首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vitronectin is present in large concentrations in serum and participates in regulation of humoral responses, including coagulation, fibrinolysis, and complement activation. Because alterations in coagulation and fibrinolysis are common in acute lung injury, we examined the role of vitronectin in LPS-induced pulmonary inflammation. Vitronectin concentrations were significantly increased in the lungs after LPS administration. Neutrophil numbers and proinflammatory cytokine levels, including IL-1beta, MIP-2, KC, and IL-6, were significantly reduced in bronchoalveolar lavage fluid from vitronectin-deficient (vitronectin(-/-)) mice, as compared with vitronectin(+/+) mice, after LPS exposure. Similarly, LPS induced increases in lung edema, myeloperoxidase-concentrations, and pulmonary proinflammatory cytokine concentrations were significantly lower in vitronectin(-/-) mice. Vitronectin(-/-) neutrophils demonstrated decreased KC-induced chemotaxis as compared with neutrophils from vitronectin(+/+) mice, and incubation of vitronectin(+/+) neutrophils with vitronectin was associated with increased chemotaxis. Vitronectin(-/-) neutrophils consistently produced more TNF-alpha, MIP-2, and IL-1beta after LPS exposure than did vitronectin(+/+) neutrophils and also showed greater degradation of IkappaB-alpha and increased LPS-induced nuclear accumulation of NF-kappaB compared with vitronectin(+/+) neutrophils. These findings provide a novel vitronectin-dependent mechanism contributing to the development of acute lung injury.  相似文献   

2.
MUC1 (MUC1 in human and Muc1 in nonhumans) is a membrane-tethered mucin that interacts with Pseudomonas aeruginosa (PA) through flagellin. In this study, we compared PA pulmonary clearance and proinflammatory responses by Muc1(-/-) mice with Muc1(+/+) littermates following intranasal instillation of PA or flagellin. Compared with Muc1(+/+) mice, Muc1(-/-) mice showed increased PA clearance, greater airway recruitment of neutrophils, higher levels of TNF-alpha and KC in bronchoalveolar lavage fluid, higher levels of TNF-alpha in media of flagellin-stimulated alveolar macrophages, and higher levels of KC in media of tracheal epithelial cells. Knockdown of MUC1 enhanced flagellin-induced IL-8 production by primary human bronchial epithelial cells. Expression of MUC1 in HEK293T cells attenuated TLR5-dependent IL-8 release in response to flagellin, which was completely ablated when its cytoplasmic tail was deleted. We conclude that MUC1/Muc1 suppresses pulmonary innate immunity and speculate its anti-inflammatory activity may play an important modulatory role during microbial infection.  相似文献   

3.
We have investigated the consequence of lack of IgA on host immunity using a murine model of allergic lung inflammation. Mice with a targeted disruption of the alpha-switch region and 5' H chain gene (IgA(-/-) mice), which lack total IgA, developed significantly reduced pulmonary inflammation with fewer inflammatory cells in lung tissue and bronchoalveolar lavage fluids, as well as reduced levels of total and IgG1 OVA-specific Abs and decreased IL-4 and IL-5 in bronchoalveolar lavage fluids compared with IgA(+/+) controls, following allergen sensitization and challenge. This defect was attributable to fewer B cells in the lungs of IgA(-/-) mice. Polymeric IgR-deficient (pIgR(-/-)) mice, which lack the receptor that transports polymeric IgA across the mucosal epithelium where it is cleaved to form secretory IgA, were used to assess the contribution of secretory IgA vs total IgA in the induction of allergic lung inflammation. pIgR(-/-) and pIgR(+/+) mice had comparable levels of inflammation, demonstrating that IgA bound to secretory component is not necessary for the development of allergic lung inflammation, although this does not necessarily rule out a role for transudated IgA in lung secretions because of "mucosal leakiness" in these mice. The results indicate that Ag-specific B cells are required at mucosal surfaces for induction of inflammation and likely function as major APCs in the lung for soluble protein Ags.  相似文献   

