首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vascular endothelial growth factor (VEGF) plays a significant role in blood-brain barrier breakdown and angiogenesis after brain injury. VEGF-induced endothelial cell migration is a key step in the angiogenic response and is mediated by an accelerated rate of focal adhesion complex assembly and disassembly. In this study, we identified the signaling mechanisms by which VEGF regulates human brain microvascular endothelial cell (HBMEC) integrity and assembly of focal adhesions, complexes comprised of scaffolding and signaling proteins organized by adhesion to the extracellular matrix. We found that VEGF treatment of HBMECs plated on laminin or fibronectin stimulated cytoskeletal organization and increased focal adhesion sites. Pretreating cells with VEGF antibodies or with the specific inhibitor SU-1498, which inhibits Flk-1/KDR receptor phosphorylation, blocked the ability of VEGF to stimulate focal adhesion assembly. VEGF induced the coupling of focal adhesion kinase (FAK) to integrin alphavbeta5 and tyrosine phosphorylation of the cytoskeletal components paxillin and p130cas. Additionally, FAK and related adhesion focal tyrosine kinase (RAFTK)/Pyk2 kinases were tyrosine-phosphorylated by VEGF and found to be important for focal adhesion sites. Overexpression of wild type RAFTK/Pyk2 increased cell spreading and the migration of HBMECs, whereas overexpression of catalytically inactive mutant RAFTK/Pyk2 markedly suppressed HBMEC spreading ( approximately 70%), adhesion ( approximately 82%), and migration ( approximately 65%). Furthermore, blocking of FAK by the dominant-interfering mutant FRNK (FAK-related non-kinase) significantly inhibited HBMEC spreading and migration and also disrupted focal adhesions. Thus, these studies define a mechanism for the regulatory role of VEGF in focal adhesion complex assembly in HBMECs via activation of FAK and RAFTK/Pyk2.  相似文献   

2.
Angiogenesis is regulated by both soluble growth factors and cellular interactions with the extracellular matrix (ECM). While cell adhesion via integrins has been shown to be required for angiogenesis, the effects of quantitative changes in cell adhesion and spreading against the ECM remain less clear. Here, we show that angiogenic sprouting in natural and engineered three-dimensional matrices exhibited a biphasic response, with peak sprouting when adhesion to the matrix was limited to intermediate levels. Examining changes in global gene expression to determine a genetic basis for this response, we demonstrate a vascular endothelial growth factor (VEGF)-induced upregulation of genes associated with vascular invasion and remodeling when cell adhesion was limited, whereas cells on highly adhesive surfaces upregulated genes associated with proliferation. To explore a mechanistic basis for this effect, we turned to focal adhesion kinase (FAK), a central player in adhesion signaling previously implicated in angiogenesis, and its homologue, proline-rich tyrosine kinase 2 (Pyk2). While FAK signaling had some impact, our results suggested that Pyk2 can regulate both gene expression and endothelial sprouting through its enhanced activation by VEGF in limited adhesion contexts. We also demonstrate decreased sprouting of tissue explants from Pyk2-null mice as compared to wild type mice as further confirmation of the role of Pyk2 in angiogenic sprouting. These results suggest a surprising finding that limited cell adhesion can enhance endothelial responsiveness to VEGF and demonstrate a novel role for Pyk2 in the adhesive regulation of angiogenesis.  相似文献   

3.
The focal adhesion kinase (FAK) protein-tyrosine kinase (PTK) links transmembrane integrin receptors to intracellular signaling pathways. We show that expression of the FAK-related PTK, Pyk2, is elevated in fibroblasts isolated from murine fak-/- embryos (FAK-) compared with cells from fak+/+ embryos (FAK+). Pyk2 was localized to perinuclear regions in both FAK+ and FAK- cells. Pyk2 tyrosine phosphorylation was enhanced by fibronectin (FN) stimulation of FAK- but not FAK+ cells. Increased Pyk2 tyrosine phosphorylation paralleled the time-course of Grb2 binding to Shc and activation of ERK2 in FAK- cells. Pyk2 in vitro autophosphorylation activity was not enhanced by FN plating of FAK- cells. However, Pyk2 associated with active Src-family PTKs after FN but not poly-L-lysine replating of the FAK- cells. Overexpression of both wild-type (WT) and kinase-inactive (Ala457), but not the autophosphorylation site mutant (Phe402) Pyk2, enhanced endogenous FN-stimulated c-Src in vitro kinase activity in FAK- cells, but only WT Pyk2 overexpression enhanced FN-stimulated activation of co-transfected ERK2. Interestingly, Pyk2 overexpression only weakly augmented FAK- cell migration to FN whereas transient FAK expression promoted FAK- cell migration to FN efficiently compared with FAK+ cells. Significantly, repression of endogenous Src-family PTK activity by p50(csk) overexpression inhibited FN-stimulated cell spreading, Pyk2 tyrosine phosphorylation, Grb2 binding to Shc, and ERK2 activation in the FAK- but not in FAK+ cells. These studies show that Pyk2 and Src-family PTKs combine to promote FN-stimulated signaling events to ERK2 in the absence of FAK, but that these signaling events are not sufficient to overcome the FAK- cell migration defects.  相似文献   

