) double transgenic mouse model. Age-matched wild-type and transgenic mice were treated with EA (once per day for 30 min) for 4 weeks (four courses of 5 days EA administration and 2 days rest) beginning at 10 months of age. At seven and ten postnatal months of age and following a 4-week EA treatment regime, mice received training in the Morris water maze (MWM) and a probe test. Brain tissue was analyzed via Western blot and double-label immunofluorescence. Beginning at 7 months of age, APP/PS1 mice began to exhibit deficits in reference memory in the MWM test, an impairment associated with upregulation of glial fibrillary acidic protein (GFAP) and NDRG2. Four weeks of EA administration significantly ameliorated cognitive impairments and suppressed GFAP and NDRG2 upregulation. In conclusion, our findings demonstrated that EA administration can alleviate reference memory deficits and suppress NDRG2 upregulation in an AD transgenic mouse model. This study provides supportive evidence for EA as an effective therapeutic intervention for AD, as well as NDRG2 as a novel target for AD treatment.  相似文献   

8.
While Alzheimer's disease (AD) is traditionally associated with deficits in episodic memory, early changes in other cognitive domains, such as attention, have been gaining interest. In line with clinical observations, some animal models of AD have been shown to develop attentional deficits, but this is not consistent across all models. The APPswe/PS1ΔE9 (APP/PS1) mouse is one of the most commonly used AD models and attention has not yet been scrutinised in this model. We set out to assess attention using the 5-choice serial reaction time task (5CSRTT) early in the progression of cognitive symptoms in APP/PS1 mice, using clinically translatable touchscreen chambers. APP/PS1 mice showed no attentional changes across 5CSRTT training or any probes from 9 to 11 months of age. Interestingly, APP/PS1 mice showed increased impulsive and compulsive responding when task difficulty was high. This suggests that while the APP/PS1 mouse model may not be a good model of attentional changes in AD, it may be useful to study the early changes in impulsive and compulsive behaviour that have been identified in patient studies. As these changes have not previously been reported without attentional deficits in the clinic, the APP/PS1 mouse model may provide a unique opportunity to study these specific behavioural changes seen in AD, including their mechanistic underpinnings and therapeutic implications.  相似文献   

9.
The development of an effective therapy for Alzheimer’s disease (AD) is a major challenge to biomedical sciences. Because much of early AD pathophysiology includes hippocampal abnormalities, a viable treatment strategy might be to use trophic factors that support hippocampal integrity and function. IGF2 is an attractive candidate as it acts in the hippocampus to enhance memory consolidation, stimulate adult neurogenesis and upregulate cholinergic marker expression and acetylcholine (ACh) release. We performed a seven-day intracerebroventricular infusion of IGF2 in transgenic APPswe.PS1dE9 AD model mice that express green fluorescent protein in cholinergic neurons (APP.PS1/CHGFP) and in wild type WT/CHGFP littermates at 6 months of age representing early AD-like disease. IGF2 reduced the number of hippocampal Aβ40- and Aβ42-positive amyloid plaques in APP.PS1/CHGFP mice. Moreover, IGF2 increased hippocampal protein levels of the ACh-synthesizing enzyme, choline acetyltransferase in both WT/CHGFP and APP.PS1/CHGFP mice. The latter effect was likely mediated by increased protein expression of the cholinergic differentiating factor, BMP9, observed in IGF2-treated mice as compared to controls. IGF2 also increased the protein levels of hippocampal NGF, BDNF, NT3 and IGF1 and of doublecortin, a marker of neurogenesis. These data show that IGF2 administration is effective in reversing and preventing several pathophysiologic processes associated with AD and suggest that IGF2 may constitute a therapeutic target for AD.  相似文献   

10.
目的:评价APP/PS1双转基因小鼠基因表达及认知行为能力的变化,为AD的相关研究提供有效的动物模型。方法:采用雄、雌鼠1:1合笼配对的方式,令APP/PS1双转基因小鼠自然交配进行繁育。PCR鉴定APP/PS1双转基因鼠仔鼠的基因型后,选择APP/PS1阳性小鼠作为模型(AD)组,同批APP/PS1阴性为对照(CT)组,每组8只小鼠。以Morris水迷宫实验检测仔鼠的空间学习记忆能力,以HE染色、刚果红染色观察仔鼠脑片组织病理学改变。结果:①APP/PS1双转基因鼠仔鼠基因经PCR扩增,出现约360 bp的目的基因条带,表明成功繁育出转入APP/PS1基因的仔鼠;②Morris水迷宫实验结果显示,与7月龄阴性小鼠(CT组)比较,同月龄的双转基因AD组小鼠的空间学习记忆能力明显降低(P<0.05);③HE染色结果显示,AD组小鼠海马结构及细胞形态出现明显异常;刚果红染色结果显示,AD组小鼠脑片组织出现β淀粉样蛋白斑块沉积。结论:APP/PS1双转基因小鼠较好地模拟了AD的病理变化及行为学特征,可作为研究AD发病机制及开发AD防治药物的实验工具。  相似文献   