4.
The FcR common gamma-chain (FcRgamma) is an essential component of the receptors FcepsilonRI, FcgammaRI, and FcgammaRIII, which are expressed on many inflammatory cell types. The role of these receptors in the initiation or maintenance of allergic inflammation has not been well defined. FcRgamma-deficient (FcRgamma(-/-)) and control (wild-type (WT)) mice were sensitized and subsequently challenged with OVA. Following sensitization and challenge to OVA, FcRgamma-deficient (FcRgamma(-/-)) mice developed comparable levels of IgE and IgG1 as WT mice. However, numbers of eosinophils, levels of IL-5, IL-13, and eotaxin in bronchoalveolar lavage fluid, and mononuclear cell (MNC) proliferative responses to OVA were significantly reduced, as was airway hyperresponsiveness (AHR) to inhaled methacholine. Reconstitution of FcRgamma(-/-) mice with whole spleen MNC from WT mice before sensitization restored development of AHR and the numbers of eosinophils in bronchoalveolar lavage fluid; reconstitution after sensitization but before OVA challenge only partially restored these responses. These responses were also restored when FcRgamma(-/-) mice received T cell-depleted MNC, T and B cell-depleted MNC, or bone marrow-derived dendritic cells before sensitization from FcR(+/+) or FcgammaRIII-deficient but not FcRgamma(-/-) mice. The expression levels of FcgammaRIV on bone marrow-derived dendritic cells from FcR(+/+) mice were found to be low. These results demonstrate that expression of FcRgamma, most likely FcgammaRI, on APCs is important during the sensitization phase for the development of allergic airway inflammation and AHR.  相似文献   

5.
6.
The role of surfactant-associated protein (SP) A in the mediation of pulmonary responses to bacterial lipopolysaccharide (LPS) was assessed in vivo with SP-A gene-targeted [SP-deficient; SP-A(-/-)] and wild-type [SP-A(+/+)] mice. Concentrations of tumor necrosis factor (TNF)-alpha, macrophage inflammatory protein-2, and nitric oxide were determined in recovered bronchoalveolar lavage fluid after intratracheal administration of LPS. SP-A(-/-) mice produced significantly more TNF-alpha and nitric oxide than SP-A(+/+) mice after LPS treatment. Intratracheal administration of human SP-A (1 mg/kg) to SP-A(-/-) mice restored regulation of TNF-alpha, macrophage inflammatory protein-2, and nitric oxide production to that of SP-A(+/+) mice. Other markers of lung injury including bronchoalveolar fluid protein, phospholipid content, and neutrophil numbers were not influenced by SP-A. Data from experiments designed to test possible mechanisms of SP-A-mediated suppression suggest that neither binding of LPS by SP-A nor enhanced LPS clearance are the primary means of inhibition. Our data and others suggest that SP-A acts directly on immune cells to suppress LPS-induced inflammation. These results demonstrate that endogenous or exogenous SP-A inhibits pulmonary LPS-induced cytokine and nitric oxide production in vivo.  相似文献   

7.
We previously showed that the seminatural surfactant Curosurf inhibits the in vitro synthesis of secretory type IIA phospholipase A(2) (sPLA(2)-IIA) in alveolar macrophages (AM). These cells are the main source of sPLA(2)-IIA in a guinea pig model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Here, we investigate the effect of Curosurf on the pulmonary synthesis of sPLA(2)-IIA in this ALI model. Our results showed that intratracheal administration of LPS (330 microg/kg) induced an increase in pulmonary expression of sPLA(2)-IIA, which was inhibited when animals received Curosurf (16 mg/guinea pig) 30 min or 8 h after LPS instillation. When AM were isolated from LPS-treated animals and cultured in conditioned medium, they expressed higher levels of sPLA(2)-IIA than AM from saline-treated animals. This ex vivo sPLA(2)-IIA expression was significantly reduced when guinea pigs received Curosurf 30 min after LPS instillation. Finally, we examined the effect of Curosurf on pulmonary inflammation measured 8 or 24 h after LPS administration. Curosurf instillation 30 min or 8 h after LPS reversed the increase in tumor necrosis factor-alpha expression, polymorphonuclear cell extravasation, and protein concentration in bronchoalveolar lavage fluids. Curosurf also decreased the bronchial reactivity induced by LPS. We conclude that Curosurf inhibits the pulmonary expression of sPLA(2)-IIA and exhibits palliative anti-inflammatory effects in an animal model of ALI.  相似文献   