4.
The proline-rich tyrosine kinase 2, Pyk2, is a focal adhesion related kinase expressed in T cells that is tyrosine phosphorylated and activated by integrin, chemokine or T cell receptor stimulation. Ligation of the cell adhesion molecule CD44 also induces Pyk2 phosphorylation and T cell spreading, and this is negatively regulated by the protein tyrosine phosphatase CD45. Here, we identify the activation requirements for Pyk2 and demonstrate its requirement for CD44-mediated elongated T cell spreading. Upon CD44-mediated cell spreading, Pyk2 was recruited to CD44 clusters in both CD45+ and CD45 T cells, yet was more strongly phosphorylated in T cells lacking CD45. In these cells, Pyk2 phosphorylation was dependent on Src family kinase activity and required actin polymerisation, phosphatidylinositol-3 kinase and phospholipase C activity as well as extracellular calcium. Inhibition of any of these events prevented Pyk2 phosphorylation and T cell spreading. Transfection of a truncated form of Pyk2 lacking the kinase domain, PRNK, inhibited CD44-mediated cell spreading, demonstrating an important role for Pyk2. However, inhibition of microtubule turnover by Taxol prevented elongated T cell spreading but did not affect Pyk2 phosphorylation, indicating that microtubule reorganisation is downstream, or independent, of Pyk2 phosphorylation. Together this demonstrates that multiple factors are required for CD44-induced Pyk2 activation, which plays a critical role in CD44-mediated elongated T cell spreading.  相似文献   

5.
Pyk2 is a member of the focal adhesion kinase (FAK) family, highly expressed in the central nervous system and haemopoietic cells. Although Pyk2 is homologous to FAK, its role in signaling pathways was shown to be distinct from that of FAK. We show here that Pyk2 is highly expressed in peritoneal IC-21 macrophage and is tyrosine phosphorylated in response to cell attachment to fibronectin and fibrinogen. Upon IC-21 cell adhesion, Pyk2 tyrosine phosphorylation is inhibited by blocking antibodies to the integrin subunits alpha(M) and beta(2). Furthermore, Pyk2 is rapidly tyrosine phosphorylated in response to ligation of beta(2) integrins by antibodies. In migrating macrophages, Pyk2 localizes to perinuclear regions and to podosomes, where it is clustered with tyrosine phosphorylated proteins. Furthermore, in the podosomal ring structure, which surrounds the central actin core, Pyk2 co-localizes with vinculin, talin, and paxillin. In the podosomes, Pyk2 also co-localizes with the integrin alpha(M)beta(2). Lastly, reduction of Pyk2 expression in macrophages leads to inhibition of cell migration. We propose that Pyk2 is functionally linked to the formation of podosomes where it mediates the integrin-cytoskeleton interface and regulates cell spreading and migration.  相似文献   

6.
3-Phosphoinositide-dependent protein kinase 1 (PDK1) is a signal integrator that activates the AGC superfamily of serine/threonine kinases. PDK1 is phosphorylated on tyrosine by oxidants, although its regulation by agonists that stimulate G-protein-coupled receptor signaling pathways and the physiological consequences of tyrosine phosphorylation in this setting have not been fully identified. We found that angiotensin II stimulates the tyrosine phosphorylation of PDK1 in vascular smooth muscle in a calcium- and c-Src-dependent manner. The calcium-activated tyrosine kinase Pyk2 acts as a scaffold for Src-dependent phosphorylation of PDK1 on Tyr9, which permits phosphorylation of Tyr373 and -376 by Src. This critical function of Pyk2 is further supported by the observation that Pyk2 and tyrosine-phosphorylated PDK1 colocalize in focal adhesions after angiotensin II stimulation. Importantly, infection of smooth muscle cells with a Tyr9 mutant of PDK1 inhibits angiotensin II-induced tyrosine phosphorylation of paxillin and focal adhesion formation. These observations identify a novel interaction between PDK1 and Pyk2 that regulates the integrity of focal adhesions, which are major compartments for integrating signals for cell growth, apoptosis, and migration.  相似文献   