11.
12.
Brain insulin signaling deficits contribute to multiple pathological features of Alzheimer's disease (AD). Although intranasal insulin has shown efficacy in patients with AD, the underlying mechanisms remain largely unillustrated. Here, we demonstrate that intranasal insulin improves cognitive deficits, ameliorates defective brain insulin signaling, and strongly reduces β‐amyloid (Aβ) production and plaque formation after 6 weeks of treatment in 4.5‐month‐old APPswe/PS1dE9 (APP/PS1) mice. Furthermore, c‐Jun N‐terminal kinase activation, which plays a pivotal role in insulin resistance and AD pathologies, is significantly inhibited. The alleviation of amyloid pathology by intranasal insulin results mainly from enhanced nonamyloidogenic processing and compromised amyloidogenic processing of amyloid precursor protein (APP), and from a reduction in apolipoprotein E protein which is involved in Aβ metabolism. In addition, intranasal insulin effectively promotes hippocampal neurogenesis in APP/PS1 mice. This study, exploring the mechanisms underlying the beneficial effects of intranasal insulin on Aβ pathologies in vivo for the first time, highlights important preclinical evidence that intranasal insulin is potentially an effective therapeutic method for the prevention and treatment of AD.  相似文献   

13.
Icariin, a major constituent of flavonoids from the Chinese medicinal herb Epimedium brevicornum, exhibits multiple biological properties, including anti-inflammatory, neuroregulatory and neuroprotective activities. Therefore, Icariin might be applied in treatment of neurodegenerative disorders, including Alzheimer''s disease (AD), which is neuropathologically characterized by β-amyloid aggregation, hyperphosphorylated tau and neuroinflammation. Potential therapeutic effects of Icariin were investigated in an animal model of cerebral amyloidosis for AD, transgenic APP/PS1 mouse. Icariin was suspended in carboxymethylcellulose and given orally to APP/PS1 mice. Therapeutic effects were monitored by behavioral tests, namely nesting assay, before and during the experimental treatment. Following an oral treatment of 10 days, Icariin significantly attenuated Aβ deposition, microglial activation and TGF-β1 immunoreactivity at amyloid plaques in cortex and hippocampus of transgenic mice 5 months of age, and restored impaired nesting ability. Our results suggest that Icariin might be considered a promising therapeutic option for human AD.  相似文献   

14.
Abnormal activation of calpain is implicated in synaptic dysfunction and participates in neuronal death in Alzheimer disease (AD) and other neurological disorders. Pharmacological inhibition of calpain has been shown to improve memory and synaptic transmission in the mouse model of AD. However, the role and mechanism of calpain in AD progression remain elusive. Here we demonstrate a role of calpain in the neuropathology in amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic mice, an established mouse model of AD. We found that overexpression of endogenous calpain inhibitor calpastatin (CAST) under the control of the calcium/calmodulin-dependent protein kinase II promoter in APP/PS1 mice caused a remarkable decrease of amyloid plaque burdens and prevented Tau phosphorylation and the loss of synapses. Furthermore, CAST overexpression prevented the decrease in the phosphorylation of the memory-related molecules CREB and ERK in the brain of APP/PS1 mice and improved spatial learning and memory. Interestingly, treatment of cultured primary neurons with amyloid-β (Aβ) peptides caused an increase in the level of β-site APP-cleaving enzyme 1 (BACE1), the key enzyme responsible for APP processing and Aβ production. This effect was inhibited by CAST overexpression. Consistently, overexpression of calpain in heterologous APP expressing cells up-regulated the level of BACE1 and increased Aβ production. Finally, CAST transgene prevented the increase of BACE1 in APP/PS1 mice. Thus, calpain activation plays an important role in APP processing and plaque formation, probably by regulating the expression of BACE1.  相似文献   

15.
Exosomes are associated with the development and progression of Alzheimer's disease (AD), although the impact of these extracellular vesicles in brain pathological condition remains incompletely understood. Therefore, this study aimed to investigate the role and mechanism of exosomes signaling in AD. Double transgenic APP/PS1 mice were injected with bone marrow mesenchymal stem cells (BM-MSCs)-derived exosomes or combined with SKI-Ⅱ (sphingosine kinase [SphK] inhibitor) or VPC23019 (sphingosine-1-phosphate [S1P] 1 receptor blocker). We observed the spatial learning and memory ability of mice, and assessed the levels of amyloid and proteins. We found that exosomes improved spatial learning and memory ability of APP/PS1 mice, and enhanced the expression of SphK1 and S1P1. Moreover, exosomes inhibited the levels of amyloid and enhanced the expression of NeuN in cortex and hippocampus of APP/PS1 mice. Exosomes repressed the levels of Aβ1-40, Aβ1-42, BACE1, and PS1, and promoted the expression of neprilysin in APP/PS1 mice. The influence conferred by exosomes was abolished by SKI-Ⅱ or VPC23019. In conclusion, our article confirms that BM-MSCs-derived exosomes reduce Aβ deposition and promote cognitive function recovery in AD mice by activating SphK/S1P signaling pathway. Thus, our data suggest that S1P/SphK-containing exosomes should be explored as potential AD cure.  相似文献   