8.
Chronic pulmonary diseases are more common in boys than in girls. Therefore, we investigated the differences in signs of sickness in male and female mice that were exposed to lipopolysaccharide (LPS) by intranasal instillation. Because apoptosis is important in the resolution of inflammation, we tested the hypothesis that reduced levels of Bcl-2, a regulator of apoptosis, may play a role in gender-specific differences in response to inflammation. Bcl-2 wild-type (+/+) female mice recovered from an LPS-induced drop in body temperature and loss in body weight significantly faster than male (+/+) mice. Female heterozygous (+/-) mice showed reduced Bcl-2 levels and exhibited a slower recovery than female (+/+) mice that was similar to the recovery pattern in male (+/+) and (+/-) mice. Interleukin-6 (IL-6) activity levels in the bronchoalveolar lavage fluid were higher in male than in female mice but were not different between (+/+) and (+/-) mice. We conclude that Bcl-2 plays a role in mediating the faster recovery of female (+/+) mice from LPS-induced signs of sickness independent of IL-6. These studies indicate that apoptotic mechanisms may be involved in gender-specific differences in chronic pulmonary diseases.  相似文献   

9.
We reported an association between the ability of recombinant human keratinocyte growth factor (rHuKGF) to upregulate the expression of surfactant protein A (SP-A) and to downregulate pulmonary inflammation that occurs after allogeneic bone marrow transplantation (BMT). To establish a causal relationship, rHuKGF (5 mg/kg) was administered subcutaneously for three consecutive days before irradiation to SP-A-sufficient and -deficient [SP-A(+/+) and SP-A(-/-), respectively] mice given inflammation-inducing allogeneic spleen T cells at the time of BMT. In contrast with SP-A(+/+) mice, rHuKGF failed to suppress the high levels of TNF-alpha, IFN-gamma, and nitric oxide contained in bronchoalveolar lavage fluids collected on day 7 after BMT from SP-A(-/-) mice. Early post-BMT weight loss was attenuated by rHuKGF in both SP-A(+/+) and SP-A(-/-) recipients. In the absence of supportive respiratory care, however, SP-A deficiency eventually abolished the ability of rHuKGF to prevent weight loss and to improve survival monitored for 1 mo after allogeneic BMT. In further experiments, the addition of cyclophosphamide (which is known to cause severe injury to the alveolar epithelium in donor T cell-recipient mice) to the conditioning regimen prevented rHuKGF-induced upregulation of SP-A and suppression of lung inflammation in both SP-A(+/+) and SP-A(-/-) mice. We conclude that endogenous baseline SP-A levels and optimal upregulation of SP-A are required for the anti-inflammatory protective effects of KGF after allogeneic transplantation.  相似文献   