7.
Smooth muscle cell migration is a key step of atherosclerosis and angiogenesis. We demonstrate that alpha(V)beta(3) and alpha(V)beta(5) integrins synergistically regulate smooth muscle cell migration onto vitronectin. Using an original haptotactic cell migration assay, we measured a strong stimulation of phosphoinositide metabolism in migrating vascular smooth muscle cells. Phosphatidic acid production and phosphoinositide 3-kinase IA activation were triggered only upon alpha(V)beta(3) engagement. Blockade of alpha(V)beta(3) engagement or phospholipase C activity resulted in a strong inhibition of smooth muscle cell spreading on vitronectin. By contrast, blockade of alpha(V)beta(5) reinforced elongation and polarization of cell shape. Moreover, Pyk2-associated tyrosine kinase and phosphoinositide 4-kinase activities measured in Pyk2 immunoprecipitates were stimulated upon cell migration. Blockade of either alpha(V)beta(3) or alpha(V)beta(5) function, as well as inhibition of phospholipase C activity, decreased both Pyk2-associated activities. We demonstrated that the Pyk2-associated phosphoinositide 4-kinase corresponded to the beta isoform. Our data point to the metabolism of phosphoinositides as a regulatory pathway for the differential roles played by alpha(V)beta(3) and alpha(V)beta(5) upon cell migration and identify the Pyk2-associated phosphoinositide 4-kinase beta as a common target for both integrins.  相似文献   

8.
The related cytoplasmic non-receptor tyrosine kinases Pyk2 (proline-rich tyrosine kinase 2) and FAK (focal adhesion kinase) have been implicated in phenylephrine-induced G-protein-coupled receptor-mediated signaling mechanisms leading to cardiomyocyte hypertrophy. We report that, in phenylephrine-stimulated neonatal rat ventricular myocytes (NRVM), Pyk2 augments expression of the hypertrophic marker atrial natriuretic factor (ANF) but reduces cytoskeletal organization and cell spreading. In contrast, FAK attenuates ANF production but does not alter cytoskeletal organization and cell spreading. Pyk2 and FAK exhibit differential localization in both unstimulated and phenylephrine-stimulated myocytes. Pyk2 catalytic activity is required for Pyk2 to augment ANF secretion but is not necessary to reduce cell spreading. Pyk2 autophosphorylation is required but not sufficient for Pyk2 to augment ANF secretion. Expression of the Pyk2 FERM domain as an autonomous fragment inhibits phenylephrine-mediated ANF secretion and reduces cell spreading. In addition, expression of the Pyk2 FERM domain inhibits the ability of Pyk2 to augment ANF secretion; this is correlated with reduced Pyk2 autophosphorylation. These data indicate that Pyk2 and FAK have different roles and occupy different positions in signaling pathways leading to the development of cardiomyocyte hypertrophy. This work was supported by grant HL67938 from the National Institutes of Health (J.C.L.)  相似文献   

9.
Inhibition of angiogenesis by a mouse sprouty protein   总被引:7,自引:0,他引:7  
Sprouty negatively modulates branching morphogenesis in the Drosophila tracheal system. To address the role of mammalian Sprouty homologues in angiogenesis, another form of branching morphogenesis, a recombinant adenovirus engineered to express murine Sprouty-4 selectively in endothelial cells, was injected into the sinus venosus of embryonic day 9.0 cultured mouse embryos. Sprouty-4 expression inhibited branching and sprouting of small vessels, resulting in abnormal embryonic development. In vitro, Sprouty-4 inhibited fibroblast growth factor and vascular endothelial cell growth factor-mediated cell proliferation and migration and prevented basic fibroblast growth factor and vascular endothelial cell growth factor-induced MAPK phosphorylation in endothelial cells, indicating inhibition of tyrosine kinase-mediated signaling pathways. The ability of constitutively activated mutant Ras(L61) to rescue Sprouty-4 inhibition of MAPK phosphorylation suggests that Sprouty inhibits receptor tyrosine kinase signaling upstream of Ras. Thus, Sprouty may regulate angiogenesis in normal and disease processes by modulating signaling by endothelial tyrosine kinases.  相似文献   