16.
Increasing evidence has shown that specificity protein 1 (Sp1) is abnormally increased in the brains of subjects with Alzheimer’s disease (AD) and transgenic AD models. However, whether the Sp1 activation plays a critical role in the AD pathogenesis and selective inhibition of Sp1 activation may have a disease-modifying effect on the AD-like phenotypes remain elusive. In this study, we reported that Sp1 mRNA and protein expression were markedly increased in the brain of APPswe/PS1dE9 transgenic mice, whereas chronic administration of mithramycin A (MTM), a selective Sp1 inhibitor, potently inhibited Sp1 activation in the APPswe/PS1dE9 mice down to the levels of wild-type mice. Specifically, we found that MTM treatment resulted in a significant improvement of learning and memory deficits, a dramatic reduction in cerebral Aβ levels and plaque burden, a profound reduction in tau hyperphosphorylation, and a marked increase in synaptic marker in the APPswe/PS1dE9 mice. In addition, MTM treatment was powerfully effective in inhibiting amyloid precursor protein (APP) processing via suppressing APP, beta-site APP cleaving enzyme 1 (BACE1), and presenilin-1 (PS1) mRNA and protein expression to preclude Aβ production in the APPswe/PS1dE9 mice. Furthermore, MTM treatment strongly inhibited phosphorylated CDK5 and GSK3β signal pathways to reduce tau hyperphosphorylation in the APPswe/PS1dE9 mice. Collectively, our findings provide evidence that Sp1 activation may contribute to the AD pathogenesis and may serve as a novel therapeutic target in the treatment of AD. The present study highlights that selective Sp1 inhibitors may be considered as disease-modifying therapeutic agents for AD.  相似文献   

17.
Decline of cognitive function is the hallmark of Alzheimer’s disease (AD), regardless of the pathological mechanism. Traditional Chinese medicine has been used to combat cognitive impairments and has been shown to improve learning and memory. Radix Polygalae (RAPO) is a typical and widely used herbal medicine. In this study, we aimed to follow the β-amyloid (Aβ) reduction activity to identify active constituent(s) of RAPO. We found that Onjisaponin B of RAPO functioned as RAPO to suppress Aβ production without direct inhibition of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) and γ-secretase activities. Our mechanistic study showed that Onjisaponin B promoted the degradation of amyloid precursor protein (APP). Further, oral administration of Onjisaponin B ameliorated Aβ pathology and behavioral defects in APP/PS1 mice. Taken together, our results indicate that Onjisaponin B is effective against AD, providing a new therapeutic agent for further drug discovery.  相似文献   

18.
19.
Amyloid precursor protein cleaving enzyme 1 (BACE1), an aspartyl protease, initiates processing of the amyloid precursor protein (APP) into β-amyloid (Aβ); the peptide likely contributes to development of Alzheimer’s disease (AD). BACE1 is an attractive therapeutic target for AD treatment, but it exhibits other physiological activities and has many other substrates besides APP. Thus, inhibition of BACE1 function may cause adverse side effects. Here, we present a peptide, S1, isolated from a peptide library that selectively inhibits BACE1 hydrolytic activity by binding to the β-proteolytic site on APP and Aβ N-terminal. The S1 peptide significantly reduced Aβ levels in vitro and in vivo and inhibited Aβ cytotoxicity in SH-SY5Y cells. When applied to APPswe/PS1dE9 double transgenic mice by intracerebroventricular injection, S1 significantly improved the spatial memory as determined by the Morris Water Maze, and also attenuated their Aβ burden. These results indicate that the dual-functional peptide S1 may have therapeutic potential for AD by both reducing Aβ generation and inhibiting Aβ cytotoxicity.  相似文献   

20.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by accumulation of amyloid-β (Aβ) peptide in the hippocampus and frontal cortex of the brain, leading to progressive cognitive decline. The endogenous bile acid tauroursodeoxycholic acid (TUDCA) is a strong neuroprotective agent in several experimental models of disease, including neuronal exposure to Aβ. Nevertheless, the therapeutic role of TUDCA in AD pathology has not yet been ascertained. Here we report that feeding APP/PS1 double-transgenic mice with diet containing 0.4 % TUDCA for 6 months reduced accumulation of Aβ deposits in the brain, markedly ameliorating memory deficits. This was accompanied by reduced glial activation and neuronal integrity loss in TUDCA-fed APP/PS1 mice compared to untreated APP/PS1 mice. Furthermore, TUDCA regulated lipid-metabolism mediators involved in Aβ production and accumulation in the brains of transgenic mice. Overall amyloidogenic APP processing was reduced with TUDCA treatment, in association with, but not limited to, modulation of γ-secretase activity. Consequently, a significant decrease in Aβ(1-40) and Aβ(1-42) levels was observed in both hippocampus and frontal cortex of TUDCA-treated APP/PS1 mice, suggesting that chronic feeding of TUDCA interferes with Aβ production, possibly through the regulation of lipid-metabolism mediators associated with APP processing. These results highlight TUDCA as a potential therapeutic strategy for the prevention and treatment of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号