10.
Group X secretory PLA(2) (sPLA(2)-X) is expressed in neutrophils and plays a role in the pathogenesis of neutrophil-mediated tissue inflammation and injury. This study tested the hypothesis that sPLA(2)-X in neutrophils may contribute to the pathogenesis of abdominal aortic aneurysms (AAA) using sPLA(2)-X(-/-) mice. AAA was created by application of CaCl(2) to external surface of aorta. As a result, the aortas of sPLA(2)-X(-/-) mice had smaller diameters (percent increase from baseline; 24.8 ± 3.5% vs. 49.9 ± 9.1%, respectively; P < 0.01), a reduced grade of elastin degradation, and lower activities of elastase and gelatinase (26% and 19% lower, respectively) after CaCl(2) treatment compared with sPLA(2)-X(+/+) mice. In sPLA(2)-X(+/+) mice, immunofluorescence microscopic images showed that the immunoreactivity of sPLA(2)-X was detected only in neutrophils within aortic walls 3 days, 1, 2, and 6 wk after CaCl(2) treatment, whereas the immunoreactivity was not detected in macrophages or mast cells in aortic walls. sPLA(2)-X immunoreactivity also was colocalized in cells expressing matrix metalloproteinase (MMP)-9. Neutrophils isolated from sPLA(2)-X(-/-) mice had lower activities of elastase, gelatinase, and MMP-9 in response to stimuli compared with sPLA(2)-X(+/+) mice. The attenuated release of elastase and gelatinase from sPLA(2)-X(-/-) neutrophils was reversed by exogenous addition of mouse sPLA(2)-X protein. The adoptive transfer of sPLA(2)-X(+/+) neutrophils days 0 and 3 after CaCl(2) treatment reversed aortic diameters and elastin degradation grades in the lethally irradiated sPLA(2)-X(+/+) mice reconstituted with sPLA(2)-X(-/-) bone marrow to an extent similar to that seen in sPLA(2)-X(+/+) mice. In conclusion, sPLA(2)-X in neutrophils plays a pathogenic role in AAA in a mice model.  相似文献   

11.
The interaction of TNF-alpha with TNF receptor 1 (TNFR1) activates several signal transduction pathways that lead to apoptosis or NF-kappa B-dependent inflammation and immunity. We hypothesized that host TNFR1 expression contributes to noninfectious lung injury and inflammation commonly observed after bone marrow transplantation (BMT), termed idiopathic pneumonia syndrome (IPS). C57BL/6 TNFR1-sufficient (TNFR1(+/+)) and -deficient (TNFR1(-/-)) mice were total body irradiated with or without cyclophosphamide conditioning and were given bone marrow plus IPS-inducing donor spleen T cells from B10.BR wild-type mice. TNFR1(-/-) recipient mice exhibited improved early post-BMT survival associated with decreased permeability edema. In addition, the low lung compliance measured in anesthetized, ventilated TNFR1(+/+) mice on day 7 after BMT was restored to baseline during TNFR1 deficiency. Importantly, bronchoalveolar lavage fluid (BALF) inflammatory cells from TNFR1(-/-) vs. TNFR1(+/+) mice generated less nitric oxide (.NO) and nitrating species and exhibited suppressed programmed cell death as assessed using flow cytometry. However, cellular infiltration and levels of proinflammatory cytokines and chemokines were generally higher in BALF collected on day 7 after BMT from TNFR1(-/-) compared with TNFR1(+/+) recipient mice. Our results support a major role of host TNFR1 in regulation of .NO production and lung dysfunction after allogeneic BMT.  相似文献   

12.
Multidrug resistance-associated protein 1 (MRP1) is a cysteinyl leukotriene (CysLT) export pump expressed on mast cells. CysLTs are crucial mediators in allergic airway disease. However, biological significance of MRP1 in allergic airway inflammation has not yet been elucidated. In this study, we sensitized wild-type control mice (mrp1(+/+)) and MRP1-deficient mice (mrp1(-/-)) to ovalbumin (OVA) and challenged them with OVA by aerosol. Airway inflammation and goblet cell hyperplasia after OVA exposure were reduced in mrp1(-/-) mice compared with mrp1(+/+) mice. Furthermore, CysLT levels in bronchoalveolar lavage fluid (BALF) from OVA-exposed mrp1(-/-) mice were significantly lower than those from OVA-exposed mrp1(+/+) mice. Levels of OVA-specific IgE, IL-4, and IL-13 in BALF were also decreased in OVA-exposed mrp1(-/-) mice. IgE-mediated release of CysLTs from murine bone marrow-derived mast cells was markedly impaired by MRP1 deficiency. Our results indicate that MRP1 plays an important role in the development of allergic airway inflammation through regulation of IgE-mediated CysLT export from mast cells.  相似文献   