10.
The formation of new blood vessels by sprouting angiogenesis is tightly regulated by contextual cues that affect angiogeneic growth factor signaling. Both constitutive activation and loss of Akt kinase activity in endothelial cells impair angiogenesis, suggesting that Akt dynamics mediates contextual microenvironmental regulation. We explored the temporal regulation of Akt in endothelial cells during formation of capillary-like networks induced by cell–cell contact with vascular smooth muscle cells (vSMCs) and vSMC-associated VEGF. Expression of constitutively active Akt1 strongly inhibited network formation, whereas hemiphosphorylated Akt1 epi-alleles with reduced kinase activity had an intermediate inhibitory effect. Conversely, inhibition of Akt signaling did not affect endothelial cell migration or morphogenesis in vSMC cocultures that generate capillary-like structures. We found that endothelial Akt activity is transiently blocked by proteasomal degradation in the presence of SMCs during the initial phase of capillary-like structure formation. Suppressed Akt activity corresponded to the increased endothelial MAP kinase signaling that was required for angiogenic endothelial morphogenesis. These results reveal a regulatory principle by which cellular context regulates Akt protein dynamics, which determines MAP kinase signaling thresholds necessary drive a morphogenetic program during angiogenesis.  相似文献   

11.
Focal adhesion kinase (FAK) is phosphorylated on tyrosine and serine residues after cell activation. In the present work, we investigated the relationship between tyrosine and serine phosphorylation of FAK in promoting endothelial cell migration in response to vascular endothelial growth factor (VEGF). We found that VEGF induces the activation of the Rho-dependent kinase (ROCK) downstream from vascular endothelial growth factor receptor (VEGFR) 2. In turn, activated ROCK directly phosphorylates FAK on Ser732. Proline-rich tyrosine kinase-2 (Pyk2) is also activated in response to VEGF. Its activation requires the clustering of integrin alphavbeta3 and triggers directly the phosphorylation of Tyr407 within FAK, an event necessary for cell migration. Interestingly, ROCK-mediated phosphorylation of Ser732 is essential for Pyk2-dependent phosphorylation of Tyr407, because the latter is abrogated in cells expressing a FAK mutant that is nonphosphorylatable on Ser732. We suggest that VEGF elicits the activation of the VEGFR2-ROCK pathway, leading to phosphorylation of Ser732 within FAK. In turn, phosphorylation of Ser732 would change the conformation of FAK, making it accessible to Pyk2 activated in response to its association with integrin beta3. Then, activated Pyk2 triggers the phosphorylation of FAK on Tyr407, promoting cell migration.  相似文献   

12.
Focal adhesion kinase (FAK) plays a critical role during vascular development because knockout of FAK in endothelial cells (ECs) is embryonic lethal. Surprisingly, tamoxifen-inducible conditional knockout of FAK in adult blood vessels (inducible EC-specific FAK knockout [i-EC-FAK-KO]) produces no vascular phenotype, and these animals are capable of developing a robust growth factor-induced angiogenic response. Although angiogenesis in wild-type mice is suppressed by pharmacological inhibition of FAK, i-EC-FAK-KO mice are refractory to this treatment, which suggests that adult i-EC-FAK-KO mice develop a compensatory mechanism to bypass the requirement for FAK. Indeed, expression of the FAK-related proline-rich tyrosine kinase 2 (Pyk2) is elevated and phosphorylated in i-EC-FAK-KO blood vessels. In cultured ECs, FAK knockdown leads to increased Pyk2 expression and, surprisingly, FAK kinase inhibition leads to increased Pyk2 phosphorylation. Pyk2 can functionally compensate for the loss of FAK because knockdown or pharmacological inhibition of Pyk2 disrupts angiogenesis in i-EC-FAK-KO mice. These studies reveal the adaptive capacity of ECs to switch to Pyk2-dependent signaling after deletion or kinase inhibition of FAK.  相似文献   