13.
Immunological tolerance during prolonged exposure to allergen is accompanied by a shift in the lymphocyte content and a reduction of goblet cell metaplasia (GCM). Bim initiates negative selection of autoreactive T and B cells and shut down of T cell immune responses in vivo. The present study investigated whether Bim plays a role in the resolution of GCM during prolonged exposure to allergen. Loss of Bim increased T lymphocyte numbers in the bronchoalveolar lavage at 4 and 15 days of allergen exposure. The numbers of pulmonary CD4(+)8(-), CD4(-)8(+), and gammadelta T cells were significantly higher in naive and allergen-challenged bim(-/-) mice compared with wild-type (WT) littermates. When activated, pulmonary bim(-/-) T cells produced increased levels of IFNgamma compared with bim(+/+) T cells. No differences were noted in the total numbers of epithelial cells per millimeter of basal lamina between bim(+/+) and bim(-/-) mice, and the rate of resolution over 15 days of exposure was similar in both groups of mice. However, GCM was significantly enhanced and expression of IL-13Ralpha2 was reduced in bim(-/-) mice compared with WT mice at 4 days. Furthermore, treatment of bronchiolar explant cultures with increasing IFNgamma levels reduced immunostaining for IL-13Ralpha2. Collectively, these studies suggest that, during prolonged exposure to allergen, Bim plays no role in the resolution of GCM, but increased IFNgamma levels in bim(-/-) mice may be responsible for reduced expression of IL-13Ralpha2 and enhanced GCM despite similar levels of IL-13 in bim(+/+) and bim(-/-) mice.  相似文献   

14.
Tyrosine kinase 2 (Tyk2), a member of the JAK-signal transducer family, is involved in intracellular signaling triggered by various cytokines, including IL-23. We have recently reported that resident gammadelta T cells in the peritoneal cavity of naive mice produced IL-17 in response to IL-23. In this study, we examined importance of Tyk2-mediated signaling in the IL-17 production by gammadelta T cells using Tyk2 deficient (-/-) mice. Gammadelta T cells in the peritoneal cavity of Tyk2(-/-) mice displayed effecter/memory phenotypes and TCR V repertoire similar to those in Tyk2(+/+) mice and produced comparable level of IL-17 to those in Tyk2(+/+) mice in response to PMA and ionomycin, indicating normal differentiation to IL-17-producing effectors in the absence of Tyk2-signaling. However, gammadelta T cells in Tyk2(-/-) mice produced less amount of IL-17 in response to IL-23 in vitro than those in Tyk2(+/+) mice. Similarly, gammadelta T cells in the peritoneal cavity of Tyk2(-/-) mice showed severely impaired IL-17 production after an i.p. infection with E. coli despite comparable level of IL-23 production to Tyk2(+/+) mice. As a consequence, Tyk2(-/-) mice showed a reduced infiltration of neutrophils and severely impaired bacterial clearance after Escherichia coli infection. These results indicate that Tyk2-signaling is critical for IL-23-induced IL-17 production by gammadelta T cells, which is involved in the first line of host defense by controlling neutrophil-mediated immune responses.  相似文献   

15.
Clara cell secretory protein (CCSP) is synthesized by nonciliated bronchiolar cells in the lung and modulates lung inflammation to infection. To determine the role of CCSP in the host response to allergic airway disease, CCSP-deficient [(-/-)] mice were immunized twice with ovalbumin (Ova) and challenged by Ova (2 or 5 mg/m(3)) aerosol. After 2, 3, and 5 days of Ova aerosol challenge (6 h/day), airway reactivity was increased in CCSP(-/-) mice compared with wild-type [CCSP(+/+)] mice. Neutrophils were markedly increased in the bronchoalveolar lavage fluid of CCSP(-/-) Ova mice, coinciding with increased myeloperoxidase activity and macrophage inflammatory protein-2 levels. Lung histopathology and inflammation were increased in CCSP(-/-) compared with wild-type mice after Ova challenge. Mucus production, as assessed by histological staining, was increased in the airway epithelium of CCSP(-/-) Ova mice compared with that in CCSP(+/+) Ova mice. These data suggest a role for CCSP in airway reactivity and the host response to allergic airway inflammation and provide further evidence for the role of the airway epithelium in regulating airway responses in allergic disease.  相似文献   

16.
Recent in vivo and in vitro work suggests that mesenchymal stem cells (MSC) have anti-inflammatory properties. In this study, we tested the effect of administering MSC directly into the airspaces of the lung 4 h after the intrapulmonary administration of Escherichia coli endotoxin (5 mg/kg). MSC increased survival compared with PBS-treated control mice at 48 h (80 vs 42%; p < 0.01). There was also a significant decrease in excess lung water, a measure of pulmonary edema (145 +/- 50 vs 87 +/- 20 microl; p < 0.01), and bronchoalveolar lavage protein, a measure of endothelial and alveolar epithelial permeability (3.1 +/- 0.4 vs 2.2 +/- 0.8 mg/ml; p < 0.01), in the MSC-treated mice. These protective effects were not replicated by the use of further controls including fibroblasts and apoptotic MSC. The beneficial effect of MSC was independent of the ability of the cells to engraft in the lung and was not related to clearance of the endotoxin by the MSC. MSC administration mediated a down-regulation of proinflammatory responses to endotoxin (reducing TNF-alpha and MIP-2 in the bronchoalveolar lavage and plasma) while increasing the anti-inflammatory cytokine IL-10. In vitro coculture studies of MSC with alveolar macrophages provided evidence that the anti-inflammatory effect was paracrine and was not cell contact dependent. In conclusion, treatment with intrapulmonary MSC markedly decreases the severity of endotoxin-induced acute lung injury and improves survival in mice.  相似文献   

17.
Key role for mast cells in nonatopic asthma   总被引:7,自引:0,他引:7  
The mechanisms involved in nonatopic asthma are poorly defined. In particular, the importance of mast cells in the development of nonatopic asthma is not clear. In the mouse, pulmonary hypersensitivity reactions induced by skin sensitization with the low-m.w. compound dinitrofluorobenzene (DNFB) followed by an intra-airway application of the hapten have been featured as a model for nonatopic asthma. In present study, we used this model to examine the role of mast cells in the pathogenesis of nonatopic asthma. First, the effect of DNFB sensitization and intra-airway challenge with dinitrobenzene sulfonic acid (DNS) on mast cell activation was monitored during the early phase of the response in BALB/c mice. Second, mast cell-deficient W/W(v) and Sl/Sl(d) mice and their respective normal (+/+) littermate mice and mast cell-reconstituted W/W(v) mice (bone marrow-derived mast cells-->W/W(v)) were used. Early phase mast cell activation was found, which was maximal 30 min after DNS challenge in DNFB-sensitized BALB/c, +/+ mice but not in mast cell-deficient mice. An acute bronchoconstriction and increase in vascular permeability accompanied the early phase mast cell activation. BALB/c, +/+ and bone marrow-derived mast cell-->W/W(v) mice sensitized with DNFB and DNS-challenged exhibited tracheal hyperreactivity 24 and 48 h after the challenge when compared with vehicle-treated mice. Mucosal exudation and infiltration of neutrophils in bronchoalveolar lavage fluid associated the late phase response. Both mast cell-deficient strains failed to show any features of this hypersensitivity response. Our findings show that mast cells play a key role in the regulation of pulmonary hypersensitivity responses in this murine model for nonatopic asthma.  相似文献   