13.
The expression of focal adhesion kinase family interacting protein of 200-kDa (FIP200) in normal brain is limited to some neurons and glial cells. On immunohistochemical analysis of biopsies of glioblastoma tumors, we detected FIP200 in the tumor cells, tumor-associated endothelial cells, and occasional glial cells. Human glioblastoma tumor cell lines and immortalized human astrocytes cultured in complete media also expressed FIP200 as did primary human brain microvessel endothelial cells (MvEC), which proliferate in culture and resemble reactive endothelial cells. Downregulation of endogenous expression of FIP200 using small interfering RNA resulted in induction of apoptosis in the human glioblastoma tumor cells, immortalized human astrocytes, and primary human brain MvEC. It has been shown by other investigators using cells from other tissues that FIP200 can interact directly with, and inhibit, proline-rich tyrosine kinase 2 (Pyk2) and focal adhesion kinase (FAK). In the human glioblastoma tumor cells, immortalized human astrocytes, and primary human brain MvEC, we found that downregulation of FIP200 increased the activity of Pyk2 without increasing its expression, but did not affect the activity or expression of FAK. Coimmunoprecipitation and colocalization studies indicated that the endogenous FIP200 was largely associated with Pyk2, rather than FAK, in the glioblastoma tumor cells and brain MvEC. Moreover, the pro-apoptotic effect of FIP200 downregulation was inhibited significantly by a TAT-Pyk2-fusion protein containing the Pyk2 autophosphorylation site in these cells. In summary, downregulation of endogenous FIP200 protein in glioblastoma tumor cells, astrocytes, and brain MvECs promotes apoptosis, most likely due to the removal of a direct interaction of FIP200 with Pyk2 that inhibits Pyk2 activation, suggesting that FIP200 expression may be required for the survival of all three cell types found in glioblastoma tumors.  相似文献   

14.
Focal adhesion kinase-null (FAK(-/-) fibroblasts exhibit morphological and motility defects that are reversed by focal adhesion kinase (FAK) reexpression. The FAK-related kinase, proline-rich tyrosine kinase 2 (Pyk2), is expressed in FAK(-/-) cells, yet it exhibits a perinuclear distribution and does not functionally substitute for FAK. Chimeric Pyk2/FAK proteins were created and expressed in FAK(-/-) cells to determine the impact of Pyk2 localization to focal contacts. Whereas an FAK/Pyk2 COOH-terminal (CT) domain chimera was perinuclear distributed, stable expression of a Pyk2 chimera with the FAK-CT domain (Pyk2/FAK-CT) localized to focal contact sites and enhanced fibronectin (FN)-stimulated haptotactic cell migration equal to FAK-reconstituted cells. Disruption of paxillin binding to the FAK-CT domain (S-1034) inhibited Pyk2/FAK-CT localization to focal contacts and its capacity to promote cell motility. Paxillin binding to the FAK-CT was necessary but not sufficient to mediate the indirect association of FAK or Pyk2/FAK-CT with a beta 1-integrin-containing complex. Both FAK and Pyk2/FAK-CT but not Pyk2/FAK-CT S-1034 reconstituted FAK(-/-) cells, exhibit elevated FN-stimulated extracellular signal-regulated kinase 2 (ERK2) and c-Jun NH(2)-terminal kinase (JNK) kinase activation. FN-stimulated FAK or Pyk2/FAK-CT activation enhanced both the extent and duration of FN-stimulated ERK2 activity which was necessary for cell motility. Transient overexpression of the FAK-CT but not FAK-CT S-1034 domain inhibited both FN-stimulated ERK2 and JNK activation as well as FN-stimulated motility of Pyk2/FAK-CT reconstituted cells. These gain-of-function studies show that the NH(2)-terminal and kinase domains of Pyk2 can functionally substitute for FAK in promoting FN-stimulated signaling and motility events when localized to beta-integrin-containing focal contact sites via interactions mediated by the FAK-CT domain.  相似文献   

15.
CD45 is a protein tyrosine phosphatase expressed on all cells of hematopoietic origin that is known to regulate Src family kinases. In macrophages, the absence of CD45 has been linked to defects in adhesion, however the molecular mechanisms involved remain poorly defined. In this study, we show that bone marrow derived macrophages from CD45-deficient mice exhibit abnormal cell morphology and defective motility. These defects are accompanied by substantially decreased levels of the cytoskeletal-associated protein paxillin, without affecting the levels of other proteins. Degradation of paxillin in CD45-deficient macrophages is calpain-mediated, as treatment with a calpain inhibitor restores paxillin levels in these cells and enhances cell spreading. Inhibition of the tyrosine kinases proline-rich tyrosine kinase (Pyk2) and focal adhesion kinase (FAK), kinases that are capable of mediating tyrosine phosphorylation of paxillin, also restored paxillin levels, indicating a role for these kinases in the CD45-dependent regulation of paxillin. These data demonstrate that CD45 functions to regulate Pyk2/FAK activity, likely through the activity of Src family kinases, which in turn regulates the levels of paxillin to modulate macrophage adhesion and migration.  相似文献   