18.
Tumor necrosis factor-alpha (TNF) is implicated as an important proinflammatory cytokine in asthma. We evaluated mice deficient in TNF receptor 1 (TNFR1) and TNFR2 [TNFR(-/-) mice] in a murine model of allergic inflammation and found that TNFR(-/-) mice had comparable or accentuated responses compared with wild-type [TNFR(+/+)] mice. The responses were consistent among multiple end points. Airway responsiveness after methacholine challenge and bronchoalveolar lavage (BAL) fluid leukocyte and eosinophil numbers in TNFR(-/-) mice were equivalent or greater than those observed in TNFR(+/+) mice. Likewise, serum and BAL fluid IgE; lung interleukin (IL)-2, IL-4, and IL-5 levels; and lung histological lesion scores were comparable or greater in TNFR(-/-) mice compared with those in TNFR(+/+) mice. TNFR(+/+) mice chronically treated with anti-murine TNF antibody had BAL fluid leukocyte numbers and lung lesion scores comparable to control antibody-treated mice. These results suggest that, by itself, TNF does not have a critical proinflammatory role in the development of allergic inflammation in this mouse model and that the production of other cytokines associated with allergic disease may compensate for the loss of TNF bioactivity in the TNFR(-/-) mouse.  相似文献   

19.
Asthmatic-like reactions characterized by elevated IgE, Th2 cytokines, C-C chemokines, eosinophilic inflammation, and persistent airway hyperresponsiveness follow pulmonary exposure to the spores or conidia from Aspergillus fumigatus fungus in sensitized individuals. In addition to these features, subepithelial fibrosis and goblet cell hyperplasia characterizes fungal-induced allergic airway disease in mice. Because lung concentrations of macrophage inflammatory protein-1alpha and RANTES were significantly elevated after A. fumigatus-sensitized mice received an intrapulmonary challenge with A. fumigatus spores or conidia, the present study addressed the role of their receptor, C-C chemokine receptor 1 (CCR1), in this model. A. fumigatus-sensitized CCR1 wild-type (+/+) and CCR1 knockout (-/-) mice exhibited similar increases in serum IgE and polymorphonuclear leukocyte numbers in the bronchoalveolar lavage. Airway hyperresponsiveness was prominent in both groups of mice at 30 days after an intrapulmonary challenge with A. fumigatus spores or conidia. However, whole lung levels of IFN-gamma were significantly higher whereas IL-4, IL-13, and Th2-inducible chemokines such as C10, eotaxin, and macrophage-derived chemokine were significantly lower in whole lung samples from CCR1-/- mice compared with CCR1+/+ mice at 30 days after the conidia challenge. Likewise, significantly fewer goblet cells and less subepithelial fibrosis were observed around large airways in CCR1-/- mice at the same time after the conidia challenge. Thus, these findings demonstrate that CCR1 is a major contributor to the airway remodeling responses that arise from A. fumigatus-induced allergic airway disease.  相似文献   

20.
To evaluate the role of CCR2 in allergic asthma, mutant mice deficient in CCR2 (CCR2(-/-)) and intact mice were sensitized with i.p. OVA with alum on days 0 and 7, and challenged by inhalation with nebulization of either OVA or saline. Airway hyperreactivity, measured by the methacholine-provoked increase in enhanced pause, was significantly increased (p < 0.05) in OVA-challenged CCR2(-/-) mutant mice, compared with comparably challenged CCR2(+/+) mice. OVA-challenged CCR2(-/-) mutants also were also found to have enhanced bronchoalveolar lavage fluid eosinophilia, peribronchiolar cellular cuffing, and Ig subclass switching, with increase in OVA-specific IgG(1) and IgE. In addition, RNase protection assay revealed increased whole lung expression of IL-13 in OVA-challenged CCR2(-/-) mutants. Unexpectedly, serum monocyte chemotactic protein-1 levels were 8-fold higher in CCR2(-/-) mutants than in CCR2(+/+) mice sensitized to OVA, but OVA challenge had no additional effect on circulating monocyte chemotactic protein-1 in either genotype. Ag stimulation of lymphocytes isolated from OVA-sensitized CCR2 mutants revealed a significant increase (p < 0.05) in IL-5 production, which differed from OVA-stimulated lymphocytes from sensitized CCR2(+/+) mice. These experiments demonstrate an enhanced response in airway reactivity and in lung inflammation in CCR2(-/-) mutant mice compared with comparably sensitized and challenged CCR2(+/+) mice. These observations suggest that CC chemokines and their receptors are involved in immunomodulation of atopic asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号