16.
B-lymphocytes produce protective antibodies but also contribute to autoimmunity. In particular, marginal zone (MZ) B cells recognize both microbial components and self-antigens. B cell trafficking is critical for B cell activation and is controlled by chemoattactants such as CXCL13 and sphingosine 1-phosphate (S1P). The related tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase (Pyk2) regulate cell migration and adhesion but their roles in B cells are not fully understood. Using a novel Pyk2-selective inhibitor described herein (PF-719), as well as a FAK-selective inhibitor, we show that both Pyk2 and FAK are important for CXCL13- and S1P-induced migration of B-2 cells and MZ B cells. In contrast, LFA-1-mediated adhesion required only Pyk2 whereas activation of the Akt pro-survival kinase required FAK but not Pyk2. Thus Pyk2 and FAK mediate critical processes in B cells and these inhibitors can be used to further elucidate their functions in B cells.  相似文献   

17.
18.
Mammary cancer stem cells (MaCSCs) have been identified as a rare population of cells capable of self-renewal to drive mammary tumorigenesis and metastasis. Nevertheless, relatively little is known about the intracellular signaling pathways regulating self-renewal and metastatic activities of MaCSCs in vivo. Using a recently developed breast cancer mouse model with focal adhesion kinase (FAK) deletion in mammary tumor cells (MFCKO-MT mice), here we present evidence suggesting a compensatory function of Pyk2, a FAK-related kinase, in the regulation of MaCSCs and metastasis in these mice. Increased expression of Pyk2 was found selectively in pulmonary metastatic nodules of MFCKO-MT mice, and its inhibition significantly reduced mammary tumor development and metastasis in these mice. Consistent with the idea of metastasis driven by MaCSCs, we detected selective up-regulation of Pyk2 in MaCSCs, but not bulk mammary tumor cells, of primary tumors developed in MFCKO-MT mice. We further showed that inhibition of Pyk2 in FAK-null MaCSCs significantly decreased their tumorsphere formation and migration in vitro as well as self-renewal, tumorigenicity, and metastatic activity in vivo. Last, we identified PI3K/Akt signaling as a major mediator of FAK regulation of MaCSCs as well as a target for the compensatory function of Pyk2 in FAK-null MaCSCs. Together, these results further advance our understanding of FAK and its related tyrosine kinase Pyk2 in regulation of MaCSCs in breast cancer and suggest that pharmaceutically targeting these kinases may hold promise as a novel treatment for the disease by targeting and eradicating MaCSCs.  相似文献   

19.
20.
Diacylglycerol kinases (Dgk) phosphorylate diacylglycerol (DG) to phosphatidic acid (PA), thus turning off and on, respectively, DG-mediated and PA-mediated signaling pathways. We previously showed that hepatocyte growth factor (HGF), vascular endothelial growth factor, and anaplastic lymphoma kinase activate Dgkalpha in endothelial and leukemia cells through a Src-mediated mechanism and that activation of Dgkalpha is required for chemotactic, proliferative, and angiogenic signaling in vitro. Here, we investigate the downstream events and signaling pathways regulated by Dgkalpha, leading to cell scatter and migration upon HGF treatment and v-Src expression in epithelial cells. We report that specific inhibition of Dgkalpha, obtained either pharmacologically by R59949 treatment, or by expression of Dgkalpha dominant-negative mutant, or by small interfering RNA-mediated down-regulation of endogenous Dgkalpha, impairs 1) HGF- and v-Src-induced cell scatter and migration, without affecting the loss of intercellular adhesions; 2) HGF-induced cell spreading, lamellipodia formation, membrane ruffling, and focal adhesions remodeling; and 3) HGF-induced Rac activation and membrane targeting. In summary, we provide evidence that Dgkalpha, activated downstream of tyrosine kinase receptors and Src, regulates crucial steps directing Rac activation and Rac-dependent remodeling of actin cytoskeleton and focal contacts in migrating epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号